
A Min-Flow Algorithm for Minimal Critical Set
Detection in Resource Constrained Project Scheduling

Michele Lombardi, Michela Milano
DISI, University of Bologna

{michele.lombardi2,michela.milano}@unibo.it

Abstract
This is a summary of (Lombardi and Milano 2012), where
we propose a novel method for Minimal Critical Set iden-
tification, to be used for the solution of scheduling prob-
lems via Precedence Constraint Posting. The method is based
on a minimum-flow problem and a heuristic minimization
step. The proposed approach is much more scalable than
enumeration-based MCS detection, faster and easier to im-
plement than enveloped-based sampling, more versatile than
earliest-start-schedule sampling. As a second major contri-
bution, the paper contains a thorough comparison (on the
PSPLIB) of MCS detection method, which outlines their indi-
vidual strengths and weakness. Additionally, the experimen-
tation provides novel insight in the effectiveness of a widely
employed MCS ranking heuristic.

Summary of the Journal Paper
Resource Constrained Project Scheduling: The clas-
sical Resource Constrained Project Scheduling Problem
(RCPSP) consists in ordering a set A of activities ai, con-
nected by a set E of precedence constraints (ai, aj). The
two sets form the so-called Project Graph. Each activity has
a fixed duration di and requires some amount rqi,k of a set
R of renewable resources. Each resource is referred to as
rk and has finite capacity ck. The objective is to minimize
the schedule makespan. The problem is NP-hard and ex-
tremely challenging. The RCPSP has many practical appli-
cations and has received enormous attention in Operations
Research and in Artificial Intelligence.

Precedence Constraint Posting: Precedence Constraint
Posting (PCP, (Policella et al. 2007)), is technique to solve
RCPSPs that operates by repeatedly identifying and re-
solving possible resource conflicts. Conflicts are resolved
by introducing additional precedence constraints. The pro-
cess stop when the graph is conflict-free. The output is a
resource-feasible augmented graph, from which an schedule
can be obtained by instantiating the start times of all activi-
ties so that all the precedence constraints are satisfied. PCP
approaches have the ability to tackle scheduling problemS
with uncertain or decision-dependent durations and are par-
ticularly well suited to build mixed off-line/on-line systems
(Lombardi, Milano, and Benini 2013).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A possible conflict on a resource rk is encoded as Minimal
Critical Set (MCS), i.e. a set S of activities such that: 1) all
ai in S can overlap. 2) The activities cause a resource over-
usage in case of overlapping execution, i.e.

∑
ai∈S rqi,k >

ck. 3) The set is minimal, i.e. by removing any activity from
the set, no over-usage occurs. An MCS corresponds to an
Independent Set (IS) in the graph, i.e. to a set of nodes
connected by no precedence relation. An MCS represents
a minimal-size possible conflict, which can be avoided by
posting a single precedence constraint between any pair of
activities in the set. Many PCP approaches operate by select-
ing and resolving MCS. This makes the conflict identifica-
tion step particularly important for the method effectiveness.

Current MCS Selection Methods: There are currently
three main MCS selection approaches.

1) MCS Enumeration: in (Laborie 2005), MCS identifi-
cation for rk is performed by enumerating the ISs in the
Project Graph. The activities are ranked by decreasing rqi,k,
so that the enumeration is restricted to minimal size IS. The
approach has exponential worst-case complexity.

2) Envelope-based Sampling: In (Policella et al. 2004) an
MCS identification method that relies on a maximum re-
source usage envelope is introduced. The envelope is ob-
tained by solving a sequence of (polynomial complexity)
maximum-flow problems on transformed graphs. A peak is
a point in the envelope where the usage of rk exceeds the
capacity ck. A set of MCS is sampled from each peak via
enumeration, with exponential worst case complexity.

3) Earliest-Start Schedule Sampling: A further method
from (Policella et al. 2004) is based on sampling an Earliest
Start Schedule, i.e. a schedule is obtained by starting each
activity at the earliest possible time allowed by the prece-
dence constraints. This method is faster than the previous
one, but it does not work for variable or uncertain durations.
The sampling step has still exponential time complexity.

The three approaches select for resolution the best MCS
(among the examined ones) according to a ranking heuris-
tic. A popular ranking criterion is the preserved space (from
(Laborie 2005)), which estimates the portion of the schedu-
lability windows which stays feasible after the addition of a
precedence constraint.

The Novel MCS Selection Method: Our method relies on
the fact that finding the maximum-weight Independent Set

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

476

in a transitive graph is a polynomial problem. By using the
requirements rqi,k as weights and finding such set, we ob-
tain the maximum possible usage for rk. If this is lower than
ck, the graph is conflict free. Otherwise, we have a Conflict
Set, not necessarily satisfying the minimality property. An
MCS is then obtained by iteratively removing the activity ai
causing the smallest reduction in heuristic rank.

Both steps have polynomial time complexity, making our
approach very scalable. The maximum weight IS is anal-
ogous to the highest peak in the usage envelope: however,
the former is obtained by solving a minimum flow prob-
lem (almost) directly on the Project Graph, rather than on
a more complex transformed graph (such as in (Policella et
al. 2004)). Therefore, our approach requires little or no addi-
tional data structure, it is easier to implement and very well
suited for incremental propagation. As a main disadvantage,
our method visits a small number of sets, with the risk to
miss good MCSs according to the ranking heuristic.

Experimental Setup and Comparison: We have per-
formed and extensive comparison of MCS detection proce-
dures on the PSPLIB. We focused on the enumeration and
the envelope based ones (referred to as ENUM and PEAKS),
plus our approach (MINFLOW). We look for an optimal
schedule via Depth First Search, branching by iterative se-
lecting an MCS and a precedence constraint to resolve it.
The preserved space heuristic is used to rank both MCS and
precedence relations. Constraint propagation is employed to
improve the search performance. We have a cutoff time of
600 seconds.

Table 1 reports part of the results for the MINFLOW ap-
proach. Instances are grouped by Resource Factor (RF —
the average number of required resources, averaged over the
number of activities) and Resource Strength (RS – the ratio
between a resource capacity and its average requirement).
We report the number of optimally solved and timed-out
instances (OP/TO). For the optimally solved problems, we
also report the average solution time and number of fails.
Table 2 and 3 contain some data about the comparison with
ENUM and PEAK. Here, the “time” and “fail” rows report
the gap between the MINFLOW results and the considered
approach, for the instances that both methods were able to
solve. Negative values mean that MINFLOW has a faster
solution time/smaller search tree.

Conclusion: The MINFLOW approach appears to work
pretty well, being more scalable than both ENUM (by far)
and PEAKS (to a lesser, but still considerable, extent). The
ENUM approach often leads to larger search trees than
MINFLOW, which is quite surprising, since the enumera-
tion is able to find the best MCS according to the preserved
space heuristic. This results points out the importance to bal-
ance the MCS selection effort with the reliability of the rank-
ing criterion. In this context, the PEAKS approach seems to
provide a nice compromise, reporting overall the smallest
number of time-outs. However, the method does not work
well for large RF values and it often slower than MINFLOW
when both approaches are able to prove optimality.

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 25/5 30/0 30/0 30/0 0/30 28/2 30/0 30/0

time 10.54 0.05 0.04 0.03 — 15.05 0.12 0.11
fail 27372 98 68 46 — 21869 124 92

J9
0 OP/TO 11/19 29/1 30/0 30/0 0/30 22/8 30/0 30/0

time 70.90 0.22 0.16 0.13 — 6.70 0.66 0.70
fail 84016 244 131 107 — 7316 245 201

RF 0.75 0.75 0.75 0.75 1.00 1.00 1.00 1.00
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 0/30 18/12 30/0 30/0 0/30 8/22 30/0 30/0

time — 8.38 0.28 0.22 — 15.03 0.62 0.37
fail — 8892 197 106 — 13601 303 114

J9
0 OP/TO 0/30 17/13 30/0 30/0 0/30 12/18 30/0 30/0

time — 50.15 1.69 1.62 — 6.79 2.76 2.70
fail — 43734 343 240 — 1762 353 252

Table 1: Results for the MINFLOW approach

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 25/5 30/0 30/0 30/0 0/30 24/6 30/0 30/0

time -6.2% -40% -42.2% -47.2% — -66.9% -89.8% -91.8%
fail 0.9% 2.6% -4% -6.2% — -0.4% -4.9% -6.6%

J9
0 OP/TO 7/23 30/0 29/1 30/0 0/30 15/15 22/8 17/13

time 9.4% -70.6% -80.3% -87.2% — -98.7% -99.2% -99.2%
fail 16.1% -3.4% -11% -3% — -13.1% -12.7% -5.3%

RF 0.75 0.75 0.75 0.75 1.00 1.00 1.00 1.00
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 0/30 15/15 30/0 27/3 0/30 2/28 16/14 17/13

time — -97.7% -98% -98.8% — -98.5% -99.3% -99.7%
fail — -40.9% -11.6% -13.6% — 25.8% -19.3% -23.2%

J9
0 OP/TO 0/30 0/30 5/25 0/30 0/30 0/30 0/30 0/30 0/30

time — — -99.8% — — — — —
fail — — -12.4% — — — — —

Table 2: Results for the comparison with ENUM

References
Laborie, P. 2005. Complete MCS-Based Search: Applica-
tion to Resource Constrained Project Scheduling. In Proc.
of IJCAI, 181–186. Professional Book Center.

Lombardi, M., and Milano, M. 2012. A min-flow algorithm
for minimal critical set detection in resource constrained
project scheduling. Artif. Intell. 182-183:58–67.

Lombardi, M.; Milano, M.; and Benini, L. 2013. Robust
scheduling of task graphs under execution time uncertainty.
IEEE Trans. Computers 62(1):98–111.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004.
Generating Robust Schedules through Temporal Flexibility.
In Proc. of ICAPS, 209–218.

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. F. 2007.
From precedence constraint posting to partial order sched-
ules: A CSP approach to Robust Scheduling. AI Communi-
cations 20(3):163–180.

RF 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 30/0 30/0 30/0 30/0 4/26 29/1 30/0 30/0

time -28% -76.6% -80.2% -79.4% — -56.6% -95.2% -95.4%
fail 13.4% 10.8% 6.5% 6% — 23.7% 15% 10.2%

J9
0 OP/TO 22/8 30/0 30/0 30/0 0/30 23/7 28/2 24/6

time -0.2% -87.5% -91.2% -92.1% — -89.8% -98.7% -98.8%
fail 54.1% 11.6% 6.7% 8.8% — 25.3% 8.6% 9.9%

RF 0.75 0.75 0.75 0.75 1.00 1.00 1.00 1.00
RS 0.20 0.50 0.70 1.00 0.20 0.50 0.70 1.00

J6
0 OP/TO 0/30 17/13 30/0 30/0 0/30 7/23 29/1 28/2

time — -85.4% -98% -98.1% — -63.8% -98.6% -99.1%
fail — 11.5% 12% 10.3% — 24.1% 13% 7.8%

J9
0 OP/TO 0/30 4/26 14/16 12/18 0/30 1/29 7/23 9/21

time — -99.5% -99.3% -99.4% — -99.6% -99.7% -99.6%
fail — -18.9% 16.6% 11.4% — 16.1% 4.6% 17.9%

Table 3: Results for the comparison with PEAKS

477

