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Abstract

Search And Tracking (SAT) is the problem of search-
ing for a mobile target and tracking it after it is found.
As this problem has important applications in search-
and-rescue and surveillance operations, recently there
has been increasing interest in equipping unmanned
aerial vehicles (UAVs) with autonomous SAT capabil-
ities. State-of-the-art approaches to SAT rely on esti-
mating the probability density function of the target’s
state and solving the search control problem in a greedy
fashion over a short planning horizon (typically, a one-
step lookahead). These techniques suffer high computa-
tional cost, making them unsuitable for complex prob-
lems. In this paper, we propose a novel approach to
SAT, which allows us to handle big geographical areas,
complex target motion models and long-term opera-
tions. Our solution is to track the target reactively while
it is in view and to plan a recovery strategy that relocates
the target every time it is lost, using a high-performing
automated planning tool. The planning problem con-
sists of deciding where to search and which search pat-
terns to use in order to maximise the likelihood of recov-
ering the target. We show experimental results demon-
strating the potential of our approach.

1 Introduction
The use of unmanned aerial vehicles (UAVs), or drones,
has recently attracted a great deal of media attention due to
their increasing role in military operations. However, mili-
tary UAVs are currently remotely piloted and will not nec-
essarily be the first class of UAVs to fly fully autonomously
(ASTRAEA Programme 2012). There are many potential
civil applications of UAVs, including surveillance, forest fire
watch, agricultural missions and search operations. In this
paper we consider the use of a UAV in a SAT mission, in
which the target of the operation is a land-based vehicle that
is to be followed on its course through various terrain (both
urban and rural). We examine the way that such a task de-
composes into separate phases and explore the role of plan-
ning amongst these phases. We identify a planning problem
that arises in this mission and show how it can be modelled
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and solved using generic planning technology. We comment
on the benefits of generic planning in this role and demon-
strate its performance in simulation, showing results that in-
dicate its potential effectiveness.

The development and production of UAVs is a growing
sector. One of the significant challenges in moving the tech-
nology from purely military function to a wider exploita-
tion of autonomous vehicles is the demand for certification
within the legal framework of civil aviation rules. This chal-
lenge is somewhat paradoxical in that certification (which
is currently built around a presumption that a human pilot
will be responsible for an aircraft) will depend on building
trust in autonomous UAV technology, which demands log-
ging many hours of safe autonomous flight, while logging
hours requires permission to fly in interesting air space. A
part of the process of breaking through this apparent log-
jam is to build autonomous flight control systems that have
a high degree of predictable behaviour and that can be eas-
ily understood and verified. A major element in this is the
development of robust and predictable controllers (Léauté
and Williams 2005; Mathews and Durrant-Whyte 2007;
Doherty, Kvarnström, and Heintz 2009), but as the control
level is increasingly seen as a well- understood problem, at-
tention is moving to the integration of control with higher-
level decision making and flight planning.

2 Search and Tracking Missions
The SAT mission we consider in this paper is one in which
the target is a vehicle (a car, for example) being sought and
tracked through a mixed urban and rural landscape. We
consider a single UAV and we assume that the vehicle con-
trollers are robust and can be relied on to provide basic flight
control to maintain level flight, turning and localising.

The UAV is assumed to be equipped with imaging sys-
tems that allow the target to be observed. Observation is
assumed to be susceptible to error and interference from ter-
rain. In our model the probability of observing the target on
each observation cycle (which can be considered as a ‘frame
capture’ by the imager) depends on how recently the tar-
get was last observed, the distance between the actual posi-
tion of the target and the predicted position of the target, the
speed of the target, the terrain and the mode of the imaging
system. We assume that the imager has two modes: wide-
angle mode used to increase the area being scanned when
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the target is not currently observed, at the cost of a lower
probability of successfully observing the target in any spe-
cific part of the image, and narrow-angle mode in which the
viewing area is reduced, but the probability of detecting the
target is higher. The effect of terrain is to reduce the proba-
bility of spotting the target in urban, suburban, forested and
mountainous areas, while in rough or open rural areas the
probability is higher. A faster moving target in the viewing
zone is considered easier to spot.

In this work we do not consider significant evasive action
by the target — the target becomes slightly more erratic in
speed (both faster and slower than typical for the road) once
it is aware of the observer, but we do not consider attempts
to leave the road, to use terrain for concealment or deviation
from the originally intended path. These, of course, are all
reasonable possibilities for the behaviour of the target and
we intend to explore them in future work.

The objective of the mission is to follow the target to
its destination. In general, a SAT mission proceeds in two
phases, which interleave until the target stops or until the ob-
server acknowledges it has lost the target irrevocably. These
phases are tracking, where the UAV flies in a standard pat-
tern over the target, observing its progress, and search in
which the UAV has lost the target and flies a series of ma-
noeuvres intended to rediscover the target. Once the target
is rediscovered the UAV switches back to tracking mode.

Tracking is managed by a reactive controller: the problem
is simply one of finding a route that maximises observations
of the target. In general, UAVs fly much faster than road ve-
hicles drive, but fixed-wing UAVs cannot hover. Therefore,
the flight path of a fixed-wing UAV in tracking mode is a cir-
cle of fixed radius centred on the target. The radius depends
on the capabilities of the UAV: it cannot be greater than the
range of the imaging equipment, nor can it be shorter than
the turning radius of the UAV at current speed. We assume
that the UAV flies in a mid-range circle between these ex-
tremes (which are parameters of our simulation). In fact, as
the target moves the circle moves with it, so the flight path
of the UAV describes a spiralling pattern over the ground.

If the UAV fails to observe the target, it must attempt to
rediscover it. How this is achieved depends on the time since
the observer last observed the target. For a short period after
losing the target the UAV can simply track the predicted lo-
cation of the target, since the target cannot move fast enough
to significantly deviate from this prediction. However, after
a period (whose length depends on the speed of the target,
the arc of the imaging equipment, the observation probabil-
ity and, possibly, the terrain), it will be necessary to make a
more systematic effort to rediscover the target by directing
the search into specific places.

At this point, the problem can be seen as follows: the
current state includes information about the last known lo-
cation and velocity of the target, the average velocity over
the period the target has been tracked, the map of the terrain
and the current position of the UAV. The UAV can fly across
the terrain in search of the target. It is possible to view this
task as a planning problem (see Figure 1) in which a search
plan is constructed from a set of candidate search patterns
that can be arranged in a sequence to attempt to optimise the

Target lost

Spiral 1

Spiral 2

Small lanwmower 1

Small lawnmower 2

Large lawnmower 3

Large lawnmower 4

Underlying road pattern

UAV position at point of loss of contact

Target path during tracking

Possible trajectory: lawnmower 3, lawnmower 1 then lawnmower 2

Figure 1: Initial state and search plan for the SAT mission.

likelihood of rediscovering the target. If, while flying this
search plan, the target is rediscovered, the observer switches
back to tracking mode.

3 Related Work
Over the past ten years there has been growing interest in ef-
ficient SAT, which has practical applications in search-and-
rescue, surveillance, boarder patrol and reconnaissance op-
erations. An approach that has been extensively explored
relies on the use of Bayesian techniques. Research orig-
inally considered the two areas of searching and tracking
separately and focused on scenarios with a single target and
a single vehicle (Bourgault, Furukawa, and Durrant-Whyte
2006). However, the field has rapidly evolved. A unified ap-
proach to SAT has been proposed (Furukawa et al. 2006) and
a number of different settings have been explored, including:
(i) single/multiple targets; (ii) single/multiple vehicles; and
(iii) centralised/decentralised strategies.

The probabilistic approach to SAT relies on the use of Re-
cursive Bayesian Estimation (RBE) techniques that recur-
sively update and predict the Probability Density Function
(PDF) of the target’s state with respect to time, under the
assumption that the prior distribution and the probabilistic
motion model of the target are known. The target’s mo-
tion model that is usually adopted is represented by a simple
discrete-time equation establishing that the state of the target
at time step k+1 is a function of the state of the target at step
k, the target’s control input at step k and the system noise
at step k. The system noise corresponds to environmental
influences on the target. Although Bourgault et al. (2004)
discuss a number of possible hard and soft constraints that
can impact the target motion model, such as obstacles, force
fields and terrain topology, the target is usually assumed to
be subjected to external disturbances and not to move on the
basis of its own intentions. For example, UAVs might search
for and track life-rafts drifting with wind and current.

RBE techniques work in two stages, the update and the
prediction. The update stage calculates the posterior dis-
tribution of the current state given a prior estimation of
the state (based on the sequence of previous observations)
and a new observation at present time. The prediction
stage calculates the PDF of the next state using the pos-
terior density of the current state and the target’s motion
model. From a computational point of view, the imple-

354



mentation of these two stages of RBE essentially requires
the evaluation of a function at an arbitrary point in the tar-
get space and the integration of a function over the target
space. As these operations are computationally expensive, a
number of different approaches have been explored to com-
pute them efficiently, including grid-based methods (Bour-
gault, Furukawa, and Durrant-Whyte 2006), particle fil-
ters (Chung and Furukawa 2006), element-based techniques
(Furukawa, Durrant-Whyte, and Lavis 2007) and hybrid
particle-element approaches (Lavis and Furukawa 2008).

Based on the calculated PDF, the search control prob-
lem is solved in a greedy fashion over a very short planning
horizon; typically, a one-step lookahead horizon is adopted.
This myopic planning approach is used to control the com-
putational cost of the technique, which quickly becomes
intractable as the number of lookahead steps, the size of
the search area, or the number of dimensions of the search
space, increases. A unified objective function is used for
both search and tracking, allowing a vehicle to switch from
one mode to the other while maintaining information gained
during the previous phases.

Probabilistic-based SAT has proven successful for prob-
lems involving stationary targets or targets moving in small
geographical areas, simple motion models in which the tar-
gets do not show any evading or intentional behaviour, static
search spaces (although a technique to dynamically recon-
figure the state space has been recently proposed by Lavis
& Furukawa (2008)), and short-term missions. Whenever
these assumptions are not satisfied, especially for SAT op-
erations over large geographical areas, complex target mo-
tion models and long-term operations, RBE techniques per-
form poorly due to the high computational cost of accurately
maintaining a large state space that includes all the possible
positions of the moving targets.

From a theoretical point of view, our formulation of SAT
as a planning problem (described in Section 4.1) resem-
bles the Orienteering Problem with Time Windows (OPTW)
(Kantor and Rosenwein 1992). In a classical orienteering
problem (OP), a set of vertices with associated rewards is
given as well as a starting and an ending vertex. For all the
vertices, the amount of time tij needed to travel from vertex
vi to vertex vj is known. Finally, a maximum time budget
Tmax is established. The goal of the OP is to determine a
path that visits a subset of the vertices in the available time
Tmax in order to maximise the total collected reward. In the
time window variant of the OP, each vertex is associate with
a time window and a visit to that vertex can only start during
that window. The OPTW is a hard combinatorial problem
because three types of decisions are involved in it: (i) allo-
cation of vertices to be visited; (ii) sequencing of vertices
to be visited; and (iii) scheduling of the visits to the chosen
set of vertices. Considering our planning problem, the set
of search patterns corresponds to the set of vertices of the
OPTW problem, whereas the time slots in which the search
patterns are active correspond to the OPTW time windows.
As in the OPTW, we also want to maximise the total reward
in the available amount of time (limited by the window of
the latest possible search). However, in our case and differ-
ently from the OPTW, the planner can choose to visit each

location more than once and needs to decide which search
pattern to use at each location.

In the context of planning, the OP has been used to pro-
vide suitable heuristic advice on the goals and the goal order
that should be considered by a planner that deals with over-
subscription problems (Smith 2004).

4 Search as Planning
If the UAV observer loses the target beyond the short pe-
riod for which it tracks the predicted location of the target, it
must follow a search strategy to attempt to rediscover the tar-
get. As described in Section 3, Furukawa et al. (2012) have
proposed and explored an approach to searching for a tar-
get based on modelling the predicted position of the target
and then controlling the UAV to maximise the expectation
of rediscovery. Their approach generates local control in-
structions for the UAV, responding to relatively fine-grained
predicted behaviour of the target. Although, in principle,
the probabilistic model of the predicted behaviour of the tar-
get might be constructed within a confined area (Mathews,
Waldock, and Paraskevaides 2010), there may be scalability
issues when this technique is applied to larger, more sophis-
ticated problems in which the highly constrained and com-
plex structure of a road network is taken in consideration.
Instead, we propose that a more tractable approach is to ex-
ploit standard search patterns and use these as the building
blocks for a search plan that attempts to maximise the ex-
pectation of rediscovering the target.

We consider two standard search patterns: a spiral, start-
ing near the centre of a large circular area and spiralling out-
wards to some maximum radius, and a lawnmower pattern
over a rectangular area. The former pattern is effective for
covering an area of high density road network, particularly
in urban or suburban terrain, while the latter is useful when
attempting to search over a more elongated stretch covering
a major road and including some possible side roads. A sig-
nificant benefit of using these standard patterns is that they
are well-recognised search patterns and the UAV flight is
predictable and recognisable while it is following them, sup-
porting the building of trust and confidence in the behaviour
of autonomous UAVs.

The challenge, then, is to decide where these search pat-
terns should be deployed. One possibility is to use a fixed
strategy of simply flying some standard configuration of
these patterns over the area where the target was lost. A sim-
ple example is to fly a spiral centred over the area where the
target is predicted to be currently, which will steadily expand
to include all the area the target might have reached during
the search, followed by a succession of spirals or lawnmow-
ers extending out in the direction the target appeared to be
heading, starting with spirals over urban or suburban areas
and switching to lawnmowers in more rural areas, centred
over roads. This fixed policy was proposed to us by our in-
dustrial collaborators and is used for comparison.

A more interesting strategy is to see the problem of selec-
tion of search patterns as a planning problem: each search
pattern can be assigned a value corresponding to the expec-
tation of finding the target in a search of that area. We dis-
cuss how this value can be estimated shortly, but for the mo-
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ment we note that it is a function of time, since the target
will not be found in an area that is far from its last known
location until sufficient time has passed for the target to have
reached the area, while it is unlikely that the target will be
found in the area once sufficient time has passed for it to
have driven through the area (unless the area includes the
destination of the target). The UAV can select a sequence of
search patterns, linking them together with a series of flight
paths, in order to maximise the accumulated expectation of
rediscovery. This problem is very similar to an orienteering
problem with time-dependent rewards (Kantor and Rosen-
wein 1992), as described in Section 3, although there are
two important differences: one is that the reward for an area
can be claimed more than once (although with some provi-
sos further discussed below) and, unlike a plan for the orien-
teering problem, the execution of the search plan terminates
once the target is rediscovered.

This planning problem has some interesting features: de-
spite the inherent uncertainty in the situation, the problem is
deterministic, since the uncertainty arises in the position of
the target and, if the target is found, the plan ceases to be rel-
evant. Therefore, the plan is constructed entirely under the
assumption that the target remains undiscovered. Somewhat
counter-intuitively, “plan-failure” corresponds to the situa-
tion in which the target is found, counter to the assumption
on which the plan is based. However, on failure of this as-
sumption, the plan becomes irrelevant and the UAV switches
back to tracking mode.

We exploit the period in which the UAV tracks the pre-
dicted location of the target to perform planning. The prob-
lem has no goal, but the plan metric measures the value of
the plan in terms of the accumulated expectation of find-
ing the target. A few examples of problems of this sort
have been considered before (for example, one variant of the
satellite observation problem used in the 3rd International
Planning Competition (Long and Fox 2003) had this char-
acter) and it is typically the case that bench-mark planners
generate empty plans, ignoring the metric. We discuss be-
low our management of this problem.

4.1 The Planning Problem
The domain model for the search problem has a very
straightforward basic structure: there is a flight action that
allows the UAV to fly from one waypoint to another and
there are actions allowing it to perform each of the basic
search patterns. We use spiral searches and small and large
lawnmowers, although other patterns can easily be added.
The search pattern actions all have similar forms: they each
have an entry waypoint and an exit waypoint and the effect,
other than to move the UAV, is to increase the reward (which
is the accumulated expectation of finding the target). The ac-
tions are durative and their duration is fixed in the problem
instance to be the correct (computed) value for the execu-
tion of the corresponding search. The search patterns can
only be executed so that they coincide with a period during
which the target could plausibly be in the area the pattern
covers. This is calculated by considering the minimum and
maximum reasonable speeds for the target and the distance
from where the target was last observed. The reward is more

complicated and is discussed in detail below, but the prob-
lem instance associates with the pattern a reward, using a
time-dependent function.

As an example of how search actions are modelled in
PDDL2.1, the following is the description of the action
doSpiral, which specifies the location and availability of
a spiral search pattern, the time it takes to complete it and
the reward available.
(:durative-action doSpiral
:parameters (?from ?to - waypoint

?p - spiral )
:duration (=?duration (timefor ?p))
:condition (and

(at start (beginAt ?from ?p))
(at start (endAt ?to ?p))
(at start (at ?from))
(at end (active ?p)))

:effect (and
(at end (at ?to))
(at start (not (at ?from)))
(at end (increase (reward)

(rewardof ?p)))))

If the search pattern is flown and the target is not found
there are two possible explanations: the target was not in the
pattern or the search failed to find the target despite its pres-
ence. The second case can occur because of poor synchro-
nisation of the turning search arc of the observer with the
movement of the target, or because the imager failed to spot
the target despite it passing through the search arc. How-
ever, the expected reward for searching the pattern a second
time should be reduced to reflect the fact that the conditional
probability that the target can be found in the area given that
the first search failed to find it is lower than the probability
that the target can be found in the area before that. In most
cases, the time taken to search the pattern will lead to a re-
duction in the reward for the pattern if it is repeated in any
case, due to the time-dependent form of the reward function,
but a modified domain model can be used to account for the
reduced conditional probability:
(:durative-action doSpiral
:parameters (?from ?to - waypoint

?p - spiral )
:duration (=?duration (timefor ?p))
:condition (and

(at start (beginAt ?from ?p))
(at start (endAt ?to ?p))
(at start (at ?from))
(at end (active ?p)))

:effect (and
(at end (at ?to))
(at start (not (at ?from)))
(at end (increase (reward)
(+ (rewardof ?p) (basereward ?p))))

(at end (decrease (basereward ?p)
(* (rewardof ?p) (discountFactor))))))

The reason for the slightly complicated mechanism for
discounting the reward for a pattern is that the time-
dependent reward function is managed by timed-initial flu-
ents in the problem specification that change the reward of
the patterns as time progresses. The shape of the function
is constructed to represent an approximate lifted Gaussian
distribution, with no reward until the target could plausibly
have arrived at the search area and no reward after the target
is unlikely to be still present in the area (driving as slowly as
reasonable throughout the approach and passage through the
area). Between these extremes, the reward peaks at the point
where the target would be in the centre of the search pattern
if driving at average speed. The model can be modified by
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adding more or fewer intermediate points in the step func-
tion approximation of the distribution. We have also exper-
imented with a continuous linear approximation, using ad-
ditional actions to create the necessary reward function, but
this significantly complicates the planning problem without
adding any real benefits (the actions used to model the re-
ward function are artificial actions that the planner is forced
to put into the plan in order to achieve the necessary reward
functions and the planner is forced to discover the organisa-
tion of these artificial actions alongside the real actions used
to perform the search).

To ensure that the planner does not exploit search patterns
when there is no reward associated with them, the patterns
are only made active during the period when the distribu-
tion is positive, using timed initial literals (TILs) that are
asserted and retracted at the appropriate times. Reward is
therefore modelled as a series of n times, t0 to tn. At each
ti a TIL asserts the value of the reward function for the in-
terval [ti, ti+1], with reward being set to 0 in the initial state
and reset to 0 by the TIL at tn. The pattern is only con-
sidered action during this period, so a TIL (active ?p) is
added for the pattern ?p at t0 and deleted at tn.

4.2 Search Patterns and Reward Estimates

To create the initial states for our planning problems, we
have to manage two tasks. First, we have to identify candi-
date search patterns and second we have to assign appropri-
ate values functions to them. The first task is made difficult
by the fact that there are infinitely many patterns that could
be used, while the second is made difficult because of the
lack of knowledge about the intentions of the target.

To address the first problem we observe that the planner
can only consider a finite subset of search patterns and, since
we want to perform planning in real time, is limited to being
able to consider a reasonably small number of candidates.
Therefore, we generate a sample of possible search patterns
by randomly selecting a set of shapes (circles for spirals and
large and small rectangular areas for lawnmowers) and plac-
ing them onto the general search area. There are several
biasing factors in this. First, we use as our general search
area a circular sector that is centred on the last known lo-
cation of the target and extends outwards with its symmetry
axis aligned with the average bearing of the target over the
period the target has been observed. The sector extends out-
wards for a distance of several kilometres (the exact distance
is a parameter — we comment on the choice of value in our
report on our simulation below), whose value depends on
the total area included in the sector and the relative time re-
quired to fly a search pattern of a given area. There is a
point at which the area where the target could be present is
so much larger than the area that the UAV can search, during
a period when the target could be present, that the expecta-
tion of finding the target diminishes to a negligible value.
The angle subtended by the sector is also a parameter and
reflects the degree of uncertainty in the heading of the target.
In general, a target will follow the direction that is forced on
it by the roads it uses, but the average bearing will converge,
over time, on the direction from the origin to the destination.

The longer the target is observed, the closer will this conver-
gence become, although the target’s path will always remain
subject to the constraints of the road network.

Once the relevant sector is identified, we then sample
points using a probability distribution laid over the sector.
This distribution is based on the density of roads across
the sector, which is measured by using a fine-mesh grid
and counting the number of significant roads within each
grid cell, the terrain type (urban, suburban, mountainous,
forested, rough or open rural ground) and the distance from
the symmetry axis and from the last known location of the
target. The distribution decays linearly with distance from
the origin, linearly away from the symmetry axis and is
weighted by values for terrain type and road density. Again,
all of these values are parameters that can be adjusted and we
have adopted values we consider appropriate. Although the
density of patterns decays away from the origin, the effect is
muted because the relative areas available for selection are
proportional to the distance from the origin.

We then decide, for each point, the type of pattern to use:
we favour spirals in the part of the search closest to the ori-
gin, where spirals give good coverage of the area in which
the target might be found, and lawnmowers in rural areas or
areas of lower road density, where spirals are likely to cover
significant areas of little value in the search. For spirals we
additionally select a radius based on the width of the sector
at that point and the road network density. For lawnmow-
ers we also select an orientation and then width and length.
The orientation is based on the road network and is aligned
to follow major roads or high densities of roads, while the
width and length are determined by examining the underly-
ing road network and probability distribution.

To assign a value function to each pattern we compute a
shortest and longest time of arrival for the target by consid-
ering an average speed and variation in speed over the path
from the origin to the pattern. In principle, this mechanism
should use the road map to identify shortest paths, but this
is too costly to compute in real time, so we instead sample
the terrain along the straight line from the origin to the lead-
ing and far edges of the pattern. This is used to as a guide
to the likely speed of the target on this path. In practice,
if the straight line path traverses rural areas then the target
will either have to use smaller roads or else deviate from the
direct path in order to exploit more major roads. In either
case, the target will arrive at the target later than if the di-
rect path is through suburban terrain. On the other hand, if
the terrain is urban then speed will be constrained by traffic
laws and other road users. The earliest and latest times are
used to set up a value function, with these as the limits of the
reward (outside this range the pattern is awarded no value).
The peak reward is calculated as a proportion of the proba-
bility density in the distribution across the intersection of the
sector and the annulus centred at the same origin and with
edges coinciding with the boundaries of the search pattern.
This represents a surrogate for the total available probability
density across the time period covered by the search pattern,
although it is clearly an approximation.

Once the initial state is prepared, we can plan.
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4.3 Planning Searches
We use a version of POPF (Coles et al. 2010), called OP-
TIC (Benton, Coles, and Coles 2012), designed to perform
anytime, cost-improving search. We use a time-bounded
search (because we are in a time-critical situation) limited
to 10 seconds. The planner will typically find a first solution
very easily, since the empty plan is already a feasible solu-
tion, but it will then spend the additional time improving on
this by adding further search patterns to the plan, or trying
different collections of patterns. The search uses a weighted-
A? scheme with steadily changing weights in a tiered fash-
ion (see (Benton, Coles, and Coles 2012) for details). The
plans produced in this way are monotonically improving, so
the final plan produced is the one we select for execution.

The plan is dispatched via a simple controller, action by
action. At the conclusion of execution of the plan (including
a trivial empty plan) the UAV enters a holding pattern, flying
in a fixed circle. In principle, two alternatives are available
at this time, depending on how long has passed since the
target was last seen: spend more time generating a new plan,
or abandon the search. We always presume to abandon the
search at this point in our current implementation.

We use OPTIC because it is very fast at producing its first
solution and provides an any-time improvement behaviour.
We do not currently exploit continuous reasoning in OPTIC
as we use the discrete representation of the problem. We
have found that, on average, OPTIC produces around 6 plans
in its 10 second window per problem instance, and the last
of these is selected for execution.

5 A Search and Tracking Simulation
In order to evaluate the behaviour of our planned search ap-
proach we have developed a simulation. This was built in
consultation with our industrial collaborators and is intended
to provide an appropriately abstracted view of the problem.
The key abstraction is of the control problem for the UAV,
which we assume to be solved to provide us with the level
of command we exploit in our search plans. Our dispatcher
identifies waypoints and turning circles for the UAV accord-
ing to the flight path and search pattern being executed, but
we do not consider control of flight surfaces or altitude. We
also ignore the problem of managing no-fly zones in either
simulation or in planning.

The simulation defines the area of operations, which for
our experiments is part of Scotland about 100 kilometres
square, with Glasgow and Edinburgh approximately defin-
ing its lower corners. Terrain types were defined by hand,
along with an approximate road network for the major roads
and rural minor roads. Figure 2 shows the map being ex-
plored, with dark regions representing urban areas. The ob-
server can be seen circling the target. The figure also shows
part of the road network highlighted on the map. These are
the roads that the observer considers the most likely ones for
the target to be following, and planning problem instances
will be constructed on the assumption that the areas covered
by these roads are the highest reward areas for searching.

The simulation determines success in spotting and track-
ing the target, according to terrain, speed and discrepancy

Figure 2: A screenshot showing terrain (dark regions are
urban areas and grey regions are suburban) and the road net-
work. The target (the red dot to the South-West of the ob-
server) is undetected as indicated by the wide 180◦ beam
search. When detected, the beam has a 90◦ arc.

Figure 3: A screenshot showing an initial state: rectangles
and circles are search patterns that the planner will consider.

between anticipated and actual target positions. The target
follows a path acquired using Google Maps, using a selected
(configurable) origin and destination. This information is
also used to decide what speed is appropriate for the target,
based on distance between waypoints in the route proposed
by Google Maps and terrain type.

The simulation integrates the planner and displays the
stages of the planning process. Figures 3 and 4 show an ex-
ample of an initial state and a plan, respectively. The inten-
sity of red used in the plan indicates repetitions of a search
pattern (more intense red implies more executions).

The spiral becomes active at a future timepoint (after the
start of the plan), specified in the initial state description,
which has been chosen to maximise the chance of intercep-
tion with the target. The duration of the action is com-
puted from information supplied in the problem descrip-
tion, and the effect of the action is to increase the reward
by a step function at the end of the execution. The prob-
lem description provides other possible actions also, such as
doSmallLawnMower, which can be executed in different
places and offer different rewards. The goal of the problem
is to maximise reward, as this maximises the expectation of
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Figure 4: The search patterns that have been selected by the
planner ready for execution.

intercepting the target.
Search patterns tend to be placed in areas that avoid the

highest urban concentrations. This is because the probabil-
ity of seeing the target in such areas is much lower, so the
rewards associated with patterns over these areas are cor-
respondingly low. The planner prefers to execute a search
pattern on the other side of urban areas, in the direction in
which it predicts the target will head. The success of this is
dependent on careful timing. The estimated times of entry
and exit of a target into a pattern are difficult to compute ac-
curately and quickly and this remains an area where we hope
to improve our performance.

The simulation tool offers various opportunities for inter-
action, including redirecting the target, repositioning the ob-
server, speeding and slowing the simulation and modifying
parameters that govern spotting probabilities, flight dynam-
ics, target behaviour and so on. These values were chosen
to broadly represent characteristics of a prototypical UAV as
described to us by our industrial collaborators. One of the
ways in which these parameters affect the planning process
is in the choice of the radius of the search area sector de-
scribed in Section 4.2. Based on the speed of the observer
and the areas of the sector considered, we used a search ra-
dius of 20 kilometres as the outer edge of the possible search
patterns. This is a configurable parameter, but not one we
have experimented with at this stage.

6 Experiments and Results
We conducted experiments to compare plan-based search
with a fixed policy selected as a baseline for evaluating the
benefits of a plan-based approach. The static policy works as
follows: the observer tracks the target until it has lost sight
of the target. It continues to track the predicted location of
the target for about three minutes. If it has not rediscov-
ered the target, the observer then executes a fixed sequence
of search patterns. It first performs a spiral search around
the point where it lost the target and then executes a large
lawnmower pattern over a 20 kilometre square area.

We use a configuration of our plan-based search that
tracks the predicted location of the target for the same pe-
riod as the static policy, before planning and executing a
search plan. We compare two domain models: one using
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Figure 5: Proportion of successfully tracked targets.

non-discounted rewards and the other discounting rewards
for patterns after they are searched.

We generated 20 routes and executed the simulation
on each route 1000 times (the simulation has a non-
deterministic spotting model and target behaviour), for each
of the 3 strategies (a total of 60000 runs). The simulation
begins with the target undetected, but in the search arc of
the observer. In a small number of runs the observer fails
to detect the target in the very early stage. Our simulation
does not use a search plan in this first stage, so failure at this
point leads to an early abort. We discount these runs (less
than 0.5%) in our analysis.

The metrics we use to evaluate the strategies are: the pro-
portion of runs in which the target is tracked to its destina-
tion, the proportion of the time the target spends driving that
the observer successfully tracks it (whether or not the target
is detected throughout this period), and the time at which the
target is finally lost on those runs in which it fails to track it
to its destination.

Figure 5 shows the proportion of runs in which the target
was tracked to its destination. The plan-based search strat-
egy is consistently better, using the non-discounted model,
than the other strategies. The reason it is better than the
discounted model appears to be that the planner struggles to
find better plans when the discounting is applied, so the solu-
tions are, on average, shorter than the corresponding plans in
the non-discounted model. In general, it is better to search,
even in places where search has already been performed,
than to abandon the mission. The static policy has an overall
success rate of under 50%, while the non-discounted model
yields better than 60% success rate. There are a few cases
where the static policy appears to do better than the plan-
based search and we are still investigating the reason for
this. In general, on shorter routes the plan-based approach
appears to perform worse, which appears to be because the
search patterns are biased towards an assumption that the
target is driving to a distant location.

Figure 6 shows the average time that the observer tracks
the target, plotted against journey duration, for the three
strategies. It can be seen that the non-discounted model pro-
duces the best performance, while the static policy is gener-
ally weaker. Figure 7 shows the average time at which the
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Figure 6: Average time tracked plotted against average jour-
ney length for the 20 routes and three strategies.
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Figure 7: Average time of last loss of target plotted against
average journey length for the 20 routes and three strategies.

target is lost for the last time, plotted against duration of the
journey. This figure shows an interesting pattern, which is
that the target is lost, on average, at about the same time
in the journey (after about half-an-hour), regardless of the
duration of the journey. We conjecture that this is because
these journeys all start in an urban area that it takes approx-
imately 30 minutes to cross. During this period the target
has a constrained heading (due to the road network across
town) and, on leaving, it often corrects its heading by a sig-
nificant deviation. This indicates that there remains consid-
erable scope for improvement in the estimation of reward
distributions over the patterns. However, it is also the case
that the observer typically must commit to an area of search,
since once it has searched a large area, there is little chance
to try searching widely diverging alternatives.

We also analysed the data to find the probability distribu-
tion, over time, of relocating the target after losing it, con-
sidering only the cases in which it was successfully relo-
cated. Figure 8 shows how this probability changes over
time. This clearly shows that the planned search is far more
robust, offering significant probability of rediscovery even
after half-an-hour. The static policy only finds the target af-
ter it has been lost for 10 minutes in less than 4% of cases.
The figure shows the probability of finding the target at a
particular time after losing it. A slightly different question
is how likely it is that the static policy will find the target
once it has entered the lawnmower search. We found that to

Figure 8: The probability of recapturing the target over time.

be approximately 13%, which indicates that the lawnmower
is not as ineffective as Figure 8 might suggest. We found
that the plan-based search very rarely finds the target after
the fourth search pattern in a plan.

Our results clearly demonstrate a better performance us-
ing planning than using the static policy, but there remains
scope for improvement. There appears to be weakness in
our efforts to position the time windows on search patterns
and we are investigating ways to improve this first.

7 Conclusions and Future Work
We have presented a planning approach to SAT, viewing the
search problem as a planning problem in which search pat-
terns must be selected and sequenced to maximise the expec-
tation of rediscovering the target. Our results indicate that
the approach is promising and certainly outperforms static
search strategies. By using this approach we have been able
to tackle SAT problems on a large scale — a 100 kilometre
square area represents a significant challenge to the problem
of search, far beyond the capabilities of current alternatives.

Things that we have yet to consider include the effects of
no-fly zones that prevent the UAV from tracking the target,
but that the target might enter knowingly or unknowingly,
to evade pursuit. Our reward estimation techniques can be
improved to take a better account of the underlying road net-
work and also to formulate and exploit hypotheses about the
destination of the target. We have found that the model that
attempts to discount reward, to account for the fact that fail-
ure to find a target in a search pattern should change the con-
ditional probability of finding the target in a future search in
the same area, remains a challenge to the planning technol-
ogy. Of course, there is a possibility to construct more spe-
cialised planning for this problem, but an important benefit
of the use of a generic planner is that we can readily mod-
ify the collection of search actions, add alternative actions
and otherwise extend the domain model. This flexibility is
particularly important during prototyping and development.

One of the advantages we see in the use of a plan-based
approach to the search problem is that the behaviour of the
UAV is predictable and well understood. A plan can be used
as a common medium of exchange between the UAV and hu-
man observers, allowing safer interaction between the UAV
and other air traffic.
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