
HTN Planning for the Composition of Stream Processing Applications

Shirin Sohrabi, Octavian Udrea, Anand Ranganathan, and Anton V. Riabov
IBM T.J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA

Abstract

Goal-driven automated composition of software components
is an important problem with applications in Web service
composition and stream processing systems. The popular ap-
proach to address this problem is to build the composition
automatically using AI planning. However, it is shown that
some of these planning approaches may neither be feasible
nor scalable for many large-scale flow-based applications.
Recent advances have proven that the automated composition
problem can take advantage of expert knowledge describing
the many ways in which different reusable components can be
composed. This knowledge can be represented using an ex-
tensible composition template or pattern. In prior work, a flow
pattern language called Cascade and its corresponding spe-
cialized planner have shown the best performance in these do-
mains. In this paper, we propose the use of Hierarchical Task
Network (HTN) planning for the composition of stream pro-
cessing applications. To this end, we propose an automated
approach of creating an HTN-based problem from the Cas-
cade representation of the flow patterns. The resulting tech-
nique not only allows us to use the HTN planning paradigm
and its many advantages including added expressivity but also
enables optimization and customization of composition with
respect to preferences and constraints. Further, we propose
and develop a lookahead heuristic and show that it signifi-
cantly reduces the planning time. We have performed exten-
sive experimentation with stream processing applications and
evaluated applicability and performance of our approach.

Introduction
A class of problems in automated software composition fo-
cuses on composition of information flows from reusable
software components. An information flow is obtained from
sources, processed by software components in order to trans-
form the raw data into useful information, and can be visu-
alized in different ways. This flow-based model of composi-
tion is applicable in a number of application areas, including
Web Service Composition (WSC) and stream processing. In
a stream processing application, large volume of input data,
from telecommunications, finance, health care, and other in-
dustries, are integrated, aggregated, processed, and analyzed
on the fly, or immediately as relevant information arrives

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from sources. A stream processing application describes the
data flows between the stream processing components.

There are several tools such as IBM Mashup Cen-
ter, www-01.ibm.com/software/info/mashup-center, and Yahoo
Pipes, pipes.yahoo.com, that support the modeling of the data
flow across multiple components. Although these visual
tools are fairly popular, their use becomes increasingly diffi-
cult as the number of available components increases, even
more so, when there are complex dependencies between
components, or other kinds of constraints in the composi-
tion.

While AI planning is a popular approach to automate the
composition of components, Riabov and Liu have shown
that Planning Domain Definition Language (PDDL)-based
planning approach may neither be feasible nor scalable
when it comes to addressing large-scale stream processing
or flow-based systems (Riabov and Liu 2005; 2006). The
primary reason behind this is that while the problem of com-
posing flow-based applications can be expressed in PDDL,
in practice the PDDL-based encoding of certain features
poses significant limitation to the scalability of planning.

In 2009, Ranganathan et al. proposed a pattern-based
composition approach where composition patterns were
specified using their proposed language called Cascade and
the plans were computed using their specialized planner,
MARIO. They made use of the observation that automated
composition problem can take advantage of expert knowl-
edge of how different components can be coupled together
and this knowledge can be expressed using a composition
pattern. For software engineers, who are usually responsible
for encoding composition patterns, doing so in Cascade is
easier and more intuitive than in PDDL or in other planning
specification languages. The MARIO planner achieves fast
composition times due to optimizations specific to Cascade,
while limiting expressivity of domain descriptions.

In this paper, we propose a planning approach based on
Hierarchical Task Networks (HTNs) to address the problem
of automated composition of components in the context of
the stream processing application. To this end, we propose a
novel technique for creating an HTN-based planning prob-
lem with preferences from the Cascade representation of the
patterns together with a set of user-specified Cascade goals.
The resulting technique enables us to explore the advan-
tages of domain-independent planning and HTN planning

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

443

including added expressivity and modularity, and address
optimization and customization of composition with respect
to preferences and constraints. We use the preference-based
HTN planner HTNPLAN-P (Sohrabi, Baier, and McIlraith
2009) for implementation and evaluation of our approach.
Moreover, we develop a new lookahead heuristic by drawing
inspiration from ideas proposed by Marthi et al. in (Marthi,
Russell, and Wolfe 2007). We also propose an algorithm to
derive indexes required by our proposed heuristic. While the
focus of this paper is on stream processing applications, our
techniques are general enough that they can be used to ad-
dress the composition of any flow-based application.

The following are the main contributions of this paper:
(1) proposed the use of HTN planning with preferences
to address modeling, computing, and optimizing composi-
tion flows in the stream processing applications, (2) devel-
oped a method to automatically translate Cascade flow pat-
terns into HTN domain description and Cascade goals into
preferences, and to that end we addressed several unique
challenges that hinder planner performance in flow-based
applications, (3) developed an enhanced lookahead heuris-
tic and showed that it improves the HTN planning perfor-
mance, and (4) performed extensive experimentation with
real-world patterns using IBM InfoSphere Streams, www-
01.ibm.com/software/data/infosphere/streams.

Preliminaries
As shown by Ranganathan and others (Ranganathan, Ri-
abov, and Udrea 2009), Cascade composition patterns can
be translated into a planning domain description in Stream
Processing Planning Language, i.e., SPPL (Riabov and Liu
2005). For this, a Cascade to SPPL compiler was imple-
mented in MARIO. The main reason for choosing SPPL
over PDDL or other general-purpose planners in MARIO
was performance: using several mappings from SPPL to
PDDL, Riabov and Liu have shown that the specialized
SPPL planner is exponentially faster than PDDL planners.

To counter these prior negative results for the performance
of general planners in composition problems, in the next sec-
tion we will introduce a new mapping from Cascade to HTN
domains, which, together with a new search heuristic, allows
a general HTN planner to perform comparably with an SPPL
planner on Cascade problems.

In the rest of this section, we include a brief overview for
readers not previously familiar with HTN or Cascade.

Hierarchical Task Network (HTN) Planning
HTN planning is a widely used planning paradigm and many
domain-independent HTN planners exist (Ghallab, Nau, and
Traverso 2004) (e.g., SHOP2 (Nau et al. 2003)). The HTN
planner is given the HTN planning problem: the initial state
s0, the initial task network w0, and the planning domain
D (a set of operators and methods). HTN planning is per-
formed by repeatedly decomposing tasks, by the applica-
tion of methods, into smaller and smaller subtasks until a
primitive decomposition of the initial task network is found.
More formally, π = o1o2 . . . ok is a plan for HTN planning
problem P = (s0, w0, D) if there is a primitive decompo-
sition, w, of w0 of which π is an instance. A task network

Figure 1: Example of a Cascade flow pattern.

is a pair (U,C) where U is a set of tasks and C is a set of
constraints. A task is primitive if its name matches with an
operator, otherwise it is nonprimitive. An operator is a regu-
lar planning action, described by its name, precondition and
effects. It can be applied to accomplish a primitive task. A
method is described by its name, the task it can be applied
to task(m), and its task network subtasks(m). A method m
can accomplish a task t if there is a substitution σ such that
σ(t) =task(m). Several methods can accomplish a particular
nonprimitive task, leading to different decompositions of it.

HTNPLAN-P (Sohrabi et al. 2009) is a provably optimal
preference-based planner, built on top of a Lisp implemen-
tation of SHOP2 (Nau et al. 2003), a highly optimized HTN
planner. HTNPLAN-P takes as input an HTN planning prob-
lem, specified in the SHOP2’s specification language (not
in PDDL). HTNPLAN-P performs incremental search and
uses variety of different heuristics including the Looka-
head Heuristic (LA). We modified HTNPLAN-P to implement
our proposed heuristic, the Enhanced Lookahead Heuristic
(ELA). We also use HTNPLAN-P to evaluate our approach.

Cascade – Flow Patterns for Stream Processing
The Cascade language has been proposed by Ranganathan
and others in 2009 (Ranganathan, Riabov, and Udrea 2009)
for describing data flow patterns that can guide automated
software composition, and as an alternative to the lower-
level planning domain languages like PDDL that are diffi-
cult to use as part of software development cycle. Cascade
has a programming language syntax that is friendly to soft-
ware developers, includes integrated development tools, and
can be used with different execution environments.

An important example of an execution environment is
stream processing middleware (for example, IBM InfoS-
phere Streams), which facilitates the development of dis-
tributed applications that must process high volumes of data
in memory. Stream processing applications are constructed
as data flow graphs composed of modular software compo-
nents that communicate via data streams, and described in a
programming language, e.g., Streams Processing Language
(SPL) (Hirzel et al. 2009). The middleware deploys the com-
ponents of the application across multiple hardware nodes
within a dedicated stream processing cluster, manages them
and provides efficient data transport. Cascade flow patterns
define the space of valid composed flows, which are then
mapped to stream processing data flow graphs in SPL.

Figure 1 graphically represents a Cascade pattern for a
stream processing application from financial domain. This
application helps financial experts decide whether a current

444

price of a stock is a bargain. The main component is called
StockBargainIndexComputation and is used to define the
root or the top-level component. The flow pattern describes
how the data is obtained from sources, processed by compo-
nents, and visualized in different ways. Source data, Trade
and Quote (TAQ), can come either live, or replayed from a
file. This data can be filtered according to a set of tickers
or according to a specified industry or neither, as the filter
components are optional (indicated by the ?). The Volume-
Weighted Average Price (VWAP) and the Bargain Index (BI)
calculations can be performed by a variety of concrete com-
ponents which inherit from abstract components Calculat-
eVWAP and CalculateBargainIndex. The results can be vi-
sualized using a table, a time-plot or a stream-plot.

A single flow pattern defines a number of actual flows.
That is, a Cascade flow pattern describes a set of flows by
specifying different possible structures of flow graphs, and
possible components that can be part of the graph. As an
example, let us assume there are 5 different descendants
for each of the abstract components. Then, the number of
possible flows defined by StockBargainIndexComputation is
2× 3× 5× 5× 3, or 450 flows.

A flow pattern in Cascade is a tuple F = (G(V, E),M),
where G is a directed acyclic graph, and M is called the
main composite. Each vertex, v ∈ V , can be the invocation
of one or more of the following: (1) a primitive component,
(2) a composite component, (3) a choice of components, (4)
an abstract component with descendants, (5) a component,
optionally. Each directed edge, e ∈ E in the graph repre-
sents the transfer of data from an output port of one compo-
nent to the input port of another component. Throughout this
paper, we refer to edges as streams, outgoing edges as out-
put streams, and ingoing edges as input streams. The main
composite, M , defines the set of allowable flows. For exam-
ple, if StockBargainIndexComputation is the main compos-
ite in Figure 1, then any of the 450 flows that it defines can
potentially be deployed on the underlying platform.

Components in Cascade can have zero or more input ports
and one or more output ports. A component can be ei-
ther primitive or composite. A primitive component is an
atomic element of the flow graph, and is usually associated
with a code fragment, which is used in code generation dur-
ing flow graph deployment. A composite component inter-
nally defines a flow of other components. In Figure 1, the
TableView and BICompoutationCore are examples of prim-
itive and composite components respectively. Similarly, an
abstract components includes the declaration of inputs and
outputs, but without code fragment or graph. Instead, sepa-
rately defined concrete components can be declared to im-
plement an abstract component. Note, a concrete component
can be primitive or composite. Including an abstract compo-
nent within a graph pattern (i.e., a composite) defines a point
of variability of the graph, allowing any implementation of
the abstract to be used in place of the abstract.

Cascade includes two more constructs for describing
graph variability. The choice invocation can be used to enu-
merate several alternatives to be used within the same lo-
cation in the graph. For example, the pattern in Figure 1
defines a choice between TCP source and file source. The

Cascade HTN
Flow → Plan

Cascade flow pattern → HTN planning
Stream → Variable

Tag → Predicate
Tag hierarchy → Axioms

Primitive component → Operator
Composite component → Method

Choice invocation → Task with multiple methods
Optional invocation → Task with multiple methods
Abstract component → Task

Main composite → Initial task network
Cascade goal → PDDL simple preferences

Satisfying flow → Optimal plan

Figure 2: From Cascade to HTN

alternatives must have the same number of inputs and the
same number of outputs. Any component contained within
the optional invocation becomes optional. For example, in
Figure 1 the choice between trade filters “ByTickers” and
“ByIndustry” is made optional, allowing graphs that include
no filters at all to be valid instantiations of this pattern.

In Cascade, output ports of components can be annotated
with user-defined tags to describe the properties of the pro-
duced data. Tags can be any keywords related to terms of the
business domain. Tags are used by the end-user to specify
the composition goals; we refer to as the Cascade goals. For
each graph composed according to the pattern, tags associ-
ated with output streams are propagated downstream, recur-
sively associating the union of all input tags with outputs for
each component. Cascade goals specified by end users are
then matched to the description of graph output. Graphs that
include all goal tags become candidate flows (or satisfying
flows) for the goal. For example, if we annotate the output
port of the FilterTradeByIndustry component with the tag
ByIndustry, there would be 2 × 5 × 5 × 3 = 150 satisfying
flows for the Cascade goal ByIndustry. Planning is used to
find “best” satisfying flows efficiently from the millions of
possible flows, present in a typical domain.

From Cascade Patterns to HTN Planning

In this section, we describe an approach to create an HTN
planning problem with preferences from any Cascade flow
pattern with a set of Cascade goals. In particular, we show
how to: (1) create an HTN planning domain (specified in
SHOP2, the base planner for HTNPLAN-P) from the defini-
tion of Cascade components, and (2) represent the Cascade
goals as preferences. Figure 2 shows at high-level how we
encode the main elements in Cascade as HTN planning el-
ements. For example, we encode a primitive component as
an operator and a composite component as an HTN method.
Next, we describe the steps of this transformation while us-
ing the example shown in Figure 1 as our running example.

We employ SHOP2’s specification language written in
Lisp when describing the planning elements or when giving
examples. We consider ordered and unordered task networks
specified by keywords “:ordered” and “:unordered”, distin-
guish operators by the symbol “!” before their names, and
variables by the symbol “?” before their names.

445

Creating the HTN Planning Domain
In this section, we describe an approach to translate the dif-
ferent elements and unique features of Cascade flow patterns
to operators or methods, in an HTN planning domain.

Creating New Streams One of the features of the com-
position of the stream processing applications is that com-
ponents produce one or more new data streams from sev-
eral existing ones. Further, the precondition of each input
port is only evaluated based on the properties of connected
streams; hence, instead of a single global state, the state of
the world is partitioned into several mutually independent
ones. Although it is possible to encode parts of these features
in PDDL, the experimental results in (Riabov and Liu 2005;
2006) show poor performance of planners they ran (in an
attempt to formulate the problem in PDDL). They conjec-
tured that the main difficulty in the PDDL representation
is the ability to address creating new objects that have not
been previously initialized to represent the generation of
new streams. In PDDL, this can result in a symmetry in the
choice for the object that represents the new uninitialized
stream, significantly slowing down the planner.

To address the creation of new uninitialized streams we
use the assignment expression, available in the SHOP2’s in-
put language, in the precondition of the operator that cre-
ates the new stream. We use numbers to represent the stream
variables using a special predicate called sNum. We then in-
crease this number by manipulating the add and delete ef-
fects of the operators that are creating new streams. The
sNum predicate acts as a counter to keep track of the cur-
rent value that can be assigned for the new output streams.

The assignment expression takes the form “(assign v t)”
where v is a variable, and t is a term. Here is an example
of how we implement this approach for the “bargainIndex”
stream, the outgoing edge of the abstract component Calcu-
lateBargainIndex in Figure 1. The following precondition,
add and delete list belong to the corresponding operators of
any concrete component of this abstract component.

Pre: ((sNum ?current)
(assign ?bargainIndex ?current)
(assign ?newNum (call + 1 ?current)))

Delete List: ((sNum ?current))
Add List: ((sNum ?newNum))

Now for any invocation of the abstract component Cal-
culateBargainIndex, new numbers, hence, new streams are
used to represent the “bargainIndex” stream.

Tagging Model for Components In Cascade output ports
of components are annotated with tags to describe the prop-
erties of the produced data. Some tags are called sticky tags,
meaning that these properties propagate to all downstream
components unless they are negated (removed explicitly).
The set of tags on each stream depends on all components
that appear before them or on all upstream output ports.

To represent the association of a tag to a stream, we use a
predicate “(Tag Stream)”, where Tag is a variable or a string
representing a tag, for example, bargainIndex, and Stream
is the variable representing a stream. Note that Tag should
be grounded before any evaluation of state with respect to
this predicate. To address propagation of tags, we use a

forall expression, ensuring that all tags that appear in the in-
put streams propagate to the output streams unless they are
negated by the component.

A forall expression in SHOP2 is of the form “(forall X
Y Z)”, where X is a list of variables in Y , Y is a logical
expression, Z is a list of logical atoms. Back to Figure 1,
?tradeQuote and ?filteredTradeQuote are the input and out-
put stream variables respectively for the FilterTradeQuote-
ByIndustry component. Note, we know all tags ahead of time
and they are represented by the predicate “(tags ?tag)”. Also
we use a special predicate different to ensure the negated tag
AllCompanies does not propagate downstream.
(forall (?tag)(and (tags ?tag) (?tag ?QuoteInfo)

(different ?tag AllCompanies))
((?tag ?filteredTradeQuote)))

Tag Hierarchy Tags used in Cascade belong to tag hierar-
chies (or tag taxonomies). This notion is useful in inferring
additional tags. In the example in Figure 1, we know that the
TableView tag is a sub-tag of the tag Visualizable, meaning
that any stream annotated with the tag TableView is also im-
plicitly annotated by the tag Visualizable. To address the tag
hierarchy we use SHOP2 axioms. SHOP2 axioms are gener-
alized versions of Horn clauses, written in this form :- head
tail. The tail can be anything that appears in the precondi-
tion of an operator or a method. The following are axioms
that express the hierarchy of views.
:- (Visualizable ?stream)((TableView ?stream))
:- (Visualizable ?stream)((StreamPlot ?stream))

Component Definition in the Flow Pattern Next, we put
together the different pieces described so far to create the
HTN planning domain. In particular, we represent the ab-
stract components by nonprimitive tasks, enabling the use
of methods to represent concrete components. For each con-
crete component, we create new methods that can decom-
pose this nonprimitive task (i.e., the abstract component). If
no method is written for this task, this indicates that there are
no concrete components written for this abstract component.

Components can inherit from other components. The net
(or expanded) description of an inherited component in-
cludes not only the tags that annotate its output ports but
also the tags defined by its parent. We represent this inheri-
tance model directly on each method that represents the in-
herited component using helper operators that add to the out-
put stream, the tags that belong to the parent component.

We encode each primitive component as an HTN operator.
The parameters of the HTN operator correspond to the input
and output stream variables of the primitive component. The
preconditions of the operator include the “assign expres-
sions” as mentioned earlier to create new output streams.
The add list also includes the tags of the output streams if
any. The following is an HTN operator that corresponds to
the TableView primitive component.
Operator: (!TableView ?bargainIndex ?output)
Pre: ((sNum ?current) (assign ?output ?current)

(assign ?newNum (call + 1 ?current)))
Delete List: ((sNum ?current))
Add List:((sNum ?newNum)(TableView ?bargainIndex)

(forall (?tag) (and (tags ?tag)
(?tag ?bargainIndex))((?tag ?output))

446

We encode each composite component as HTN meth-
ods with task networks that are either ordered or unordered.
Each composite component specifies a graph clause within
its body. The corresponding method addresses the graph
clause using task networks that comply with the ordering
of the components. For example, the graph clause within the
BIComputationCore composite component in Figure 1 can
be encoded as the following task. Note, the parameters are
omitted. Note also, we used ordered task networks for repre-
senting the sequence of components, and an unordered task
network for representing the split in the data flow.
(:ordered (:unordered (!ExtractQuoteInfo)
(:ordered (!ExtractTradeInfo) (CalculateVWAP)))

(CalculateBargainIndex))

Structural Variations of Flows There are three types of
structural variation in Cascade: enumeration, optional invo-
cations, and the use of high-level components. Structural
variations create patterns that capture multiple flows. Enu-
merations (choices) are specified by listing the different pos-
sible components. To capture the choice invocation, we use
multiple methods applicable to the same task. For example,
in order to address choices of source, we use two methods,
one for TAQTCP and one for TAQFile. A component can be
specified as optional, meaning that it may or may not appear
as part of the flow. We capture optional invocations using
methods that simulate the “no-op” task. Abstract compo-
nents are used in flow patterns to capture high-level com-
ponents. The abstract components can be replaced by their
concrete components. In HTN, this is already captured by
the use of nonprimitive tasks for abstract components and
methods for each concrete component. For example, the task
network of BIComputationCore includes the nonprimitive
task CalculateBargainIndex and different methods written
for this task handle the concrete components.

Specifying Cascade Goals as Preferences
While Cascade flow patterns specify a set of flows, users can
be interested in only a subset of these. Thus, users are able
to specify the Cascade goals by providing a set of tags that
they would like to appear in the final stream. We propose
to specify the user-specified Cascade goals as Planning Do-
main Definition Language (PDDL3) (Gerevini et al. 2009)
preferences. Currently we exploit the use of simple prefer-
ences. Recall that simple preferences, or final-state prefer-
ences are atemporal formulae that express a preference for
certain conditions to hold in the final state of the plan. For
example, preferring that a particular tag appears in the final
stream is a simple preference.

One reason for why we encode the Cascade goals as pref-
erences is to be able to still find a plan even if the Cas-
cade goals are not achievable or are mutually inconsistent.
However, the main reason for why we encode the Cascade
goals as preferences is to take advantage of the already ex-
isting preference-based heuristics employed by HTNPLAN-P
as well as our proposed enhanced lookahead heuristic. This
allows efficient search pruning and guidance towards the sat-
isfaction of the preferences

The following are example preferences that encode Cas-
cade goals ByTickers and TableView. These PDDL3 simple

preferences are over the predicate “(Tag Stream)”. Note that
we need to define a metric function for the generated prefer-
ences. Recall, in PDDL3 the quality of the plan is defined us-
ing a metric function. The PDDL3 function is-violated
is used to assign appropriate weights to different prefer-
ence formula. Note, inconsistent preferences are automati-
cally handled by the metric function and we assume that the
metric is always being minimized. If the Cascade goals, now
encoded as preferences are mutually inconsistent, we can as-
sign a higher weight to the “preferred” goal. Otherwise, we
can use uniform weights when defining a metric function.
(preference g1 (at end (ByTickers ?finalStream)))
(preference g2 (at end (TableView ?finalStream)))

Flow-Based HTN Planning Problem with
Preferences
A Cascade flow pattern problem is a 2-tuple PF = (F,G),
where F = (G(V, E),M) is a Cascade flow pattern (where
G is a directed acyclic graph, and M is the main composite),
and G is the set of Cascade goals. α is a satisfying flow for
PF if and only if α is a flow that meets the main composite
M . A set of Cascade goals, G, is realizable if and only if
there exists at least one satisfying flow for it.

Given the Cascade flow pattern problem PF , we define
the corresponding flow-based HTN planning problem with
preferences as a 4-tuple P = (s0, w0, D,�), where: s0 is
the initial state consisting of a list of all tags and our special
predicates; w0 is the initial task network encoding of the
main composite M ; D is the HTN planning domain, con-
sisting of a set of operators and methods derived from the
components v ∈ V; and � is a reflexive and transitive rela-
tion defined through PDDL3 metric function over the set of
Cascade goalsG; α � α′ states that α is at least as preferred
as α′. A plan α is a solution to (i.e., an optimal plan for) P if
and only if: α is a plan and there does not exists another plan
α′ such that it is more preferred (i.e., α′ � α and α 6� α′).

Proposition 1 Let PF = (F,G) be a Cascade flow pattern
problem. Let P = (s0, w0, D,�) be the corresponding HTN
planning problem with preferences. If G is realizable, then
there exists an optimal plan for P . Furthermore, ifG is real-
izable and α is an optimal plan for P , then we can construct
a flow (based on α) that is a satisfying flow for PF .

Consider the Cascade flow pattern problem PF = (F,G)
with F shown in Figure 1 and G the TableView tag. Let
P be the corresponding flow-based HTN problem with
preferences. Then consider the following optimal plan for
P : [TAQFileSource(1), ExtradeTradeInfo(1,2), VWAPBy-
Time(2,3), ExtractQuoteInfo(1,4), BISimple(3,4,5), Table-
View(5,6)]. We can construct a flow in which the compo-
nents mentioned in the plan are the vertices and the edges
are determined by the numbered parameters corresponding
to the generated output streams. The resulting graph is not
only a flow but also a satisfying flow for the problem PF .

Computation
In the previous section, we described a method that trans-
lates Cascade flow patterns and Cascade goals into an HTN

447

planning problem with preferences. We also showed the re-
lationship between optimal plans and satisfying flows. Now
with a specification of preference-based HTN planning in
hand we select HTNPLAN-P to compute these optimal plans
that later translate to satisfying flows for the original Cas-
cade flow patterns. In this section, we focus on our proposed
heuristic, and describe how the required indexes for this
heuristic can be generated in the preprocessing step given
the set of known tags. In the next section, we will evaluate
the performance of HTNPLAN-P with the proposed heuris-
tic incorporated within its search strategy. As we will dis-
cuss, our proposed heuristic helps improve the HTN plan-
ning performance, especially in the harder problem sets; a
problem can be harder if the goal tags appear in the harder
to reach branches of the search space. In addition, the pro-
posed heuristic improves the HTN performance making it
even comparable with an SPPL planner on Cascade prob-
lems. On the other hand, the notion behind our proposed
heuristic and how we generated the required indexes is gen-
eral enough to be used within other HTN planners.

Enhanced Lookahead Heuristic (ELA)
The enhanced lookahead function estimates the PDDL3
metric value achievable from a search node N based on the
reachable tags from this node. To estimate this metric value,
we compute a set of reachable tags for each task within the
initial task network. A set of tags are reachable by a task
if they are reachable by at least one plan that extends from
decomposing this task. Note, we assume that every nonprim-
itive task can eventually have a primitive decomposition.

The ELA function is an underestimate of the actual met-
ric value because we ignore deleted tags, preconditions that
may prevent achieving a certain tag, and we compute the set
of all reachable tags. Nevertheless, this does not necessarily
mean that the ELA function is a lower bound on the met-
ric value of any plan extending node N . However, if it is a
lower bound, then it will provide sound pruning (following
Baier et al. 2009) if used within the HTNPLAN-P search algo-
rithm and provably optimal plans can get generated. A prun-
ing strategy is sound if no state is incorrectly pruned from
the search space. That is whenever a node is pruned from
the search space, we can prove that the metric value of any
plan extending this node will exceed the current bound best
metric. To ensure that the ELA is monotone, when comput-
ing the ELA function, for each node we take the intersection
of the reachable tags computed for this node’s task and the
set of reachable tags for its immediate predecessor.

Proposition 2 The ELA function provides sound pruning if
the preferences are all PDDL3 simple preferences over a set
of predefined tags and the metric function is non-decreasing
in the number of violated preferences and in the plan length.

Proof: The ELA function is calculated by looking at a reach-
able set of tags for each task. Hence, it will regard as violated
preferences that have tags that do not appear in the set of
reachable tags. This means that these tags are not reachable
from node N . Given that we ensure the ELA function does
not decrease and all our preferences are PDDL3 simple pref-
erences over a set of predefined tags, the is-violated func-

tion for the hypothetical node NE , that ELA is evaluating
the metric for, is less than or equal to any node N ′ reachable
from nodeN (for each preference formula). Moreover, since
we assume that the metric function is non-decreasing in the
number of violated preferences and in plan length (Baier et
al. 2009), the metric function of the hypothetical node NE

will be less than or equal to the metric function of every suc-
cessor node N ′ reachable from node N . This shows that the
ELA evaluated at node N returns a lower bound on the met-
ric value of any plan extending N . Thus, the ELA function
provides sound pruning.

Our notion of reachable tags is similar to the notion of
“complete reachability set” from Marthi et al. in (Marthi,
Russell, and Wolfe 2007). While they find a superset of all
reachable states by a “high-level” action a, we find a super-
set of all reachable tags by a task t; this can be helpful in
proving a certain task cannot reach a goal. However, they
assume that for each task a sound and complete description
of it is given in advance, whereas we do not assume that.
In addition, we are using this notion of reachability to esti-
mate a heuristic which we implement in HTNPLAN-P. They
use this notion for pruning plans and not necessarily in guid-
ing the search toward a preferred plan. Marthi et al. in their
follow up paper (Marthi, Russell, and Wolfe 2008) address
the problem of finding an optimal plan with respect to action
costs. This paper uses a notion of optimistic and pessimistic
description, a generalization of their previous terms. This pa-
per uses some notion of heuristic search in addition to lim-
ited hierarchical lookahead by exploiting an abstract look-
ahead tree. However, they again made an assumption that
both the optimistic and pessimistic descriptions are given for
each task in advance, which is non-trivial.

Generation of the Heuristic Indexes
In this section, we briefly discuss how to generate the reach-
able tags from the corresponding HTN planning problem.
We can also generate the set of reachable tags from the de-
scription of the Cascade flow patterns; however, that descrip-
tion is omitted from this paper.

Algorithm 1 shows pseudocode of our offline procedure
that creates a set of reachable tags for each task. It takes as
input the planning domain D, a set of tasks (or a single task)
w, and a set of tags to carry over C. The algorithm should be
called initially with the initial task network w0, and C = ∅.
The reason for why we keep track of the sets of tags to carry
over is because we want to make sure we calculate not only
a set of tags produced by a decomposition of a task network
(or a task), but also we want to find a set of reachable tags
for all possible plan extensions from this point on.

The call to GetRTags will produce a set of tags reachable
by the set of tags w (produced by w and C). To track the
produced tags for each task we use a map R. If w is a task
network then we consider three cases: (1) task network is
empty, we then return C, (2) w is an ordered task network,
then for each task ti we call the algorithm starting with the
right most task tn updating the carry C, (3) w is unordered,
then we call GetRTags twice, first to find out what each task
produces (line 8), and then again with the updated set of
carry tags (line 10). This ensures that we overestimate the

448

Algorithm 1: The GetRTags (D, w, C) algorithm.
1 initialize global Map R; T ← ∅;
2 if w is a task network then
3 if w = ∅ then return C;
4 else if w = (:ordered t1 ... tn) then
5 for i=n to 1 do C ← GetRTags(D, ti, C);
6 else if w = (:unordered t1 ... tn) then
7 for i=1 to n do
8 Tti ← GetRTags(D, ti, ∅); T ← Tti ∪ T ;

9 for i=1 to n do
10 Cti ←

⋃n
j=1,j 6=i Tj ∪ C; GetRTags(D, ti, Cti);

11 else if w is a task then
12 if R[w] is not defined then R[w]← ∅;
13 else if t is primitive then
14 T ← add-list of an operator that matches;
15 else if t is nonprimitive then
16 M ′← {m1, ...,mk} such that task(mi) match with t;
17 U ′← {U1, ..., Uk} such that Ui = subtask(mi);
18 foreach Ui ∈ U ′ do T ← GetRTags(D,Ui, C) ∪ T ;
19 R[w]← R[w] ∪ T ∪ C;
20 return T ∪ C

reachable tags regardless of the execution order.
If w is a task then we update its returned value R[w]. If w

is primitive, we find a set of tags it produces by looking at its
add-list. If w is nonprimitive then we first find all the meth-
ods that can be applied to decompose it and their associated
task networks. We then take a union of all tags produced by
a call to GetRTags for each of these task networks. Note that
this algorithm can be updated to deal with recursive tasks by
first identifying when loops occur and then by modifying the
algorithm to return special tags in place of a recursive task’s
returned value. We can then use a fixed-point algorithm to
remove these special tags and update the values for all tasks.

Experimental Evaluation
We had two main objectives in our experimental analysis:
(1) evaluate the applicability of our approach when deal-
ing with large real-world applications or composition pat-
terns, (2) evaluate the computational time gain that may re-
sult from the use of the proposed heuristic.

To address our first objective, we took a suite of diverse
Cascade flow pattern problems from patterns described by
customers for IBM InfoSphere Streams and applied our
techniques to create the corresponding HTN planning prob-
lems with preferences. These patterns vary from having 30
to 170 components and 10 to 200 tags. We then examined the
performance of HTNPLAN-P, on the created problems. To ad-
dress our second objective, we implemented the preprocess-
ing algorithm discussed earlier and modified HTNPLAN-P to
incorporate the new heuristic within its search strategy and
then examined its performance.

We had 7 domains and more than 50 HTN planning prob-
lems in our experiments. The HTN problems were con-
structed from patterns of varying sizes and therefore vary in
hardness. For example, a problem can be harder if the pat-
tern had many optional or choice invocations, hence influ-
encing the branching factor. Also a problem can be harder
if the tags that are part of the Cascade goal appear in the

Plan # of No-LA LA
Domain Problem Length Plans Time (sec) Time (sec)

1
1 11 162 0.01 0.07
2 11 81 0.04 0.05
3 11 162 0.10 0.01
4 11 81 0.18 0.04

2
1 11 81 0.04 0.04
2 11 162 0.04 0.05
3 11 162 0.13 0.01
4 11 81 0.25 0.04

3
1 38 213 276.11 0.09
2 38 226 OM 0.13
3 38 226 OM 0.14
4 20 213 OM 0.14

4

1 22 4608 0.01 0.01
2 44 46082 0.09 0.11
3 92 46084 0.64 0.61
4 184 46088 4.80 4.50
5 276 460812 16.00 15.00
6 368 460816 43.00 35.00

Figure 3: Evaluating the applicability of our approach by
running HTNPLAN-P (two modes) as we increase problem
hardness.

harder to reach branches depending on the planner’s search
strategy. For HTNPLAN-P, it is harder if the goal tags appear
in the very right side of the search space since it explores
the search space from left to right if the heuristic is not in-
forming enough. All problems were run for 10 minutes, and
with a limit of 1GB per process. “OM” stands for “out of
memory”, and “OT” stands for “out of time”.

We show a subset of our results in Figure 3. Columns
5 and 6 show the time in seconds to find an optimal plan.
We ran HTNPLAN-P in its existing two modes: LA and No-
LA. LA means that the search makes use of the LA (looka-
head) heuristic (No-LA means it does not). Note, HTNPLAN-
P’s other heuristics are used to break ties. In short, the LA
heuristic is computed by first solving the current node up
to a fixed depth, and then computing a single plan for each
of the resulting nodes using depth-first search and return-
ing the best metric value among the decomposed nodes. We
measure plan length for each solved problem as a way to
show the number of generated output streams since each
plan consists of a set of operators and operators generate
new streams. We show the number of possible optimal plans
(# of Plans) for each problem as an indication of the size
of the search space. This number is a lower bound in many
cases on the actual size of the search space. Note, we only
find one optimal plan for each problem through the incre-
mental search performed by HTNPLAN-P.

The results in Figure 3 indicates the applicability and fea-
sibility of our approach as we increase the difficulty of the
problem. All problems were solved within 35 seconds by
at least one of the two modes used. The result also indicates
that not surprisingly, the LA heuristic performs better at least
in the harder cases (indicated in bold). This is partly because
the LA heuristic forms a sampling of the search space. In
some cases, due to the possible overhead in calculation of
the LA heuristic, we did not see an improvement. Note that
in some problems (3rd domain Problems 2-5), an optimal
plan was only found when the LA heuristic was used.

So far, the experiments we ran showed that an optimal

449

solution was found within a reasonable time using the LA
mode of the planner. Next, we identify cases where the plan-
ner will have difficulty finding an optimal solution. To show
this we chose the third and fourth domain and we tested with
goals that appear deep in the right branch of the HTN search
tree (or the search space). The result is shown in the right
two most columns of Figure 4.

The results show that there are some hard problems for
the LA heuristic. See Problem 8-10 for Domain 3 and Prob-
lems 11 and 12 for Domain 4. These problems are difficult
because achieving the goal tags are difficult for the plan-
ner. There are a number of reasons, some of which are plan-
ner specific, for why these problems are hard. For exam-
ple, in Problem 8, there are many optional invocations, and
the planner chooses the “no-op” task whereas the goal tags
are not achievable if the “no-op” task is selected. Therefore,
since the search space is large, the exploration of the path
that leads to achieving the goal tags gets delayed. Some of
these problems are easier because the goal is to achieve eas-
ier to reach tags. It could also be the case that the LA heuris-
tic’s sampling technique evaluates the correct branch of the
search space; hence, it can provide the right level of guid-
ance to the planner. However, from the result shown in Fig-
ure 4 we can conclude that while the LA heuristic greatly
improves the time to compute an optimal plan, it may have
difficulty when dealing with the hard to reach goal tags.

We had two sub-objectives in evaluating our proposed
heuristic (the ELA heuristic): (1) to find out if it improves
the time to find an optimal plan (2) to see if it can be com-
bined with the planner’s previous heuristics, namely the LA
heuristic. LA then ELA (resp. ELA then LA) column indi-
cates that we use a strategy in which we compare two nodes
first based on their LA (resp. ELA) values, then break ties
using their ELA (resp. ELA) values. In the Just ELA and Just
LA columns we used either just LA or ELA. Finally in the
No-LA column we did not use either heuristics.

The results (subset shown), also in Figure 4, show that the
ordering of the heuristics does not seem to make any signif-
icant change in the time it took to find an optimal plan. That
is, using the ELA heuristic combined with the LA heuristic
at least for the problems considered does not seem to im-
prove the performance of the planner compared to just using
the ELA heuristic. The results also show that using the ELA
heuristic alone performs best compared to the other search
strategies. In particular, there are cases in which the planner
fails to find an optimal plan when using LA or No-LA, but
an optimal plan is found within the tenth of a second when
using the ELA heuristic. To measure the gain in computa-
tion time from the ELA heuristic technique, we computed
the percentage difference between the LA heuristic and the
ELA heuristic times, relative to the worst time. We assigned a
time of 600 to those that exceeded the time or memory limit.
The results show that on average we gained 65% improve-
ment when using the ELA heuristic for all the problems we
used; we gained 90% improvement on the problems shown
in Figure 4. This shows that the ELA heuristic seems to sig-
nificantly improve the time it takes to find an optimal plan.

LA then ELA ELA then LA Just ELA Just LA No-LA
Dom Prob Time(s) Time(s) Time(s) Time(s) Time(s)

3

5 1.70 1.70 0.07 0.13 OM
6 1.70 1.70 0.07 1.50 OM
7 1.80 1.80 0.07 1.60 OM
8 1.70 1.70 0.07 OM OM
9 1.40 1.40 0.07 OM OM

10 1.40 1.30 0.07 OM OM

4

7 0.58 0.45 0.02 0.56 0.12
8 2.28 2.24 0.07 3.01 0.38
9 14.40 14.28 0.44 19.71 1.44

10 104.70 102.83 3.15 147.00 8.00
11 349.80 341.20 10.61 486.53 18.95
12 OT OT 24.45 OT 40.20

Figure 4: Evaluation of the ELA heuristic.

Summary and Related Work
There is a large body of work that explores the use of AI
planning for the task of automated WSC (e.g., (Traverso
and Pistore 2004)). There is also a line of work that ex-
plores the use of AI planning for the task of composing in-
formation flows, an analogous problem to WSC (e.g., (Ri-
abov and Liu 2006; Ranganathan, Riabov, and Udrea 2009;
Feblowitz et al. 2012)). Additionally some explore the use
of some form of expert knowledge or composition template
(e.g., (McIlraith and Son 2002)) that help guide the compo-
sition. While similarly, many explore the use of HTN plan-
ning, they rely on the translation of OWL-S (Martin et al.
2007) service descriptions of services to HTN planning (e.g.,
(Sirin et al. 2005)). There are several key differences be-
tween OWL-S and Cascade flow patterns. In particular, Cas-
cade is specially designed to address the data flows and prop-
agations of properties throughout the pattern, while OWL-S,
aims to support Web service discovery and composition, not
focused on modeling the data flow interactions of services.
Representing the expert knowledge in Cascade can be used
in other applications such as WSC, especially if data flow in
the composition is of interest, in addition to control flow.

In this paper, we examined the correspondence between
HTN planning and automated composition of stream pro-
cessing applications. We proposed the use of HTN plan-
ning and to that end proposed a technique for creating
an HTN planning problem with preferences from Cascade
representation of flow patterns, and user-specified Cascade
goals. This opens the door to increased expressive power
in flow pattern languages such as Cascade, for instance the
use of recursive structures (e.g., loops), user preferences,
and additional composition constraints. We also developed
a lookahead heuristic and an algorithm to derive indexes
required by the proposed heuristic. It has been shown that
heuristic-guided search is an effective method for efficient
plan generation (e.g., (Bonet and Geffner 2001; Hoffmann
and Nebel 2001)), and many heuristic-based planners ex-
ists (e.g., FF (Hoffmann and Nebel 2001), Fast Downward
(Helmert 2006), LAMA (Richter, Helmert, and Westphal
2008). Our challenge here was to develop a suitable heuris-
tic for HTN planning that gives guidance towards optimal
solutions without exhaustively searching the search space.

Our experimental evaluation showed the applicability and
promise of the proposed approach for the problem of au-
tomated composition of stream processing applications. In

450

particular, we showed that our proposed heuristic improves
the performance of HTNPLAN-P for the domains we used. In
addition, its performance with the proposed heuristic is com-
parable with an SPPL planner on Cascade problems; similar
size plans were created in similar plan time based on look-
ing at the results table from (Riabov and Liu 2006). Note, the
proposed heuristic is general enough to be used within other
HTN planners. As part of the future work we would like to
evaluate the performance of our proposed heuristic for the
general HTN planning problems. While the focus of this pa-
per is on stream processing applications, our techniques are
general enough that they can be used to address the compo-
sition of any flow-based application.

Acknowledgements
The authors thank Jorge Baier, Sheila McIlraith, and Nagui
Halim for their valuable feedback.

References
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Feblowitz, M. D.; Ranganathan, A.; Riabov, A. V.; and
Udrea, O. 2012. Planning-based composition of stream pro-
cessing applications. In ICAPS-12 System Demonstrations
and Exhibits Track.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5–
6):619–668.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Hierarchical
Task Network Planning. Automated Planning: Theory and
Practice. Morgan Kaufmann.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hirzel, M.; Andrade, H.; Gedik, B.; Kumar, V.; Losa, G.;
M. Mendell, H. N.; Soule, R.; ; and Wu., K.-L. 2009. SPL
stream processing language specification. Technical Report
RC24897, IBM Research.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2007. Angelic
semantics for high-level actions. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS), 232–239.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hi-
erarchical planning: Optimal and online algorithms. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 222–231.
Martin, D.; Burstein, M.; McDermott, D.; McIlraith, S.;
Paolucci, M.; Sycara, K.; McGuinness, D.; Sirin, E.; and

Srinivasan, N. 2007. Bringing semantics to Web services
with OWL-S. World Wide Web Journal 10(3):243–277.
McIlraith, S., and Son, T. 2002. Adapting Golog for compo-
sition of semantic Web services. In Proceedings of the 8th
International Conference on Knowledge Representation and
Reasoning (KR), 482–493.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research
20:379–404.
Ranganathan, A.; Riabov, A.; and Udrea, O. 2009. Mashup-
based information retrieval for domain experts. In Pro-
ceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM), 711–720.
Riabov, A., and Liu, Z. 2005. Planning for stream processing
systems. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI), 1205–1210.
Riabov, A., and Liu, Z. 2006. Scalable planning for dis-
tributed stream processing systems. In Proceedings of the
16th International Conference on Automated Planning and
Scheduling (ICAPS), 31–41.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd National Con-
ference on Artificial Intelligence (AAAI), 975–982.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2005.
HTN planning for Web service composition using SHOP2.
Journal of Web Semantics 1(4):377–396.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2009. HTN
planning with preferences. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1790–1797.
Traverso, P., and Pistore, M. 2004. Automatic composition
of semantic Web services into executable processes. In Pro-
ceedings of the 3rd International Semantic Web Conference
(ISWC).

451

