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Abstract

Unit Commitment is a fundamental problem in power
systems engineering, deciding which generating units
to switch on, and when to switch them on, in order to
efficiently meet anticipated demand. It has traditionally
been solved as a Mixed Integer Programming (MIP)
problem but upcoming changes to the power system
drastically increase the MIP solution time. In this pa-
per, we discuss the benefits that using planning may
have over the established methods. We provide a for-
mal description of Unit Commitment, and we present
its formulation as MIP and as a planning problem. This
is a novel and interesting application area for planning,
with features that make the domain challenging for cur-
rent planners.

Introduction
Unit Commitment (UC) is deciding which generating units
in a power system to switch on at what time. Economic Dis-
patch is the subsequent problem of, given which generating
units are currently switched on, setting the output levels of
each unit (Wollenberg and Wood 1996). They are discussed
in tandem as dispatch models are embedded within UC mod-
els in order to analyse which combination of units would be
best. Changes to the bulk power system imply there must be
changes to existing methods.

Electricity generation accounted for ∼24% of carbon
emissions in 2006 and one point projection of electricity
consumption expects an increase of 77% from 2006 lev-
els by 2030 (Agency 2012) but EU governments demand
a reduction to 20% below 1990 levels by 2020 as part of
the 20-20-20 climate change initiative (Commission 2012).
This is clearly not possible without a dramatic decarbonisa-
tion of the electricity network. Wind generation in the UK
alone has grown to over 7 GW at time of writing (see (Re-
newableUK 2012) for latest statistics) and is projected to
increase to 30-45GW by 2030 (on Climate Change 2012;
Consulting 2009). The variability of wind and other renew-
ables is in stark contrast to entirely controllable traditional
power systems (Ilic 2007). To reduce the curtailment of
wind power system operators must predict upcoming wind
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power output and reduce scheduled thermal output accord-
ingly, adding stochasticity to the UC problem.

Controllability of traditional generation (aside from unit
failures, probabilities of which can be statistically aggre-
gated with confidence) allowed construction of a determin-
istic optimisation problem, formed as a MIP and solved, us-
ing for example, Branch and Bound or Lagrangian Relax-
ation (Streiffert, Philbrick, and Ott 2005). The aforemen-
tioned changes mean traditional formulations of the prob-
lem should be reconsidered to take the variability and non-
controllability of renewable resources into account.1

One commonly proposed solution (see for example (Barth
et al. 2006; Meibom et al. 2007; 2011; Tuohy et al. 2009;
Sturt and Strbac 2012)) is to combine Rolling Planning and
Stochastic UC. These methods involve resolving the MIP
model for different net demand (demand minus wind) pro-
files. This is computationally very intensive when using a
fine discretisation of wind forecast distributions and a new
faster solution method would be beneficial to the current
power systems community.

In this paper we present a new challenging domain for
planning and we discuss the benefits that using planning may
have over the established methods. A formal description of
the Unit Commitment problem is presented, followed by its
formulation as MIP and as a planning problem. Features of
the domain that make it challenging for current planners are
also discussed.

Benefits of AI Planning
We believe there is potential for a faster solution of compa-
rable quality using AI Planning. One downside of the MIP
is its fixed discretisation of the time points at which changes
can occur. This leads to the binary on / off variables being set
at the same value for long periods of time, and solution time
is spent reasoning this. A planning formulation differs from
all treatments of Unit Commitment in the literature (MIP
based formulations) in that it is formulated as actions rather
than states at set time points.

One major benefit of a planning formulation over a MIP
formulation is that the number of actions required to meet

1Note that traditional UC formulations could remain unchanged
if larger reserve requirements were imposed, however this would
increases cost.
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the load should be much less than the number of time points
times the number of units. The planning model we propose,
when guided correctly, could leave the system in steady
state and only reason on any necessary actions to meet the
changed demand when sufficient changes occur.

A secondary benefit of solving Unit Commitment with
AI Planning is that by reasoning in continuous time the ob-
jective function of the Unit Commitment schedule can be
futher optimised. Furthermore, heuristic search can allow
scaling to big problems in order to deal with realistic in-
stances where many units are considered. This is motivated
by this problem’s similarity to that in (Fox, Long, and Mag-
azzeni 2011) on plan-based management of battery load. In
this work, a very effective heuristic is embedded in the UP-
Murphi planner (Della Penna et al. 2009), which found ex-
tremely high-quality solutions for the efficient scheduling of
multiple batteries.

In this paper we present a deterministic model of the prob-
lem, where we assume to know the demand to service in ad-
vance. In a more realistic scenario, a probabilistic distribu-
tion characterising typical demands can be learned from the
experience, and an approach based on classification could be
used, as proposed by (Fox, Long, and Magazzeni 2012).

First, we provide the main components of the MIP for-
mulation of the Unit Commitment. As a second contribution
of this paper, we present the Unit Commitment as a plan-
ning problem as it presents a mix of constraints and fea-
tures which are challenging for current planners. In particu-
lar, costs need to be computed continuously as a function of
the output of each unit being used. The invariant condition
of the total output being greater than the demand must be
satisfied, subject to changes in the deman modelled as a set
of Timed Initial Fluents. To the best of our knowledge, no
planner is currently able to solve this problem, because of
the invariant conditions dependent of Timed Initial Fluents.

The planner COLIN (Coles et al. 2012) has been used to
tackle domains with continuous linear change but this prob-
lem requires actions in response to Timed Initial Fluents.
This has not been modelled before and is discussed in more
detail prior to the model description.

Problem Formulation
We formalise the problem here to ensure both models use
the same set of assumptions.
• n generating units (indexed with u), each with the charac-

teristics given below, are to serve a deterministic, piece-
wise constant, demand over a horizon of length T .
– Minimum and maximum stable generation levels
Gu,min, Gu,max outside of which the generating unit u
cannot operate.

– A fixed start up time Tu,start. From on offline state, this
is the amount of time it takes for the generating unit
u to come online and output power. During this time
no power is output, and after this time the output is the
minimum stable generation level.

– A fixed switch off time Tu,off. From an online state,
this is the amount of time it takes for the generating
unit u to come offline. The generating unit u must be

outputting its minimum stable generation level before
it can be switched off. Once switching off begins no
power is output.

– A fixed minimum run and minimum off time,
Tu,min on, Tu,min off. Once a unit is comes online (of-
fline) it must remain online (offline) for at least Tu,min on
(Tu,min off).

– The maximum increase (decrease) in output of a gen-
erating unit u is equal to Ru,+(−) MW / min. This is
known as the ramp rate.

– A start up cost Cu,start (e). The cost of switching on a
generating unit u.

– A no-load cost Cu,no-load (e/ min). The cost of having
the generating unit u online regardless of output.

– A marginal running cost Cu,marginal (e/ min). The per
MW cost of output from the generating unit u.

• The total output from all generating units must be greater
than the demand at all times.2

• The total demand should be served at the lowest cost.

• The system will have an initial configuration given by the
end state of the previous planning horizon. Switching a
unit on or off near the end of the horizon will mean it may
not serve the full Tu,min on or Tu,min off, creating starting
parameters Tu,initial on and Tu,initial off which will be fixed
for a given problem instance.

MIP Model
The above problem can be easily formulated as a MIP prob-
lem. Let U be the set of generating units indexed by u,
i = 1, . . . ,m index the time periods over which the demand
is constant and ∆t = T/m be the length of those intervals.
All fixed parameters are as detailed above. The decision vari-
ables are then: o(u, i) a binary flag for whether or not a gen-
erating unit u is online during a given period i, g(u, i), the
exact output of the generating unit u during a given period,
and c(u, i) an extra variable tracking cost of start ups.

The objective function should minimise total operation
cost, and is given by

f :=

m∑
i=1

∑
u∈U

[
g(u, i) · Cu,marginal ·∆t

+ o(u, i) · Cu,no-load ·∆t + c(u, i)
]

(1)

There have been many different models proposed in the
literature, (Ostrowski, Anjos, and Vannelli 2012) compare
two models, one with the same decision variables described
here and one with extra binary variables. The extra binaries
allow for the construction of tighter constraints which can
reduce the solution time. It is important that we use the latest
MIP models to give a representative comparison of solution
methods.

2The amount by which supply exceeds demand is known as the
spinning reserve. Many different reserve strategies have been pre-
sented in the literature, it is not within the scope of this paper to
discuss the merits of these.
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All constraints from the above formulation can be im-
posed as linear constraints on the above decision variables
using common formulations such as those in (Carrión and
Arroyo 2006).

AI Planning Model
Previous Work
This problem presents a mix of features which have not
been addressed together before. In fact, there is continuous
change involving the cost computation, which depends on
the output of each unit being used. The demand to be ser-
vices is modelled as a sequence of Timed Initial Fluents,
which influence an invariant condition that must be satisfied
during the plan to ensure the total output is greater than the
demand.

This is similar to both (Fox, Long, and Magazzeni 2011),
where multiple batteries are tasked to serve a determinis-
tic load profile over a given horizon, and (Bell et al. 2008),
where actions are taken to ensure voltage levels remain in-
side a predefined range following a changing demand pro-
file, but differs the in following ways.

This problem differs from (Fox, Long, and Magazzeni
2011) in the need for concurrent actions and coordination
between multiple objects, the generating units. There, only
one battery acts at a time and the reasoning required is to
switch which battery is serving the current load. The prob-
lem also differs in size. The battery problem demonstrates
performance for up to 8 objects, whereas realistic instances
of Unit Commitment involve up to 50 units. This is a huge
increase in the number of ‘interesting’ choices at each deci-
sion point and scaling well will be a challenge.

In (Bell et al. 2008) only one control action is performed
at any one time as only one substation is to be controlled. In
Unit Commitment all operating units must be considered si-
multaneously to ensure demand is continually served. Also
the domain there is non-temporal so there is no need for con-
tinuous reasoning about the changing demand.

UC Planning Domain
In the following we describe the planning domain, highlight-
ing how the constraints and features discussed above are
modelled in PDDL2.1(Fox and Long 2003).

The invariant constraint of the total supply being greater
than demand is modelled as an over all condition of an
envelope action modelling the whole task of servicing the
complete load for the 24 hours, as shown in Figure 1.

The predicate complete which appears in the goal
is added only once this actions is complete. This forces
the planner to run this action, forcing ensuring that (>=
(supply) (demand)) is always satisfied. Note that this
must be both an over all and boundary constraint to ensure
the demand is met at all times. On the other hand, the start
effect adds the running predicate, which is a start con-
dition of all other actions. This forces the planner to run
serve-load as the first action. As we already said, the
demand profile is altered by Timed Initial Fluents which
change the fluent demand at specified time points.

(:durative-action serve-load
:parameters ()
:duration (= ?duration 1440)
:condition ( and

(at start (>= (supply) (demand)))
(over all (>= (supply) (demand)))
(at end (>= (supply) (demand))))

:effect (and (at start (running))
(at end (complete))))

Figure 1: Envelope modelling the invariant condition of ser-
vicing the demand.

(:durative-action switch-on
:parameters (?u - unit)
:duration (= ?duration (switch-on-time ?u))
:condition (and

(at start (running))
(at start (off ?u))
(at start (canSwitchOn ?u)))

:effect (and
(at start (not (canSwitchOn ?u)))
(at start (not (off ?u)))
(at start (increase (totalCost)

(startup-cost ?u)))
(at end (on ?u))
(at end (assign (output ?u)

(min-output ?u)))))

Figure 2: The durative action switch-on.

The n generating units will be represented by n objects.
The units’ properties will be modelled as follows:

Minimum on / off time: Two predicates canSwitchOn
and canSwitchOff determine whether switch on and off
actions can be applied. These allow for the implementation
of minimum on / off time by controlling whether or not the
planner can alter a units on / off state. Initial on / off times
can be set by combining these predicates with Timed Initial
Literals.

Start up time: for each unit, the fixed start up time is mod-
elled in the switch-on action shown in Figure 2. The
output of the single unit is set by this method, but with-
out updating the total supply, which is instead updated in
the action generate which keeps track of the continu-
ous costs. A similar switch-off action coupled with a
canSwitcOff predicate is used to set the output of the
generating unit u to 0 and fix the switch off time.

Continuous cost: in order to continuously track the
marginal costs, three actions are used: generate,
ramp-up and ramp-down. The action generate,
shown in Figure 3, is responsible for updating the total sup-
ply, incrementing it when a unit is on, and decrementing it
when the unit is no longer used. The continuous change of
PDDL2.1 is used to continuously update the total cost, by
taking into account the marginal cost and the current output
of the unit.

454



(:durative-action generate
:parameters (?u - unit)
:duration (<= ?duration 1440)
:condition (and (at start (running))

(over all (on ?u))
:effect (and (increase (totalCost)
(* #t ( * (output ?u) (marginal-cost ?u))))
(at start (increase (supply) (output ?u)))
(at end (decrease (supply) (output ?u))))))

Figure 3: Durative action generate

(:durative-action ramp-up
:parameters (?u - unit)
:duration (<= ?duration

(/ (- (max-output ?u) (output ?u))
(up-ramp-rate ?u)))

:condition ( and (at start (running))
(over all (on ?u))
(over all (not (rampingDown ?u)))
(at start (not (rampingUp ?u)))
(over all (<= (output ?u)

(max-output ?u))))
:effect ( and (at start (rampingUp ?u))
(increase (output ?u)

(* #t (up-ramp-rate ?u)))
(increase (supply)

(* #t (up-ramp-rate ?u)))
(at end (not (rampingUp ?u)))))

Figure 4: The Durative action ramp-up

Ramping up / down The ramping actions are used to in-
crement and decrement the current output of a unit. The ef-
fect is computed using the continuous effect and considering
the rate of change of the output. An over all condition
prevents the output to exceed the maximum value.

Cooling The minimum off time is enforced by the action
cool-down. This action is used only if the unit is to be re-
switched on, and if so it does not need to run the whole time
the unit is off so there is no need for a duration inequality.

(:durative-action cool-down
:parameters (?u - unit)
:duration (= ?duration (minOffTime ?u))
:condition ( and (at start (running))
(at start (off ?u)) (over all (off ?u)))

:effect ( and (at end (canSwitchOn ?u))))

Figure 5: Durative action cool-down

UC Planning Problem
The problem file contains the set of units to be managed with
their characteristics. The initial state also includes the Timed
Initial Fluents describing the demand profile. A fragment of
the problem is shown in Figure 6 where, for sake of space,
only one unit is described3.

3The interested reader can ask the authors for the full domain
and problem descriptions.

(define (problem ucp1) (:domain uc)
(:objects u1 ... - unit)
(:init (off u1)
(= (total-cost) 0) (= (total-supply) 0)
(= (min-output u1) 30) (= (max-output u1) 75)
(= (up-ramp-rate u1) 6)
(= (down-ramp-rate u1) 6)
(= (switch-on-time u1) 4)
(= (switch-off-time u1) 4)
(= (startup-cost u1) 10)
(= (marginal-cost u1) 40)
(at 0 (= (demand) 0.0))
(at 50 (= (demand) 256.0))
...
(at 1440 (= (demand) 230.0)))
(:goal (and (complete))))

Figure 6: Fragment of the UC Problem

Planning Challenges
As mentioned above a strength of the planner is its ability
to only reason about necessary changes to meet the new de-
mand and leave some characteristics in a steady state as op-
posed to the MIP reasoning about the binary on / off vari-
ables or outputs which remain constant at every time point.
On the other hand, one of the challenges is the need of find-
ing an effective heuristic in order to scale and to be able to
deal with the huge state space generated by this problem.

Furthermore, the planner must favour plans that are cheap
given how far through the planning horizon they have
planned for. The current cost of a plan which has only sched-
uled a few periods is clearly much less than a plan much
further through the planning horizon. It is important that the
heuristic recognises there is a large cost to go, to intelligently
‘guess’ what that cost may be so as not to get stuck only ad-
vancing plans in the first hour of the planning horizon.

Finally, the heuristic needs to balance speed and quality
of the solution. By always selecting the active plan furthest
through the planning horizon a poor quality solution can be
found very quickly. Imposing a limit on the maximum over-
head (supply minus demand) does not ensure a least cost
plan as it does not take into account the operating costs of
the units in the plan. Some notion of future cost to go, as
mentioned above, could help the planner to choose which of
the current partial plans to take forward.

Conclusion
Unit Commitment as a MIP is a much studied problem of
great importance to the power systems engineering commu-
nity. AI Planning could potentially advance the work on UC
by providing faster solutions, which would be beneficial in
light of the upcoming changes to the UC problem. The prob-
lem contains a novel collection of constraints which mean
all existing planners we are aware of cannot directly support
this model. Solving this domain competitively compared to
the well established MIP model will advance the field of
Planning with time and resource greatly.
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