
Planning under Uncertainty for Coordinating Infrastructural Maintenance

Joris Scharpff and Matthijs T.J. Spaan and Leentje Volker and Mathijs de Weerdt
{j.c.d.scharpff, m.t.j.spaan, l.volker, m.m.deweerdt}@tudelft.nl

Delft University of Technology, The Netherlands

Abstract
We address efficient planning of maintenance activities in in-
frastructural networks, inspired by the real-world problem of
servicing a highway network. A road authority is responsi-
ble for the quality, throughput and maintenance costs of the
network, while the actual maintenance is performed by au-
tonomous, third-party contractors.
From a (multi-agent) planning and scheduling perspective,
many interesting challenges can be identified. First, planned
maintenance activities might have an uncertain duration due
to unexpected delays. Second, since maintenance activities
influence the traffic flow in the network, careful coordination
of the planned activities is required in order to minimise their
impact on the network throughput. Third, as we are dealing
with selfish agents in a private-values setting, the road author-
ity faces an incentive-design problem to truthfully elicit agent
costs, complicated by the fact that it needs to balance multiple
objectives.
The main contributions of this work are: 1) multi-agent coor-
dination on a network level through a novel combination of
planning under uncertainty and dynamic mechanism design,
applied to real-world problems, 2) accurate modelling and
solving of maintenance-planning problems and 3) empirical
exploration of the complexities that arise in these problems.
We introduce a formal model of the problem domain, present
experimental insights and identify open challenges for both
the planning and scheduling as well as the mechanism design
communities.

1 Introduction
The planning and scheduling of maintenance activities on
large infrastructural networks, such as a national highway
network, is a challenging real-world problem. While im-
proving the quality of the infrastructure, maintenance causes
temporary capacity reductions of the network. Given the
huge impact of time lost in traffic on the economic output of
a society, planning maintenance activities in a way that min-
imises the disruption of traffic flows (commonly referred to
as social cost) is an important challenge for the planning and
scheduling field. In this paper, we address this challenge by
a novel combination of stochastic multi-agent planning, cap-
tured in Markov Decision Processes (MDPs), and dynamic
mechanism design.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A powerful real-world example of the benefits of care-
ful maintenance planning is the summer 2012 closure of the
A40 highway in Essen, Germany. Instead of choosing for the
default option of restricting traffic to fewer lanes for 2 years,
authorities fully closed off a road segment for 3 months
and diverted traffic to parallel highways. Traffic conditions
on the other highways hardly worsened, while an estimated
¤3.5M in social costs due to traffic jams were avoided (be-
sides lowering building costs) (Der Spiegel 2012).

As maintenance activities often have an uncertain dura-
tion due to delays in construction, it is important to take un-
certainty into account while planning. Also, there may be
multiple ways to perform a certain maintenance action by
varying the amount of resources dedicated to it, leading to
options that have different duration, cost, risk and quality
impact. Furthermore, long-term planning is required to en-
sure overall network quality. Assuming these uncertainties
are known beforehand, as in this work, Markov Decision
Processes (MDP) provide a suitable framework to model
and solve these types of planning-under-uncertainty prob-
lems (Puterman 1994).

A complicating factor, however, is that while a single pub-
lic road authority is responsible for the quality, throughput
and costs of the network, the actual maintenance is per-
formed by autonomous agents (the contractors), typically
third-party companies interested primarily in maximising
their profits. Road authorities face the problem of aligning
objectives; we introduce monetary incentives for the con-
tractors to consider global objectives. Nonetheless, an agent
servicing one part of the network also influences agents in
other parts as its work has a negative impact on the traf-
fic flow. As a consequence, such congestion based payments
may lead to very high throughput penalties for all agents if
their maintenance plans are not coordinated on a network
level.

In this work we focus on socially optimal joint mainte-
nance planning that maximises the sum of contractor utili-
ties, in the presence of such monetary incentives, and there-
fore we have chosen a centralised coordination approach.
The authority is given the responsibility to develop socially
optimal plans, while considering the individual interests of
all contractors expressed through cost functions. However,
as these cost functions are private information, optimal co-
ordination and hence outcomes can only be achieved if the

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

425

contractors report these costs truthfully. Ensuring this truth-
fulness is the key motivation to combine stochastic planning
with mechanism design.

Our main contribution is the application of a combina-
tion of stochastic planning and dynamic mechanism design
to realise truthful coordination of autonomous contractors in
a contingent, private-values setting. We focus on dynamic
mechanisms that define payments over all expected out-
comes such that in expectation it is in the agent’s best in-
terest to be truthful during the entire plan period. Applying
dynamic mechanism design to (real-world) settings is rela-
tively unexplored territory (Cavallo 2008).

Related Work Other approaches towards solving the
problems discussed here have been considered, although
they can not be applied to our setting for various rea-
sons. Multi-agent MDP (Boutilier 1996) assumes cooper-
ative agents that are willing to disclose private informa-
tion and share the same utility function. In decentralised
MDPs (Bernstein et al. 2002), although execution is de-
centralised, agents are still assumed to be cooperative and
solving Dec-MDPs requires knowledge of all utility func-
tions. Both methods are not suitable when agents misre-
port their private information to ‘cheat’ the center into dif-
ferent outcomes. Non-cooperative settings have been stud-
ied in the classical planning literature (Brafman et al. 2009;
Jonsson and Rovatsos 2011; van der Krogt, de Weerdt, and
Zhang 2008), but uncertainty is not addressed.

Multi-machine scheduling has also been considered for
the planning of maintenance activities, but we found this in-
feasible for our contingent setting. The only work we are
aware of in this area is by (Detienne, Dauzère-Pérès, and
Yugma 2009), in which only non-decreasing regular step
functions are considered. In our problem agents could both
profit as well as suffer from concurrent maintenance, there-
fore cost functions do not have the non-decreasing property.

Another interesting related approach is that of reinforce-
ment learning (Kok et al. 2005; Melo and Veloso 2009) and
in particular Collective Intelligence (Wolpert, Tumer, and
Frank 1999). In this approach agents learn how and when to
coordinate and, in the case of collective intelligence, strive to
optimise a global goal, without substantial knowledge of the
domain model. Nevertheless, as these methods cannot pro-
vide theoretical guarantees concerning the incentives, they
are not adequate in the presence of strategic behaviour, i.e.,
agents deliberately trying to manipulating the system.

Although stochastic planning has been well studied, only
a handful of papers address dynamic mechanism design
and/or a combination of the two. Bergemann and Valimaki
(2006) proposed a dynamic variant of the VCG mecha-
nism for repeated allocation, implementing the mechanism
desiderata in a within-period, ex-post Nash equilibrium.
Athey and Segal (2007) studied a dynamic variant of the
AGV mechanism (d’Aspremont and Gérard-Varet 1979) that
is budget-balanced in the weaker Bayes-Nash equilibrium
solution concept. Highly related is the work by Cavallo,
Parkes, and Singh (2006), in which the authors also study
dynamic mechanism design to obtain desirable outcomes
in multi-agent planning with private valuations. However,

the focus is on allocation problems that can be modelled as
multi-armed bandit problems, instead of the richer problem
domains with dynamic states that we consider. Considering
the complexity of the stochastic planning problem we study
here, approximation of the planning also seems a viable ap-
proach. When resorting to approximate solutions, however,
standard theory for strategy-proof mechanisms does not im-
mediately apply (Procaccia and Tennenholtz 2009).

Outline In the next section, we present a theoretical
framework for maintenance planning obtained and refined
through interviews and discussions with public road and rail
network authorities, as well as several of the larger con-
tractors. We then introduce the theoretical background of
both stochastic planning and mechanism design (Section 3),
and show how to combine work on planning with uncer-
tainty and dynamic mechanism design to solve two exam-
ple applications, derived from practice (in Section 4). We
present experimental insights where we compare this ap-
proach with uncoordinated agents and best-response playing
agents (Section 5). We conclude with a summary of our find-
ings and we present open challenges for both the planning
and scheduling as well as the mechanism design communi-
ties (Section 6).

2 Maintenance Planning
Commonly in infrastructural maintenance planning there is
one (public) institution responsible for the network on behalf
of the network users. This road authority is given the task to
maintain a high (i) network quality and (ii) throughput (iii) at
low costs (although other objectives are also possible, e.g.,
environmental concerns, robustness). To this end, network
maintenance has to be performed with minimal nuisance.
However, the actual maintenance is performed by several au-
tonomous, independent contractors and therefore some coor-
dination of maintenance activities is required.

In the infrastructural maintenance planning problem
(Volker et al. 2012) we are given a network of roads E. On
this network we have a set N of agents (the contractors),
with each agent i ∈ N responsible for the maintenance of a
disjoint subset Ei ⊆ E of roads over a set of discrete peri-
ods T . An edge ek ∈ E has a quality level qek ∈ [0, 1] and a
function q̂ : q × T → q that models the quality degradation
of a road given the current state and time (new roads degrade
less quickly, seasons influence degradation, etc.).

For each edge ek ∈ Ei, an agent i has a set of pos-
sible maintenance activities Ak that have been identified
and assigned in the aforementioned procurement phase. We
write Ai to denote all possible activities by an agent i, i.e.,
Ai = ∪{k|ek∈Ei}Ak. Each of the activities k ∈ Ak has a du-
ration dk ∈ Z+, a quality impact function ∆qk : qek × T →
qek that depends on the current road quality and time, and a
constant revenue wk ∈ R that is obtained upon completion
of the activity. Moreover, the agent has a (private) cost func-
tion ci : Ai × T → R that represents the cost of performing
an activity k ∈ Ai at time t ∈ T . The dependency on time
enables modelling of different costs for example for differ-
ent seasons, or for periods in which the agent has fewer re-
sources available. We model the limited resources (machin-

426

ery, employees, etc.) available to an agent by allowing at
most one activity at a time. This restriction does not have
much impact on the model we propose here but does greatly
simplify resource reasoning and therefore the complexity of
finding optimal maintenance plans.

Each agent strives to plan their maintenance activities in
such a way that its profits are maximised, but plan execu-
tion is unlikely to be perfect. Uncertainties in various forms
– for example delays, unknown asset states, failures – may
be encountered during execution and and hence fixed plans
might lead to rather poor results. To this end we focus on
contingent plans, or policies, that dictate the best action to
take in expectation for all possible agent states. Note that
actions here are operations available to the contractors (e.g.,
start activity, do nothing) and states contain all relevant in-
formation for its planning problem. We formalise these con-
cepts in Section 3.1, for now it is sufficient to know that
we can always observe what activity has been performed by
each contractor. We denote the observed activities by Pi and
use Pi(t) = k to denote that activity k was performed at
time t. Each activity has to be completed before another can
be started, therefore there must be exactly dk time steps for
which Pi returns k. Note that an agent can also choose to
perform no activity during a time step, which we denote by
P (t) = ◦ and we assume ∀t ∈ T : ci(◦, t) = 0.

Given performed activities Pi, the total revenue Wi

agent i will receive is the sum of all wk for all completed ac-
tivities k. The total maintenance cost for agent i is given by
Ci(Pi) =

∑
t∈T ci(Pi(t), t). Note that we do not explicitly

require all activities of an agent to be planned or that they
can be completed within the period T , but because agents
will not receive revenue wk for each uncompleted activity k
they will be stimulated to complete them.

For the agents to also consider the global objectives, we
introduce payments such that their profits depend on the de-
livered quality and additional congestion caused by their
presence. The quality payment Qi for each agent i can be
both a reward as well as a penalty, depending on the final
quality state of its roads (e.g., based on contracted demands).
Again given performed activities Pi, we can determine the
resulting quality state qTe at the end of the period T using the
recursive formula

qt+1
ek

=

{
∆qk(qtek , t) if Pi(t) = k

q̂ek(qtek , t) otherwise
(1)

with (given) initial quality q0
ek

. We define the quality pay-
ment for agent i after performing activities Pi by Qi(Pi) =∑
e∈Ei

Qi(q
|Pi|
e) where |Pi| = T if all performed activities

have been observed.
Congestion payments, i.e., social costs, cannot be consid-

ered from just the single-agent perspective because network
throughput depends on the planning choices of all agents.
Let P t denote the set of activities performed by all agents
at time t, then the social cost of this combination is cap-
tured by `(P t). The impact of an individual agent, given
the choices made by others, can be determined by `i(P t) =
`(P t) − `(P t−i) in which P t−i denotes the set of activities
performed at time t minus any activity by agent i. The so-

cial cost function can for example capture the costs of traffic
jams due to maintenance activities, possibly based on em-
pirical data.

Recapitulating the above, each agent i is trivially inter-
ested in maximising its revenue and minimising its main-
tenance costs. In order to stimulate agents to plan mainte-
nance in favour of global objectives, we introduce quality
and throughput payments such that their profit ui, given the
performed activities P by all players, is given by:

ui(P) = Wi(Pi)−
(
Ci(Pi) +Qi(Pi) + `i(P)

)
(2)

in which `i(P) =
∑
t∈T `i(P

t). As activity revenues fol-
low directly from the procurement, we assume that agents in
expectation are always able to achieve a positive profit for
completing their activities, otherwise they would not have
bid on the activity during procurement.

Recall from the introduction that we are interested in find-
ing socially optimal solutions, but given the individual agent
utility of Eq. 2, how should we define these payments such
that the right balance is made between these costs and the
agents’ private costs, which are not known to the road au-
thority? Moreover, how can we ensure truthful reporting of
these private costs? We tackle these questions using dynamic
mechanism design.

In the next section we start by discussing how to compute
optimal solutions, required to guarantee mechanism truth-
fulness, to the problem variants introduced in this section,
followed by a summary of how this can be combined with a
dynamic mechanism.

3 Background
We briefly introduce the two concepts our work builds on,
planning under uncertainty and dynamic mechanism design.

3.1 Planning under Uncertainty
To deal with uncertainties we model the planning problem
using Markov Decision Processes (MDPs), which capture
this type of uncertainty rather naturally (Puterman 1994).
For each agent i ∈ N we have an MDPMi = 〈Si,Ai, τi, ri〉
that defines its local planning problem. In this definition, Si
is the set of states and Ai a set of available actions. The cur-
rent state of an agent contains all activities that still remain
to be performed and its actions are operations to start or con-
tinue an activity (explained in detail in Sections 4.3 and 4.4).
Important to keep in mind is that the MDP actionsAi are not
equivalent to the agent activities Ai (although in the case of
unit-time actions these sets are almost similar).

The function τi : Si × Ai → ∆(Si) describes the transi-
tion probabilities where τi(si,Ai, s′i) denotes the probabil-
ity of transitioning to state s′ if the current state is si and
action Ai is taken. Finally, ri : Si × Ai → R is the reward
function where ri(si, a) denotes the reward that the agent
will receive when action a ∈ Ai is taken in state si (e.g., the
utility of Eq. 2). We formalise the rewards and actions for
the agents in Section 4, as they depend on the encoding used
to solve the MDP.

427

Solutions to MDPs are policies π : S → A that dictate
the best action to take in expectation, given the current state
it is in. Formally, the optimal policy π∗ is defined such that
for all start states s ∈ S: π∗(s) = arg maxπ∈Π V 0(π, s)
with

V t0(π, s) = E
[∞∑
t=t0

γtr(st, π(st))) | st0 = s
]

(3)

in which st is the state at time t and γ ∈ [0, 1) is a shared
discount factor commonly used to solve problems with infi-
nite horizons.

We can obtain the individual policies πi for each agent by
solving its MDP Mi. However, in order to develop an (op-
timal) joint policy π∗, required to consider throughput pay-
ments, we need to solve the multi-agent MDP that results
from combining all individual MDPs. Formally, the joint
MDP is defined by M = 〈S,A, r, τ〉 where S = ×i∈NSi
is the joint state space containing in each state s ∈ S a lo-
cal state si for all agents i ∈ N , A is the set of combined
actions, r the reward function defined as ∀s ∈ S, a ∈ A :
r(s, a) =

∑
i∈N ri(si, ai) and τ the combined transition

probability function. The joint action set can always be ob-
tained by including an action for each element of the Carte-
sian product set of all individual action spaces but smarter
construction can greatly reduce the joint action set. For plan-
ning problems (at least) we have developed a two-stage
MDP encoding that effectively reduces the joint action set
size from exponential to linear in the number of players and
their action sets. This is discussed in detail in Section 4.2.

3.2 Dynamic Mechanism Design
Although MDPs facilitate optimal planning under uncer-
tainty, they assume global knowledge of all costs and re-
wards. As the maintenance activities are performed by dif-
ferent, usually competing companies, we cannot assume that
this knowledge is globally available. We therefore aim to de-
sign a game such that utility-maximising companies behave
in a way that (also) maximises the global reward. This is ex-
actly the field of mechanism design, sometimes referred to
as inverse game theory.

Formally, in a static or one-shot game, each agent i ∈ N
has some private information θi known as its type. In so-
called direct mechanisms, players are asked for their type,
and then a decision is made based on this elicited informa-
tion. Groves mechanisms (Groves 1973) take the optimal de-
cision (π∗) and define payments T such that each player’s
utility is maximised when it declares its type truthfully.

Dynamic mechanisms extend ‘static’ mechanisms to deal
with games in which the outcome of actions is uncertain and
private information of players may evolve over time. In each
time step t, players need to determine the best action to take
(in expectation) while considering current private informa-
tion and possible future outcomes. Private rewards are there-
fore defined depending on the state and the policy, given by
ri(s

t, π(st))), in which the state contains the player’s type.
This type is denoted by θti to express the possibility of this
changing over time. With θt we denote the type of all players
at time t which are encoded in the state st.

An extension of Groves mechanisms for such a dynamic
and uncertain setting is dynamic-VCG (Bergemann and Val-
imaki 2006; Cavallo 2008). For dynamic-VCG the decision
policy is required to be optimal, i.e., the one maximising the
reward of all players, when the types θt are encoded into the
state st. We denote this optimal policy for time step t given
the reported types θt encoded in state st by π∗(st). A policy
optimised for the game with all players except i is denoted
by π∗−i(s

t) and we define ri(sti, π
∗
−i(s

t
i)) = 0.

In every time step each player i pays the expected
marginal cost it incurs to other players j for the current time
step. This is defined as the difference between the reward
of the other players for the socially optimal decision for the
current time step t, i.e.,

∑
j 6=i rj(s

t, π∗(st)) and their ex-
pected reward optimised for just them in future time steps,
i.e., V t+1(π∗−i, s

t+1) (Eq. 3) minus the expected reward of
the other players for a policy optimised for them for all time
steps including the current one, i.e., V t(π∗−i, s

t). Summaris-
ing, the payment Ti(θt) for an agent i at time step t given
that reports θt are encoded in state st is thus is defined as∑
j 6=i

rj(s
t, π∗(st)) + V t+1(π∗−i, s

t+1)− V t(π∗−i, st) (4)

The dynamic-VCG mechanism yields maximum revenue
among all mechanisms that satisfy efficiency, incentive com-
patibility and individual rationality in within-period, ex-post
Nash equilibrium. This means that at all times for each
player the sum of its expected reward and its expected pay-
ments is never more than when declaring its true type.

4 Coordinating Maintenance Planning
In this work we combine existing work on planning un-
der uncertainty and dynamic mechanism design to solve the
complex problem of maintenance planning where agents are
selfish and execution is uncertain. Using the dynamic-VCG
mechanism we ensure that agents are truthful in reporting
their costs. Then, using these reports to model agent rewards,
we apply planning-under-uncertainty techniques to find op-
timal policies and finally we determine the payments of the
mechanism, as discussed in the previous section.

An important condition for the dynamic VCG mechanism
is that the chosen policy is optimal. If it is not, the payments
are not guaranteed to achieve truthful cost reports and agents
may want to deviate. Therefore we focus on exact solving
methods in our approach.

We implemented our mechanism using the SPUDD solver
(Hoey et al. 1999) to determine optimal policies. The
SPUDD solver allows for a very compact but expressive for-
mulation of MDPs in terms of algebraic decision diagrams
(ADDs) and uses a structured policy iteration algorithm to
maximally exploit this structure. This allows it to find opti-
mal solutions to moderately sized problems. We note, how-
ever, that our mechanism is independent of the particular
MDP solver used, as long as it returns optimal solutions.

4.1 MDP Models for Maintenance Planning
Finding an efficient joint policy π∗ that maximises the sum
of all agent utilities ui (Eq. 2) cannot be directly translated

428

into an equivalent MDP encoding. Although in our model
C, Q and ` can be general functions, encoding general func-
tions in the MDP formulation potentially requires exponen-
tial space. Hence to be able to use the SPUDD solver in our
experiments, we necessarily restricted ourselves to only lin-
ear functions.

The current state of the network, i.e., the quality levels qe,
are modelled using a 5 star classification (from (0) very
bad to (5) excellent) are encoded as discrete variables [0, 5].
Road degradation functions q̂ are modelled using decision
diagrams that probabilistically decrease the road quality in
each time slot by one state. Completing an activity k′ in-
creases the corresponding road quality q′k by a specified
number of states (additive), corresponding to its effect ∆q′k.

Encoding the social cost ` can be cumbersome, depend-
ing on the complexity of the chosen cost model. Again, gen-
eral cost models could result in exponential MDP encoding
sizes. Using only unary and binary rules to express social
cost, we can overcome this exponential growth (at the cost
of losing some expressiveness). The unary rules l : A → R
express the marginal latency introduced by each activity in-
dependently. Dependencies between activities are expressed
using binary relations l : Ai × Aj → R that specify the
additional social cost when both activities are planned con-
currently. The costs incurred by the set of chosen activi-
ties At can then be computed using `(At) =

∑
k∈At l(k) +∑

k1∈At

∑
k2 6=k1∈At l(k1, k2).

4.2 Avoiding Exponentially-Sized Action Spaces
Factored MDP solvers are typically geared towards exploit-
ing structure in transition and reward models, but scale lin-
early with the number of actions. In multi-agent problem
domains such as ours, however, a naive construction of the
joint action set – such as enumerating all elements of the
Cartesian product of individual action sets – can be expo-
nential in the number of agents. To overcome this issue,
we model each time step in the real world by two stages
in the multi-agent MDP, resulting in a larger number of
backups due to additional variables, but crucially avoiding
exponentially-sized action spaces. Note that the encoding
technique we discuss in this section is not restricted to our
problem; they can be applied to any multi-agent decision
problem MDP formulation in which agent actions are de-
pendent only through their rewards.

In our MDP encoding we have used a two-stage approach
for each time step in the plan problem length T . In the first
step agents decide on the activity to perform (or continue)
and this activity is then ‘executed’ in the second stage (il-
lustrated in Sections 4.3 and 4.4 for two example scenarios).
We implement this separation through the use of additional
variables that for each agent state the activity to perform in
the current time step. Crucial is that these variables can be
set independently from the actions available to other play-
ers (unlike the Cartesian product action space). The second
stage then encodes the ‘execution’ of their choices using one
additional action. Still there are multiple ways in which this
first-stage activity selection can be implemented. Again enu-
meration is possible (although obliterating the purpose of the

repeat duration success
prob.

delay
duration

delay
prob.

dk αk hk βk
1 yes 1 [0, 1] 0 0
2 no Z+ 1 Z+ [0, 1]

Table 1: The differences between scenario 1 and 2. These
parameters are explained in Section 4.3 and 4.4.

two-stage approach) but we have developed two smarter en-
codings: action chains and activity chains.

The action chain encoding exploits the fact that we can
decide on an action for each player sequentially, instead of
having to decide on them all at once (as with enumeration).
Through the use of a player token, each agent gets a ‘turn’
to determine its action within a single time step. Therefore
we require only |Ai| actions for each agent i, one for each
activity it can choose, and hence a total of

∑
i∈N |Ai| states

(and one additional variable), instead of the
∏
i∈N |Ai| ac-

tions needed for enumerating the Cartesian product.
For activity chains we exploit a similar idea. We group

the activities of agents into activity sets to obtain an even
smaller set of joint MDP actions. Let D = maxi∈N |Ai|
be the size of the largest activity set of any player, then the
activity chains are defined as ACm =

⋃
i∈N km ∈ Ai for

m = 1, 2, . . . , D. Hence we group allm-th activities of each
player into set ACm. If a player i has no m-th activity, i.e.,
m > |Ai|, we exclude the player from this activity chain
using a high penalty. Through the player token we enforce
that each player sequentially chooses an activity from one
of these chains. This encoding requires exactly D actions in
the joint MDP for the first stage and is therefore often more
compact than action chains.

In the second stage we model the execution of these
choices, i.e., apply maintenance effects, and compute the
sum of utilities (Eq. 2) for this time step as the reward. Note
that we only proceed in time after the second stage, hence
both stages are effectively within one time slot t ∈ T .

So far we have introduced a general encoding for main-
tenance scheduling problems. Now we will go into the
specifics for two real-world application we have chosen to
study in this paper: one with unit-time activities that may
fail, and one where activities always succeed, but possibly
have a much longer duration. A summary of the main differ-
ences can be found in Table 1.

4.3 Scenario 1: Activities with Failures
As a step towards network maintenance, we first focus on
scheduling repeatable unit-time activities with possible fail-
ures. Although this problem is conceptually rather simple,
it captures essential parts of real-world applications such as
factory scheduling and supply chain planning problems. In
this scenario, activities k ∈ Ai are repeatable, of unit-time
(dk = 1) and succeed with probability αk ∈ [0, 1]. It is
possible for any activity k ∈ Ai to fail with probability
1 − αk. Whether an activity fails will become apparent at
its actual execution time. When an activity fails, it has no
positive effect on the quality but its associated maintenance

429

and throughput costs are still charged. If the agent still wants
to perform the maintenance it has to include the activity in
its plan again at a later time.

Because activities in this scenario are unit-time and re-
peatable, we can directly translate these into actions of the
single-agent MDPs. For each activity k ∈ Ai of agent i we
create an action ak with reward c(k, t, 1). This action im-
proves the quality level qk by the number of levels corre-
sponding to ∆qk with probability αk. Thus with probabil-
ity 1−αk the maintenance fails and the quality level remains
unchanged.

4.4 Scenario 2: Portfolio Management
Portfolio management is a second variant of our model. In-
spired by real-world consequences of signing a maintenance
contract, in this setting agents have to perform each activ-
ity exactly once, although multiple alternatives exists for the
activity, and instead of activity failure we consider delays.
More formally, for each activity k we now additionally have
a delay duration hk and delay probability βk.

Encoding the portfolio management planning in an MDP
requires a substantially greater effort as we can no longer
translate activities directly to actions. This problem is more
complex because of (1) possible non-unit activity durations,
(2) activities can be delayed, (3) for each road we can only
choose one activity to perform, and (4) each road can be
serviced only once. The latter two are easily resolved by in-
troducing a variable that flags whether a road has been ser-
viced and using corresponding penalties to prohibit planning
of these activities later; the first two require more work.

From the single-agent MDP perspective, non-unit activity
durations (including possible delay) do not pose any diffi-
culties. We could use actions that update the time variable t
according to the activity duration. For the joint MDP how-
ever, this time variable is shared by all the agents. Increas-
ing the time by the activity duration makes it impossible for
other agents to start their activities in this time period. Our
solution is to decompose each activity k into unit-time MDP
actions {startk, dok, delayk, donek} and use a timer vari-
able to keep track of the remaining activity duration and its
delay status (pending, no or yes). The startk action marks
the beginning of the activity. This action sets the delay sta-
tus to pending and the activity timer to the duration dk. In
subsequent time steps, the agent has to perform a dok action
until the activity timer reaches zero. At this point, the activ-
ity delay status is pending and the activity is delayed with
probability βk (also updating the delay status).

If the activity is not delayed, the donek action is executed
and the associated road ek is flagged as serviced. When an
activity is delayed however, we set the activity timer to the
delay duration hk and continue with dok actions until again
the timer reaches zero, at which point the stopk action is ex-
ecuted (not delayk again because of the delay status value).

Important to keep in mind is that during the search for
optimal policies, a solver might decide on any order of these
actions. Hence we need to constrain the actions such that
only feasible action sequences are considered. For example,
the dok action can only be chosen if the activity timer is
greater than zero, otherwise a high penalty results.

Rewards are encoded using the two-stage approach as be-
fore. In the first stage, each agent chooses a start, do, delay
or stop action. Then the second stage implements these ac-
tions and incurs maintenance, quality and social costs for the
current time step t.

4.5 Planning Methods
Using the encodings we discussed, we can find the optimal
policy π∗ that minimises costs over all three objectives. In
the experiments, we then compare this centralised compu-
tation that relies on truthful reporting to (1) the approach
where each agent plans its own actions optimally individu-
ally, i.e., disregarding other agents, and (2) a best-response
approach (Jonsson and Rovatsos 2011).

In the best-response approach, agents alternatingly com-
pute their best plan (in expectation) in response to the current
(joint) plan of the others. This approach allows us to solve
much easier single agent problems but still consider agent
dependencies (e.g., social cost). Of course, the downsides of
this approach are that we will have to settle for Nash equi-
libria (if they exist) and the ordering of agents matters.

5 Evaluation
We have performed a substantial number of experiments to
gain insight into this previously uncharted area. For both
problem scenarios we have generated large benchmark sets
on which we tested the various planning approaches and
their encodings discussed in the previous section. These ex-
periments are mainly of an exploratory nature in which we
study the effect of each of the problem variables. The solver
used in these experiments has been implemented in Java,
using SPUDD as its internal MDP solver. All experiments
have been run on a system with an 1.60 Ghz Intel i7 pro-
cessor with a time limit of 3 hours per instance, except for
the experiments of Section 5.2 which had a time limit of one
day.1

5.1 Activities with Failures
In the first series of experiments we have been mainly in-
terested in exploring the computational limits of solving the
problem centrally using an exact algorithm. To this end we
generated a set of simple instances that vary in both the
number of players N (2-5) and activity set Ai sizes (1-15).
We solved these instances using different planning period
lengths T (1-46). From these experiments we identify the
parameters that contribute the most to the difficulty of the
problem.

Activity sets are generated using random, linear, time-
dependent cost functions and always increase the quality
level of the associated road by one. Quality cost functions
are also generated for each road. Road quality is decreas-
ing linearly in the quality with a random factor from [1, 3],
which is fixed per road. Recall from Section 4.1 that linear-
ity of this and other cost functions is a restriction not im-
posed by our model but is required to combat a potential
exponential MDP encoding size. For the social costs ` we

1The testset is available at http://www.alg.ewi.tudelft.nl/
fileadmin/alg/homepages/scharpff/icaps-testset.rar

430

2 3 4 5
100

102

104
Runtime

Number of players

R
un

tim
e

(s
)

2 3 4 5
104

106

108
Memory usage

Number of players

N
um

be
ro

fn
od

es

Enumeration
Action chain
Activity chain

Figure 1: Comparison of runtime (left) and memory use
(right) for different encoding methods and player set sizes,
|Ai| = 3, |T | = 46, |Q| = 6 (both log scale).

0 5 10
10−2

100

102

104

Activity set size

R
un

tim
e

(s
)

0 10 20 30 40 50
10−2

100

102

104

Period length

R
un

tim
e

(s
)

|N| = 2
|N| = 3
|N| = 4
|N| = 5

Figure 2: Runtimes for different activity set sizes |Ai| with
plan period length |T | = 46 (left), and different |T | with
|Ai| = 10 (right) using activity chains (both log scale).

study the worst-case where all activities always interfere and
define these costs using randomly chosen (marginal) cost
l(k1, k2) ∈ [1, 10] for each k1 ∈ Ai and k2 ∈ Aj where
i 6= j. We do not consider the marginal cost for individual
actions, i.e., l(k) = 0.

In Figure 1 we have depicted both the runtime (left) and
the memory (right) required to solve each of these instances,
under different encoding methods. The memory required is
expressed in the number of nodes SPUDD generates. Not
surprisingly this figure illustrates that the performance of the
solver is exponential in both time and memory, and greatly
depends on the structure of its input. By exploiting the prob-
lem structure, the activity chain encoding is able to greatly
reduce the required runtime. With it we have been able to
solve instances with 5 players and 3 activities per player
within the time limit of 3 hours, whereas the other two failed
on such instances. Observe that activity chain encoding re-
quires slightly more memory. For the reasons stated above,
we have illustrated the results of the remaining experiments
only using the activity chain encoding (which indeed outper-
formed the others in all tests).

In Figure 2 we have plotted the required runtime for solv-
ing instances using activity chains for various activity set
sizes and period lengths. From the figure we can conclude
that the runtime is only linearly affected by the number of
activities each player has. The plan period length shows
almost the same: although the required runtime increases
rapidly at first, for larger plan horizons the increase is again
almost linear. It is expected that instances with small plan
lengths are easily solvable because only a small number of
plans is possible. Increasing the plan length introduces an

100

200

300

400

Activity success probability

C
os

t

β = 0.2 β = 0.6β = 0.4 β = 0.8 β = 1

Individual

Best-response

Centralised

Figure 3: Total cost using different planning approaches for
the activities with failure problems (lower is better).

exponential number of new possible plans and therefore the
computation time increases rapidly, up to the point where
the roads reach maximum quality. From this time on, agents
have to consider planning an activity only when the quality
degrades.

Having identified the computational boundaries of the
centralised problem, we compared the performance of dif-
ferent planning approaches discussed in Section 4.5 in terms
of total reward obtained. For these experiments we have used
60 generated two-player instances in which each player is re-
sponsible for one road. The activity set of each player con-
tains the no-operation and 1, 2 or 3 available maintenance
operations that improve the quality of the road by 1, 2 or 3
levels respectively. The cost of each action k ∈ Ai is drawn
randomly from [1, 3∗∆qk] and is therefore independent from
its execution time. In each instance, the activities share the
same success rate α = [0.2, 0.4, 0.6, 0.8, 1] for all activities.
For the best-response algorithm we have used 3 iterations
with random agent orderings. Smaller experiments support
our choice for 3 iterations: less iterations result in far worse
results while more iterations only slightly improve the qual-
ity but increase the runtime substantially. Note that we have
no guarantee that the best-response approach will converge
to an equilibrium at this point, however early experiments
have shown that best-response almost always improves the
initial solution.

Figure 3 illustrates the total cost obtained for each of the
methods under different levels of uncertainty with a box
plot. In the plot, the box contains the upper and lower quar-
tile of the result values with the mean shown by the horizon-
tal line. The whiskers show the smallest and largest values
and outliers are plotted as crosses.

The centralised algorithm always computes the social op-
timal solution in which the total cost is minimal. As to be ex-
pected, the individual planning method perform much worse
on these instances. Because in this approach the dependen-
cies between agents are ignored, the resulting plan may suf-
fer from high social cost. Indeed this figure shows that the
total costs are much higher on average, compared to the cen-
tral solution. Using only 3 iterations, the best-response al-
gorithm produces fairly acceptable plans. As we have men-
tioned before, best-response can been seen as a compromise

431

0 5 10 15 20
100

102

104

106

Plan period length

R
un

tim
e

(s
)

|A| = 1

|A| = 2

|A| = 3

|Ei| = 3

|Ei| = 2

|Ei| = 1

Figure 4: Runtimes of best-response planning for portfolio
management for various road set sizes |Ei|, activities per
road |A| and plan length |T | (log scale). The cut-off for
|Ei| = 3 at |T | = 6 is due to the time limit of 1 day.

between individual and central planning. Indeed our experi-
ments show that the total cost is lower on average than when
using individual planning, but higher than the centralised
method.

5.2 Portfolio Management
For portfolio management we have performed similar exper-
iments. We have generated a set of 5 games for each com-
bination of |N | ∈ [2, 5], |Ei| ∈ [1, 5], |Ai| ∈ [1, 3] and
β ∈ [0.2, 0.4, 0.6, 0.8, 1.0] (delay risk is the same for all
activities in these instances). We ran our solver on these in-
stances for different values of T . Again we study the worst
case in which players are tightly coupled (all activities inter-
fere with at least one of another agent), and we strive to gain
insight in the factors contributing to the complexity.

Although exact solving for multiple agents poses a diffi-
cult challenge at this point, we have been able to develop
joint plans for several non-trivial instances using the best-
response approach. Figure 4 illustrates the runtime required
for finding an optimal response, given the planning choices
made by others, for various road set, activity and plan pe-
riod sizes. These early experiments show that best-responses
can be computed in the order of a few minutes for problems
where agents are responsible for multiple roads with several
activities to choose from, but also that it quickly becomes
intractable for larger plan horizons and road set sizes.

6 Conclusions and Challenges
This paper introduces the practically very relevant problem
of infrastructural maintenance planning under uncertainty
for selfish agents in a private-values setting. With the help
of experts in the field of maintenance planning we devel-
oped a model that captures the essence of this coordination
problem. Dynamic mechanism design combined with opti-
mally solving MDPs theoretically solves this modelled prob-
lem but might be difficult in practical scenarios. Through
experimental analysis with different encodings in an existing
solver, we found that we can solve practical examples of sce-
nario 1 within reasonable time. For scenario 2, run times for
best-response can be computed for multiple agents in a small

network. We have thus made an important step towards this
practical planning problem, and identified challenges for our
community.

In this paper, we used scalar weighting to balance the dif-
ferent objectives in the system. However, asset maintenance
planning for infrastructures is inherently a multi-objective
problem, even though this has not been acknowledged in
procurements until recently. The weighting model has two
difficulties. Firstly, it requires accurate and exhaustive op-
erationalisation of objectives in terms of monetary rewards
schemes. Secondly, in any practical application, human de-
cision makers are more likely to prefer insight into possible
solutions trade-offs over a single black-box solution. In this
context, the work by Grandoni et al. (2010) is relevant, in
which the authors study approximation techniques for mech-
anism design on multi-objective problems. Nevertheless,
their work has only been applied to static mechanisms. De-
veloping methods combining multi-objective planning un-
der uncertainty with dynamic mechanism design is a hard
challenge for the community, but with high potential pay-
offs in terms of real-world relevance.

Scaling MDP solvers in terms of number of actions has
received relatively little attention, but is crucial for solv-
ing multi-agent problems that suffer from exponential blow
up of their action space. Furthermore, the best-response ap-
proach that we employed is not guaranteed to converge to
the optimal solution, except for special cases such as po-
tential games (Jonsson and Rovatsos 2011). Bounding the
loss, e.g., by building on those special cases, will provide
benefits to the adoption of best-response methods. Finally,
as mentioned in the related work section, approximate so-
lutions often preclude many of the theoretical mechanism-
design results to apply. A major challenge here is to identify
mechanisms that are more robust to such approximations.

With respect to the implications of our work, it is clear
that the planning and coordination of (maintenance) activ-
ities in the presence of uncertainty is a complex problem.
However, applications exist in several other domains such
as bandwidth allocation or smart power grids, and hence the
need for a practical solution is high.

The concept of traffic time loss can also be used to stim-
ulate market parties in rethinking current working meth-
ods. By adjusting tendering criteria to specific needs on
certain areas of the network, bidders can distinguish them-
selves by offering innovative proposals with limited traffic
loss hours. The Dutch road authority and several provinces
of The Netherlands are currently experimenting with this
method in the Netherlands.

Acknowledgements
This research is part of the Dynamic Contracting in Infras-
tructures project and is supported by Next Generation In-
frastructures and Almende BV. Matthijs Spaan is funded by
the FP7 Marie Curie Actions Individual Fellowship #275217
(FP7-PEOPLE-2010-IEF).

432

References
d’Aspremont, C., and Gérard-Varet, L. 1979. Incentives
and incomplete information. Journal of Public Economics
11(1):25–45.
Athey, S., and Segal, I. 2007. An efficient dynamic mecha-
nism. Technical report, UCLA Department of Economics.
Bergemann, D., and Valimaki, J. 2006. Efficient dynamic
auctions. Cowles Foundation Discussion Papers.
Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4):819–840.
Boutilier, C. 1996. Planning, learning and coordination in
multiagent decision processes. In Proc. of 6th Conf. on The-
oretical Aspects of Rationality and Knowledge, 195–201.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Proc. Int. Joint Conf. on
Artificial Intelligence, 73–78.
Cavallo, R.; Parkes, D. C.; and Singh, S. 2006. Optimal co-
ordinated planning amongst self-interested agents with pri-
vate state. In Proc. of Conf. on Uncertainty in Artificial In-
telligence, 55–62.
Cavallo, R. 2008. Efficiency and redistribution in dynamic
mechanism design. In Proc. of 9th ACM conference on Elec-
tronic commerce, 220–229. ACM.
Der Spiegel. 2012. A40: Autobahn nach dreimonatiger
sperre freigegeben. Online, Sep 30.
Detienne, B.; Dauzère-Pérès, S.; and Yugma, C. 2009.
Scheduling jobs on parallel machines to minimize a regular
step total cost function. Journal of Scheduling 1–16.
Grandoni, F.; Krysta, P.; Leonardi, S.; and Ventre, C. 2010.
Utilitarian mechanism design for multi-objective optimiza-
tion. In Proc. of 21st Annual ACM-SIAM Symposium on
Discrete Algorithms, 573–584. Society for Industrial and
Applied Mathematics.
Groves, T. 1973. Incentives in teams. Econometrica: Jour-
nal of the Econometric Society 617–631.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In
Proc. of Conf. on Uncertainty in Artificial Intelligence, 279–
288.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multia-
gent planning: A best-response approach. In Int. Conf. on
Automated Planning and Scheduling, 114–121.
Kok, J. R.; Hoen, P.; Bakker, B.; and Vlassis, N. 2005. Utile
coordination: Learning interdependencies among coopera-
tive agents. In Proc. Symp. on Computational Intelligence
and Games, 29–36.
van der Krogt, R. P.; de Weerdt, M.; and Zhang, Y. 2008.
Of mechanism design and multiagent planning. In Ghallab,
M.; Spyropoulos, C. D.; Fakotakis, N.; and Avouris, N., eds.,
European Conf. on Artificial Intelligence, 423–427.
Melo, F. S., and Veloso, M. 2009. Learning of coordina-
tion: Exploiting sparse interactions in multiagent systems.

In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, 773–
780. International Foundation for Autonomous Agents and
Multiagent Systems.
Procaccia, D., and Tennenholtz, M. 2009. Approximate
mechanism design without money. In Proc. of ACM Conf.
on Electronic Commerce, 177–186.
Puterman, M. L. 1994. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. New York, NY:
John Wiley & Sons, Inc.
Volker, L.; Scharpff, J.; De Weerdt, M.; and Herder, P. 2012.
Designing a dynamic network based approach for asset man-
agement activities. In Proc. of 28th Annual Conference
of Association of Researchers in Construction Management
(ARCOM).
Wolpert, D. H.; Tumer, K.; and Frank, J. 1999. Using col-
lective intelligence to route internet traffic. In Proceedings
of the 1998 conference on Advances in neural information
processing systems II, 952–958. MIT Press.

433

