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Abstract

In this paper we propose an improved formulation for an
unrelated parallel machine problem with machine and
job sequence-dependent setup times that outperforms
the previously published formulations regarding size of
instances and CPU time to reach optimal solutions. The
main difference between the proposed formulation and
previous ones is the way the makespan has been lin-
earized. It provides improved dual bounds which speeds
up the solution process when using a branch-and-bound
commercial solver. Computational experiments show
that, using this model, it is possible to solve instances
four times larger than what was previously possible us-
ing other mixed integer programming formulations in
the literature and obtain optimal solutions on instances
of the same size up to three orders of magnitude faster.

Introduction
In this work we study a problem of scheduling n jobs on m
unrelated parallel machines with the objective of minimizing
the makespan, considering setup times that depend both on
the machine and the sequence.

The parallel machine scheduling problem has been exten-
sively studied, an interesting survey on parallel machines
can be found in (Mokotoff 2001). Most of the literature ad-
dresses identical or uniform machines, where the processing
time of a job is the same regardless of the machine where it
is processed or is proportional to the speed of the machine,
respectively.

Less effort has been done for studying the case where
the processing time of each job depends on the machine
on which it is processed, that is, the machines are unrelated
(Cheng, Ding, and Lin 2004). This is a common situation in
several applications where there are parallel machines with
different capabilities.

From works dealing with unrelated parallel machines,
only a few address the problem considering setup times.
Most assume that there are no setup costs or they are in-
dependent of job sequence, however, this situation may not
always be true in practice. A setup is a set of operations
that should be performed on a machine after processing a
job to prepare it for processing the next one. In various
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real world industrial/service environments these times are
sequence-dependent, that is, depend not only on the job that
will be processed, but also on the job processed just before
(Lee and Pinedo 1997).

The number of works addressing unrelated parallel ma-
chine scheduling problems, with sequence-dependent and
machine-dependent setups are even fewer. Despite of this
situation appears, for example, in the textile, printed circuit
boards and chemical industries (Rabadi, Moraga, and Al-
Salem 2006). All that has been previously mentioned moti-
vated us to focus on this problem.

There are several performance criteria to measure the
quality of a scheduling. One of the most broadly used is
the minimization of the maximum completion time of the
schedule, which is known as makespan (Cmax). It is a very
important measure of performance since it gives the total
time elapsed in processing all jobs under consideration (De
and Morton 1980). The makespan is important in situations
when a received batch of jobs is needed to be completed as
soon as possible (Allahverdi 2000). This kind of situation is
especially common in server farms, data centers, and com-
pute cloud (e.g., the Amazon Elastic Compute Cloud) (Tian
et al. 2010).

Garey and Johnson (1979) showed that minimizing the
makespan considering two identical machines is a NP-hard
problem. Indeed, a problem with unrelated machines and
sequence dependent setups is also NP-hard. This, coupled
to the fact that re-schedules are often required, the use of ex-
act algorithms is usually not suitable and it is not surprising
that many of the methodologies that have been developed
are based on heuristics.

Regarding the unrelated parallel machine scheduling
problem (UPMSP) with sequence and machine dependent
setup times and makespan minimization objective, some
heuristic algorithms have been developed recently. Helal,
Rabadi, and Al-Salem (2006) propose a Tabu Search algo-
rithm; Rabadi, Moraga, and Al-Salem (2006) introduce a
new metaheuristic, MetaRaSP, which incorporates random-
ness within priority rules to construct a feasible solution.
More recently, Arnaout, Rabadi, and Musa (2010) propose
an ant colony algorithm; Ying, Lee, and Lin (2012) develop
a simulated annealing approach which incorporates a re-
stricted search strategy; Vallada and Ruiz (2011) present a
genetic algorithm which exhibits a new crossover operator
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including a local search procedure; Fleszar, Charalambous,
and Hindi (2012) propose a variable neighborhood descent
heuristic hybridized with mathematical programming.

Only a few works develop exact methods to solve the
problem addressed in this paper. Tran and Beck (2012) pro-
pose a Benders decomposition-based method for minimiz-
ing the makespan, while Rocha et al. (2008) present a branch
and bound approach for minimizing the makespan plus the
weighted tardiness.

Problem Description
The following assumptions and notations are used to de-
scribe the problem:

• There is a set M of m parallel machines.

• Machines are continuously available, and each machine
can handle one job at a time without preemption, that is,
once the processing of a job has started, it cannot be in-
terrupted.

• There is a set N of n jobs to be scheduled.

• All the jobs are available at time zero. No precedence
constraints among jobs are imposed.

• Each job j has associated a processing time pij in each
machine i.

• There is a setup time sijk of the machine i for processing
job k just after job j.

• The objective is to minimize the makespan Cmax. Using
the term span to denote the completion time of a machine,
the makespan denotes the maximum span in the solution
of the problem.

Fig. 1 shows a graphical representation of a solution to
the addressed problem with 17 jobs and 3 machines. In the
figure, the blank blocks mean setup times, which are asym-
metric, and the gray blocks mean processing times.
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Figure 1: Graphical representation of a solution.

Mathematical Model
In this section we present a model for the UPMSP with
sequence-dependent and machine-dependent setup times,

with the objective of minimizing the makespan. Other mod-
els can be found in (Rabadi, Moraga, and Al-Salem 2006;
Vallada and Ruiz 2011).

For describing our model, let us introduce the following
variables.

Xijk =


1, if job j is scheduled before job k in

machine i,

0, otherwise.

Cj : Completion time of job j.

Oi : Completion time of machine i (span).

We will denote by N0 the set N plus a dummy job 0 and
V denotes a very large number. The variables Xi0k and Xij0

are used to specify which jobs will be processed at first and
at the end, respectively. While the processing time and setup
times asociated to the dummy job are zero (pi0 = 0, si0k =
0 and sij0 = 0).

The model can be stated as

minCmax, (1)

Subject to:

∑
i∈M

∑
j∈N0
j 6=k

Xijk = 1, ∀k ∈ N, (2)

∑
i∈M

∑
k∈N0
j 6=k

Xijk = 1, ∀j ∈ N, (3)

∑
k∈N

Xi0k ≤ 1, ∀i ∈M, (4)∑
k∈N0
k 6=j

Xijk −
∑
h∈N0
h6=j

Xihj = 0, ∀j ∈ N, ∀i ∈M, (5)

Ck − Cj + V (1−Xijk) ≥ sijk + pik,

∀j ∈ N0,∀k ∈ N, j 6= k, ∀i ∈M, (6)
C0 = 0, (7)∑
j∈N0
j 6=k

∑
k∈N

(sijk + pik)Xijk = Oi, ∀i ∈M, (8)

Oi ≤ Cmax, ∀i ∈M, (9)
Xijk ∈ {0, 1},

∀j ∈ N0,∀k ∈ N, j 6= k, ∀i ∈M, (10)

Objective (1) minimizes the makespan of the solution.
Constraints (2) establish that every job has exactly one pre-
decessor, while constraints (3) establish that every job has
exactly one sucessor. Constraints (4) ensure that at most one
job is scheduled as the first job on each machine. Constraints
(5) are the so-called “flow conservation constraints”. They
ensure that if a job is scheduled in a machine, then a prede-
cessor and a successor must exist in the same machine. Con-
straints (6) provide a right processing order, avoiding loops.
Basically they establish that, if Xijk = 1, then the com-
pletion time of job k must be greater than the completion
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time of job j . If Xijk = 0, the constraint becomes redun-
dant. Constraint (7) sets to zero the completion time of the
dummy job. In conjunction with constraints (6) it guarantees
that completion time of all jobs is positive. Constraints (8)
compute, for each machine, the time it finishes processing
its last job. Constraints (9) define the maximum completion
time. Finally, constraints (10) define the binary variables.

The proposed model has n2m binary variables, n + m
continuous variables and n2m+nm+2n+3m constraints.
In what follows we will denote it by MILMnew

It should be remarked that constraints (8) and (9) dis-
tinguish our model from previously published formulations
(Rabadi, Moraga, and Al-Salem 2006; Vallada and Ruiz
2011), where it is common to linearize the makespan as

Cj ≤ Cmax, ∀j ∈ N, (11)

the maximum of the completions times of the jobs.
Let us denote MILMprev the mixed integer linear model

obtained by replacing contraints (8)-(9) by constraints (11).
When we tried to solve MILMprev or other previous mod-

els using the Branch and Bound algorithm (B&B), we ob-
served that the lower bound yielded by the linear relaxation
was very weak. This motivated us to propose a different rep-
resentation for the objective function. This representation
was obtained from the analysis of the structure of the solu-
tions to the linear relaxation and the mixed integer model.

Specifically, solving the linear relaxations for different
data instances, we observed that the values of the Cj are
near to zero. With these values for these variables, also the
objective function value is near to zero.

Taking into account what was observed, we decided to
linearize the makespan as the maximum of the spans of the
machines, by adding the constraints (8)-(9) to the model
MILMprev instead of (11).

It is not difficult to see that any feasible solution satisfies
these constraints, which means that they are valid inequali-
ties to the model. On the other hand, constraints (8) compute
easily the time at which each machine processes its last job
(Oi), as the sum of the processing time for each job plus the
setup time for the subsequent job. In addition, they do not
depend on the large constant V and force Oi to take a pos-
itive value if any of the variables Xijk is positive. It also
forces Cmax to take a positive value.

With the proposed linearization, the lower bound pro-
vided by the linear relaxation was considerably improved
and this allowed accelerating the solution process based on
B&B.

In the following section the performance of MILMnew is
evaluated.

Computational Results
The previous formulations have the same linearization of
the makespan. Eventhough they have different constraints,
these formulations have a similar performance, as can be
seen in the results reported in (Vallada and Ruiz 2011;
Tran and Beck 2012). To test the performance of the
new proposed linearization we only compare MILMnew and
MILMprev, which differ on the makespan linearization.

We used two sizes of instances: small and medium. Small
instances were taken from (Vallada and Ruiz 2011) and are
available at http://soa.iti.es. Medium instances were gener-
ated for conducting the experiments in this work, since we
could not find any in the literature.

For the set of small instances there are four groups of
machine numbers (2,3,4,5) and four groups of job numbers
(6,8,10,12). The setup times were uniformly distributed in
four ranges: 1-9, 1-49, 1-99 and 1-124. The processing
times were uniformly distributed between 1-99. For each
of the 64 groups, there are 10 instances, making a total of
640 small instances.

We generated medium instances in a similar way as Val-
lada and Ruiz (2011) generated the small instances. There
are the following number of jobs and number of machines: n
= {15,20,25,30,35,40} and m = {2,3,4,5}. The setup times
were uniformly distributed in three ranges: 1-49, 1-99 and
1-124. The processing times were uniformly distributed be-
tween 1-99. For each of the 72 groups, there are 10 in-
stances, making a total of 720 medium instances.

The experiments were conducted on a Pentium Dual Core
PC with a 2.00 GHz and 3 GB RAM processor, under
Ubuntu 11.1. The formulation was implemented using the
concert technology of CPLEX 12.2. The solver was allowed
to run for one hour. If the solver was unable to reach the
optimal solution within this time, the best integer solution
found is reported.

Instances are grouped by number of machines and number
of jobs. Therefore, results are averaged over all instances
belonging to each group, that is, 40 for small-size groups
and 30 for medium-size groups.

Table 1 shows results comparing formulations with dif-
ferent linearizations of the makespan, that is, MILMnew and
MILMprev. Columns 1 and 2 refer to the size of the in-
stances in terms of number of jobs and number of machines,
respectively. Entries in columns 3, 4 and 5 exhibit how many
instances were unsolved to optimality for each group of in-
stances (#Uns), the average solution time (Time, in seconds)
and the average gap (GAP), respectively, for the MILMprev.
Entries in columns 6, 7 and 8 exhibit how many instances
were unsolved to optimality for each group of instances, the
average solution time consumed and the average gap, re-
spectively, for the MILMnew. The GAP for each instance
is reported by CPLEX as the relative diference between the
integer solution found and the proven best possible objective
solution value;

GAP = 100 ∗ best obj int− best lower bound

best obj int
,

where best obj int is the objective value of the best feasi-
ble solution found and the best low bound is the best lower
bound found, both obtained from the solver.

The model MILMprev is able to obtain the optimal solu-
tion for all the instances with six and eight jobs. Regarding
the 10 jobs instances, is able to optimally solve all the in-
stances with three, four and five machines and 6 over 40
instances with two machines. For 12 jobs case, is able to op-
timally solve all the instances with five machines and 2 over
40, 12 over 40 and 37 over 40, instances with two, three
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n m MILMprev MILMnew

#Uns Time GAP #Uns Time GAP
6 2 0 0.385 0.0 0 0.096 0.0

3 0 0.239 0.0 0 0.174 0.0
4 0 0.227 0.0 0 0.208 0.0
5 0 0.248 0.0 0 0.210 0.0

8 2 0 11.516 0.0 0 0.198 0.0
3 0 4.871 0.0 0 0.336 0.0
4 0 1.327 0.0 0 0.395 0.0
5 0 0.852 0.0 0 0.373 0.0

10 2 6 1217.743 1.5 0 0.340 0.0
3 0 148.933 0.0 0 0.630 0.0
4 0 22.809 0.0 0 0.769 0.0
5 0 6.591 0.0 0 0.725 0.0

12 2 38 3507.183 48.7 0 0.644 0.0
3 28 3035.808 16.9 0 0.949 0.0
4 3 747.822 1.6 0 2.103 0.0
5 0 103.244 0.0 0 1.855 0.0

Table 1: Comparison between MILMprev and MILMnew in
small instances.

and four machines, respectively. Note that in this case the
results show a large average CPU time and GAP’s. The per-
formance of the model MILMprev is similar to the previous
approaches in literature.

Using the proposed model MILMnew the average time to
reach optimal solutions are smaller than three seconds for all
the small instances.

Table 2 shows the performance of MILMnew on medium
instances. The model MILMprev is not included in this ex-
periment, since it shows a similar performance than the pre-
vious models and they are not able to solve instances with 20
machines in 10800 seconds (Tran and Beck 2012). Columns
1 and 2 refer to the size of the instances in terms of number
of jobs and number of machines, respectively. Entries in
column 4 shows the average solution time (in seconds) and
column 5 exhibit the average GAP.

As can be observed this model is capable of solving to op-
timality all the 15-jobs and 20-jobs instances, 99.1% of the
25-jobs instances and 86.6% of the 30-jobs instances, 75%
of the 35-jobs instances and 74.1% of the 40-jobs instances.

Concluding Remarks
In this paper we have discussed the unrelated parallel ma-
chine scheduling problem with sequence and machine de-
pendent setup times. We developed a mixed integer linear
model for minimizing the makespan. The main difference
between this model and previously published formulations
is that the makespan has been linearized as the maximum of
the completion times of the machines. It provides improved
dual bounds which speeds up the solution process when us-
ing a branch-and-bound comercial solver.

Computational experiments on a set of 1360 instances
ranging from 6 to 40 jobs indicate the superiority of the pro-
posed model, since it can solve to optimality instances up
to four times larger than other formulations using a similar

n m MILMnew

#Opt Time GAP
15 2 30 1.2 0.0

3 30 10.1 0.0
4 30 12.1 0.0
5 30 9.4 0.0

20 2 30 2.2 0.0
3 30 22.2 0.0
4 30 127.8 0.0
5 30 203.0 0.0

25 2 30 15.5 0.0
3 30 68.9 0.0
4 30 344.8 0.0
5 29 1006.8 0.1

30 2 30 32.7 0.0
3 29 406.2 0.0
4 27 1294.7 0.1
5 18 2274.0 1.1

35 2 30 45.9 0.0
3 30 328.7 0.0
4 21 1998.0 0.4
5 9 3148.9 3.3

40 2 30 96.1 0.0
3 30 687.5 0.0
4 24 1942.0 0.2
5 5 3408.2 3.8

All 720 662

Table 2: Performance of the MILMnew on medium in-
stances.

CPU time and obtain optimal solutions on instances of the
same size up to three orders of magnitude faster. Therefore,
this model could help to extend the size of instances that
could be solved by exact methods developed for this prob-
lem. In addition, the way for linearizing the makespan could
be used in other scheduling problems having the same ob-
jective function if a good representation of the spans is ob-
tained, for example, in the case of a single machine Ángel-
Bello et al. (2011) obtained improved dual bounds to the
span deriving a valid inequality.

Acknowledgments
This work has been partly supported by the Research
Chair in Industrial Engineering of Tecnológico de Mon-
terrey (ITESM Research Fund CAT128) and the Mexican
National Council of Science and Technology (grant CB
167019)

References
Allahverdi, A. 2000. Minimizing mean flowtime in a two-
machine flowshop with sequence-independent setup times.
Computers & Operations Research 27(2):111–127.
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