
What’s in It for My BDD?
On Causal Graphs and Variable Orders in Planning

Peter Kissmann and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{kissmann, hoffmann}@cs.uni-saarland.de

Abstract

One decisive factor for the success of symbolic search using
BDDs is whether or not the variable ordering is good. A gen-
eral intuition is that smaller BDDs result if inter-dependent
variables are close together. The most common means to cap-
ture variable dependencies in planning are causal graphs, and
consequently previous work defined variable orders based on
these. Starting from the observation that the two concepts
of “dependency” are actually quite different, we introduce
a framework for assessing the strength of variable ordering
heuristics in sub-classes of planning. It turns out that causal
graph based variable orders may be exponentially worse than
optimal even for very simple planning tasks. Experiments
with a broad range of such variable ordering variants indicate
that they are mediocre at best.

Introduction
The variable ordering is a decisive factor for BDD-based
planning. Roughly speaking, BDDs are small if “depen-
dent” variables are scheduled close to each other. The
planning literature contains a widely used notion to cap-
ture variable dependencies – causal graphs (Knoblock 1994;
Domshlak and Dinitz 2001) – so the straightforward ap-
proach is to plug that concept into a BDD variable ordering
heuristic. Indeed, that is the approach of Gamer (Kissmann
and Edelkamp 2011), the state of the art planner of this kind.

“So, what is the problem?” we hear the reader asking.
Our reply is that the use of the word “dependency” in the
above deserves a second inspection. In the causal graph,
it means that the variables appear in at least one common
action, entailing that we cannot, in general, change the value
of one variable without also changing the other. BDDs, on
the other hand, represent Boolean functions ϕ. If many of
the possible assignments to a subset P of variables directly
entail the value of ϕ, independently of the assignment to all
the other variables, then the variables P should be close to
each other. In planning, ϕwill represent layers of states with
equal distance from the initial state (forward search) or the
goal (backward search). So the concept of “dependence”
here is one of being able to quickly determine whether or
not a state is a member of such a layer. What, if anything,
does this have to do with causal graph dependencies?

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We do not wish to claim that we close this question con-
clusively, but we contribute a number of insights suggesting
that the overall answer is “not much”. We introduce a sim-
ple formal framework for assessing the strength of variable
ordering heuristics in sub-classes of planning. Applying this
to causal graph based orders, it turns out that these may
be exponentially worse than optimal even for very simple
planning tasks. (For space restrictions, we only outline our
proofs. Full proofs are available in a technical report (Kiss-
mann and Hoffmann 2013).) We complement these findings
by a large experiment with many variants of known vari-
able ordering heuristics, showing that these work better than
random orders, but much worse than off-the-shelf BDD re-
ordering techniques.

Background
To minimize encoding size, it is essential for BDD-based
planning to use a finite-domain variable representation. We
therefore locate our investigation in that framework. A
finite-domain representation (FDR) planning task is a tu-
ple Π = 〈V,A, I,G〉, where V are the state variables each
of which is associated with its finite domain D(v), A is a
finite set of actions a each of which is a pair 〈pre(a), eff(a)〉
of partial assignments to V , the initial state I is a complete
assignment to V , and the goal is a partial assignment to V .
To save space, we do not specify the (well-known) seman-
tics of this construction. By V(pa), for a partial assignment
pa, we denote the variables v ∈ V where pa(v) is defined.

Binary decision diagrams (BDDs) represent Boolean
functions ϕ. A BDD β is a directed acyclic graph with one
root and two terminal vertices, the 0-sink and the 1-sink.
Each internal vertex corresponds to a binary variable p and
has two successors, one taken if p is true and one taken if p is
false. For any assignment to all variables p, the sink reached
is the value of the function ϕ represented by β.

We consider BDD-based planning as implemented in
Gamer. The finite-domain variables V of the FDR task are
encoded by replacing each v ∈ V with a binary counter
γ(v) using log2|D(v)| bits. Search is forward and/or back-
ward breadth-first. Each layer L of states during search –
a subset of states with identical distance to the initial state
(forward search) or the goal (backward search) – is then rep-
resented by a BDD for its characteristic function.

The BDDs are ordered, i.e., the ordering of the binary

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

327

variables on any path through β is fixed. The size of the
BDD may vary exponentially as a function of this ordering,
so it is crucial in practice to come up with good orderings.
BDD packages come with dynamic reordering algorithms,
but in planning their runtime overhead typically outweighs
the benefit (Kissmann and Edelkamp 2011). Hence practi-
cal systems employ variable ordering schemes. We define
these here as functions Ω mapping any planning task Π to
a non-empty set Ω(Π) of variable orderings, i.e., order-
ings of the planning task’s finite-domain variables V . We
use sets, rather than unique Ω(Π), to capture the ambigu-
ity inherent in the ordering schemes we are interested in
here. Ω(Π) is computed in a pre-process, and one order
〈v1, . . . , vn〉 = o ∈ Ω(Π) is chosen arbitrarily (i.e., we do
not consider that latter step here). To obtain the actual BDD
binary variable order, we then simply replace each finite-
domain variable vi in o with its binary counter γ(vi). In
other words, the BDD treats the counters γ(v) like insepara-
ble fixed blocks. (Since the counter bits are not represented
at the level of the planning task Π, it would be impossible for
Ω anyhow to make informed choices in such separations.)

Given this, for any layer L and ordering o of the planning
task’s finite-domain variables, the ordered BDD is unique.
We denote its size (number of vertices) by BDDSize(o, L).
By BDDSize∗(L) := mino BDDSize(o, L), we denote the
size of the BDD for an optimal variable ordering; finding
such an ordering is computationally hard (Bryant 1986).

The state of the art ordering scheme is based on the causal
graph CGΠ of the planning task. CGΠ is a directed graph
with vertices V , and an arc (v, v′) iff v 6= v′ and there exists
an action a ∈ A such that (v, v′) ∈ V(eff(a))∪V(pre(a))×
V(eff(a)). Gamer’s scheme, denoted Ωga, maps Π to the
set of orderings o = 〈v1, . . . , vn〉 that minimize the expres-
sion

∑
(vi,vj)∈CGΠ

(i− j)2. The underlying intuition is that
adjacent variables are dependent, and should be scheduled
close to each other. In practice, Gamer approximates Ωga by
a limited amount of local search in the space of orderings.

Apart from Ωga, we also consider the scheme Ωcg, which
is defined only if CGΠ is acyclic, and in that case maps Π
to the set of topological orderings of the vertices in CGΠ.
We consider this to be of theoretical interest since it is the
straightforward way to “trust the causal graph completely”.

What’s in a Causal Graph: Theory
As discussed, it is doubtful whether the concept of “depen-
dency” in the causal graph has any real relation with the con-
cept of “dependency” relevant to BDD size. We now frame
this doubt in terms of a classification of the guarantees of-
fered, or rather, the guarantees not offered, by Ωga and Ωcg

in restricted classes of planning tasks.
Definition 1 (Classification of Ordering Schemes). Let
F = {Πn} be an infinite family of FDR planning tasks
parameterized by n, where the size of Πn is bounded by a
polynomial in n. Let d ∈ {forward, backward} be a search
direction. A variable ordering scheme Ω is:

(i) perfect in F for d if for all Πn ∈ F , all d-layers L
in Πn, and all o ∈ Ω(Πn), we have BDDSize(o, L) =
BDDSize∗(L).

(ii) safe in F for d if there exists a polynomial p s.t. for all
Πn ∈ F , all d-layers L in Πn, and all o ∈ Ω(Πn), we
have BDDSize(o, L) ≤ p(BDDSize∗(L)).

(iii) viable in F for d if there exists a polynomial p s.t. for
all Πn ∈ F and all d-layers L in Πn, there exists o ∈
Ω(Πn) with BDDSize(o, L) ≤ p(BDDSize∗(L)).

Perfect Ω guarantees to deliver perfect orderings, safe
Ω guarantees polynomial overhead, viable Ω always deliv-
ers at least one good ordering but runs the risk of super-
polynomial overhead. If Ω is not viable, then all its order-
ings are super-polynomially bad in some task and layer.

We extend our classification to arbitrary sub-classes C of
FDR by the worst case over all families F contained in C: if
C contains at least one F where Ω is not perfect, then Ω is
said to be not perfect in C, and so forth.

As we are interested in variable orderings derived from
the causal graph, it is natural to consider sub-classes of FDR
characterized by their causal graphs. For a set of directed
graphs G, by FDR(G) we denote the class of FDR planning
tasks whose causal graphs are elements of G. We investi-
gate widely considered causal graph special cases, namely
chains Gchain, forks Gfork, inverted forks G ifork, and DAGs
Gdag (directed acyclic graphs). As simple limiting cases, we
consider causal graphs G∅ without any arcs, and unrestricted
causal graphs G∀. Figure 1 illustrates.

x1 x2 x3 x4 x5

x

g1 g2 g3 g4 g5

(a) (b)

x1 x2 x3 x4 x5

g

Gfork

Gchain

G ifork

GdagG∅ G∀

(c) (d)
Figure 1: Causal graph special cases (a) chains, (b) forks, (c)
inverted forks, and (d) their relation (arrows mean ⊆).

Bad cases are inherited in the hierarchy of Figure 1 (d):
if G ⊆ G′, then for any ordering scheme the classification
within FDR(G′) is at least as bad as that in FDR(G).1 We
start our investigation with empty causal graphs:
Theorem 1. For both search directions, any ordering
scheme is safe in FDR(G∅). Ωga and Ωcg are not perfect.

If the causal graph has no arcs, then all variables move in-
dependently. So any forward/backward layer with distance
d contains exactly the states in which the sum of individual
distances (from a variable’s initial value/to a variable’s goal
value) equals d. For any binary counter γ(v) in the BDD, the
number of vertices needed is bounded by the number of pos-
sible individual-distance sums of the variables preceding v
(intuitively, that’s all we need to remember, to correctly eval-
uate the characteristic function). Thus BDD size is polyno-

1An interesting side remark is that, given a task Π, we can al-
ways create a task Π′ with arbitrarily complex causal graph without
affecting the classification of Ωcg and Ωga: we add a separate part
to Π, with a complex causal graph, but with no influence on the
layers L, and increasing BDD size constantly under Ωcg and Ωga.

328

mially bounded for any variable ordering. It is easy to find
examples where different orderings result in BDDs of dif-
ferent sizes. Ωga and Ωcg each return the set of all orders.
Putting these facts together, the claim follows.

Note that Theorem 1 is a “good case”, not for the schemes
Ωga and Ωcg – these are devoid of information – but for the
ability of causal graphs to entail anything for BDD order-
ings. Empty causal graphs entail that all orderings are safe.
That connection doesn’t carry any further than this trivial
case, though: in all other sub-classes considered, the space
of BDD orderings contains exponentially bad ones.

The news regarding the informedness of Ωga and Ωcg is
almost universally very bad, with a little bit of hope only for
chain causal graphs. Let us give you the bad news first:
Theorem 2. For both search directions, Ωga and Ωcg are not
safe in FDR(G ifork).

Our negative results employ Boolean functions in
quadratic form. These have the variables {x1, y1, . . . , xn,
yn}, and take the form (x1oplowy1)ophi . . . ophi(xnoplowyn),
where either ophi ∈ {∨,⊕} and oplow = ∧, or vice versa.
We denote these functions by Q(ophi, oplow). For each of
these functions, the ordering 〈x1, y1, . . . , xn, yn〉 yields a
BDD whose size is polynomial in n, while the ordering
〈x1, . . . , xn, y1, . . . , yn〉 yields an exponential-size BDD.
(Wegener (2000) proves this for Q(∨,∧); similar arguments
apply to the other quadratic forms.)

To prove Theorem 2, consider now the function
Q(∨,∧) =

∨n
i=1(xi ∧ yi). We design an FDR task Πn.

All variables are Boolean. We use {x1, y1, . . . , xn, yn} plus
a new variable g that the goal requires to be true. There are
n actions achieving g, each of which requires xi and yi to
be true as the precondition. Then the first backward layer is
characterized by ¬g∧

∨n
i=1(xi∧yi), and it is easy to see that

Ωga(Πn) and Ωcg(Πn) each contain some orders that are ex-
ponentially bad. Clearly, Πn ∈ FDR(G ifork), which proves
the claim of Theorem 2 for backward search.

For forward search, we consider the same function
Q(∨,∧), and construct Πn, which has the same vari-
ables {g, x1, y1, . . . , xn, yn} but where the domains of
{x1, y1, . . . , xn, yn} are ternary: unknown, true, false. All
xi and yi are initially unknown, and can be set to either true
or false. There are n actions achieving g, exactly as above.
Then the states with initial state distance 2n+ 1 are exactly
those that satisfy g∧Q(∨,∧). It is not difficult to verify that
this shows the claim as before.
Theorem 3. For both search directions, Ωga and Ωcg are not
safe in FDR(Gfork).

For both search directions, we use the same function
Q(∧,⊕) =

∧n
i=1(xi ⊕ yi), and the same Πn with Boolean

variables {x1, y1, . . . , xn, yn} plus a new variable z with do-
main {d1, dx1, dy1, d2, dx2, dy2, . . . , dn, dxn, dyn, dn+1}.
The actions are such that, for 1 ≤ i ≤ n, z can move from
di to either dxi or dyi, and from each of these to di+1. An
action preconditioned on dxi achieves xi; same for dyi and
yi. Initially z = d1 and all xi, yi are false; the goal requires
that z = dn+1 and all xi, yi are true. The states with ini-
tial state distance 3n are exactly those where z = dn+1 and
Q(∧,⊕) is true, and the states with goal state distance 3n

safe?

not safe

not safe

trivially safe

not viable not viable
Gfork

Gchain

G ifork

GdagG∅ G∀

Figure 2: Overview of our classification results. These hold for
each of Ωga and Ωcg, and for each search direction.

are exactly those where z = d1 and Q(∧,⊕) is true. Since
neither Ωga(Πn) nor Ωcg(Πn) constrain the ordering of the
variables {x1, y1, . . . , xn, yn}, the claim follows as before.

For each of FDR(G ifork) and FDR(Gfork), it is an open
question whether Ωga(Πn) and Ωcg(Πn) are viable. For
DAG causal graphs, that question is closed:

Theorem 4. For both search directions, Ωga and Ωcg are not
viable in FDR(Gdag).

Corollary 1. Ωga is not viable in FDR(G∀).

The proof modifies the constructions underlying Theo-
rem 2 to include additional causal graph arcs, forcing Ωga

and Ωcg to yield bad orderings grouping x1, . . . , xn and
y1, . . . , yn into separate blocks. We arrange the root vari-
ables of the inverted forks as x1, . . . , xn, y1, . . . , yn, and
make the actions setting a variable dependent on its left-
hand side neighbor. That is easy to do without interfering
with the required properties. This proves the claim of The-
orem 4. Corollary 1 follows immediately (recall that Ωcg is
defined only for acyclic causal graphs).

We close our investigation with the only somewhat posi-
tive case, chain causal graphs:

Theorem 5. For both search directions, Ωga and Ωcg are not
perfect in FDR(Gchain). There exists an ordering scheme that
is not viable.

Cases where Ωga and Ωcg aren’t perfect are inherited from
FDR(G∅): we can enforce causal graph arcs that are irrele-
vant to the initial state distance or the goal distance. To ob-
tain a non-viable ordering scheme in forward and backward
search, we employ the quadratic form functionsQ(∧,∨) and
Q(∨,∧), respectively. In the chain causal graphs, xi and yi
are neighbors, rendering Ωga and Ωcg safe, whereas a non-
viable ordering separates x1, . . . , xn from y1, . . . , yn.

The two planning task families just described constitute
our only truly positive result: there, the ordering information
in the causal graph keeps us from making exponentially bad
mistakes. That positive message would be much stronger
if it pertained to the entire planning sub-class FDR(Gchain),
i.e., if Ωga and Ωcg were safe for all families of tasks with
chain causal graphs. It remains an open question whether
this is true; we conjecture that it is.

Figure 2 overviews our results. The evidence speaks
against a strong connection between causal graph dependen-
cies, and dependencies as relevant for BDD size. Note: The
DAG causal graph underlying Theorem 4 has a very simple
form combining a chain with an inverted fork, and Theo-
rem 2 relies on planning tasks that fall into a known tractable
class for optimal planning (Katz and Domshlak 2010).

329

What’s in a Causal Graph: Practice
Poor performance in the worst case does not entail poor per-
formance in practice. To get a picture of where causal-graph
based variable ordering schemes stand, we run 11 variants
thereof, and compare them to practical “good”/“bad” delim-
iters. As the “bad” delimiter, we use random orderings. As
the “good” delimiter, we use the off-the-shelf dynamic re-
ordering algorithm of Gamer’s BDD package CUDD, which
is based on sifting (Rudell 1993). For better comparability
with our ordering schemes, we restrict the algorithm to not
separate the γ(v) blocks. (As previously indicated, the algo-
rithm consumes too much runtime to be cost-effective; here,
we give it ample runtime, considering only BDD size.)

We use the IPC’11 benchmarks, and use Gamer as the
base implementation for all planners. We run Gamer’s orig-
inal ordering scheme, denoted Gamer, that approximates
Ωga. We run 5 other schemes based directly on the causal
graph: GamerPre which is like Gamer but on an enriched
causal graph also featuring arcs between pairs of precon-
dition variables; WGamer and WGamerPre which are like
Gamer and GamerPre but with arcs weighted by the number
of relevant actions; Fast Downward’s (Helmert 2006) level
heuristic, denoted CGLevel, which approximates Ωcg; and
CGSons, another approximation of Ωcg, that always selects
a variable v all of whose parents have already been selected,
or at least one of whose parents has already been selected,
or an arbitrary variable if no such v exists. Further, we run 5
ordering schemes we adopted from the model checking lit-
erature, based on a structure called the abstract syntax tree
(basically listing all actions and variables they touch). We
do not have the space to describe these schemes; using their
first authors’ names for reference, we call them Butler (But-
ler et al. 1991), Chung (Chung, Hajj, and Patel 1993), Malik
(Malik et al. 1988), Maisonneuve (Maisonneuve 2009), and
Minato (Minato, Ishiura, and Yajima 1990).

0

2

4

6

8

10

12

14

16

20 30 40 50 60 70 80

Pe
rc

en
ta

ge
of

R
an

do
m

O
rd

er
in

gs

Coverage

CGLevel
Malik

Maisonneuve+WGamerPre
Minato+WGamer

CGSons
Gamer+GamerPre

Chung
Butler

Figure 3: Coverage for random orders vs. ordering schemes.

First we compared the schemes against “random order-
ings”, where each of these corresponds to one run of all
IPC’11 benchmarks, using a random variable ordering for
each instance. We performed 5000 of these runs; the time-
out is one minute to make this feasible. Figure 3 shows cov-
erage, i.e., number of found solutions, on the x axis, and the
fraction of random orderings having that coverage on the
y axis. The coverage achieved by each of our 11 ordering
schemes is shown as vertical lines (scheme names in the fig-
ure are ordered top-to-bottom from worst to best coverage).

Malik and CGLevel lie in respectively below (!) the mid-
dle of the Gaussian distribution, so are quite bad indeed.
Matters are not as bad for the other 9 ordering schemes,
which are close together.2 Compared to a best-of over the
random orders, all the ordering schemes appear rather hum-
ble. Let x be the number of instances solved by a scheme but
not by any random order, and y the number not solved by a
scheme but solved by some random order. Then x < y for
all but 2 cases (where x − y = 1 and x = y, respectively),
and the average over x is 3.00 while that over y is 9.73.

104

105

106

107

108

104 105 106 107 108

Pe
ak

Si
ze

O
rd

er
in

g
Sc

he
m

es

Peak Size Dynamic Reordering
Figure 4: BDD size for dynamic reordering vs. ordering schemes.

Figure 4 contains one data point for every pair (I,Ω) of
IPC’11 benchmark instance I and ordering scheme Ω that
were solved by both (a) Gamer using dynamic reordering
starting from an arbitrary variable order (the one returned
by Gamer’s grounding process), and (b) Gamer using order-
ing scheme Ω (without dynamic reordering). The time-out
is 6 hours for (a), and 30 minutes for (b). Data point (X,Y)
is the size of the largest BDD constructed for I by ((a),(b)).
The time-out is larger for dynamic reordering because such
reordering is not runtime effective: The question we are ask-
ing here is merely which of the two methods yields smaller
BDDs. Figure 4 shows that dynamic reordering is univer-
sally much better at this.

Conclusion
The proposed theoretical framework suggests that causal
graphs are not a good source of information for ordering
BDD variables. Even though one may not, in general, ex-
pect the ordering heuristic to not be exponentially bad in
the worst case, some of our results are quite striking. For
inverted fork causal graphs, in particular, there are expo-
nentially bad orderings in planning tasks so restricted as to
be tractable for domain-independent optimal planning. Our
empirical results corroborate this view, Fast Downward’s
level heuristic being worse than random, and all ordering
schemes lagging far behind off-the-shelf reordering.

We do not wish to claim that the present results provide
a conclusive answer to the question we started out with.
Rather, we view this research as a first step towards a sys-
tematic investigation of BDD variable orderings in planning,
which we hope will inspire other researchers as well.

2With a 30 minute time-out, we obtain a similar picture, Malik
and CGLevel lagging behind while all others are close.

330

Acknowledgments
We thank the anonymous reviewers, whose comments
helped to improve the paper.

References
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Butler, K. M.; Ross, D. E.; Kapur, R.; and Mercer, M. R.
1991. Heuristics to compute variable orderings for effi-
cient manipulation of ordered binary decision diagrams. In
Proceedings of the 28th Conference on Design Automation
(DAC-91), 417–420. San Francisco, CA, USA: ACM.
Chung, P.-Y.; Hajj, I. N.; and Patel, J. H. 1993. Efficient vari-
able ordering heuristics for shared ROBDD. In Proceedings
of the 1993 IEEE International Symposium on Circuits and
Systems (ISCAS-93), 1690–1693. Chicago, IL, USA: IEEE.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent offline
coordination: Structure and complexity. In Cesta, A., and
Borrajo, D., eds., Recent Advances in AI Planning. 6th Eu-
ropean Conference on Planning (ECP-01), Lecture Notes
in Artificial Intelligence, 34–43. Toledo, Spain: Springer-
Verlag.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. Journal of Artificial Intelligence Research 39:51–
126.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In Bur-
gard, W., and Roth, D., eds., Proceedings of the 25th Na-

tional Conference of the American Association for Artificial
Intelligence (AAAI-11), 992–997. San Francisco, CA, USA:
AAAI Press.
Kissmann, P., and Hoffmann, J. 2013. Whats in it for
my BDD? On causal graphs and variable orders in plan-
ning. Technical Report A 01/2013, Saarland University,
Saarbrücken, Germany.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Maisonneuve, V. 2009. Automatic heuristic-based genera-
tion of MTBDD variable orderings for PRISM models. In-
ternship report, Oxford University Computing Laboratory.
Malik, S.; Wang, A.; Brayton, R.; and Sangiovanni-
Vincentelli, A. 1988. Logic verification using binary deci-
sion diagrams in a logic synthesis environment. In Proceed-
ings of the 1988 International Conference on Computer-
Aided Design (ICCAD-98), 6–9. IEEE Computer Society
Press.
Minato, S.; Ishiura, N.; and Yajima, S. 1990. Shared
binary decision diagram with attributed edges for efficient
boolean function manipulation. In Proceedings of the 27th
ACM/IEEE Design Automation Conference (DAC-90), 52–
57. Orlando, FL, USA: IEEE Computer Society Press.
Rudell, R. 1993. Dynamic variable ordering for ordered
binary decision diagrams. In Lightner, M. R., and Jess, J.
A. G., eds., Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD-93),
42–47. Santa Clara, CA, USA: IEEE Computer Society.
Wegener, I. 2000. Branching Programs and Binary Decision
Diagrams. SIAM.

331

