
On Adversarial Policy Switching with
Experiments in Real-Time Strategy Games

Brian King1 and Alan Fern2 and Jesse Hostetler2
Department of Electrical Engineering and Computer Science

Oregon State University
1kingbria@lifetime.oregonstate.edu

2{afern, hostetje}@eecs.orst.edu

Abstract

Given a Markov game, it is often possible to hand-code or
learn a set of policies that capture a diversity of possible
strategies. It is also often possible to hand-code or learn an
abstract simulator of the game that can estimate the outcome
of playing two strategies against one another from any state.
We consider how to use such policy sets and simulators to
make decisions in large Markov games such as real-time strat-
egy (RTS) games. Prior work has considered the problem us-
ing an approach we call minimax policy switching. At each
decision epoch, all policy pairs are simulated against each
other from the current state, and the minimax policy is cho-
sen and used to select actions until the next decision epoch.
While intuitively appealing, our first contribution is to show
that this switching policy can have arbitrarily poor worst case
performance. Our second contribution is to describe a simple
modification, whose worst case performance is provably no
worse than the minimax fixed policy in the set. Our final con-
tribution is to conduct experiments with these algorithms in
the domain of RTS games using both an abstract game engine
that we can exactly simulate and a real game engine that we
can only approximately simulate. The results show the effec-
tiveness of policy switching when the simulator is accurate,
and highlight challenges in the face of inaccurate simulations.

1 Introduction
In many complex games, such as real-time strategy (RTS)
games, the space of possible actions is much too large for an
agent to reason about directly while still meeting real-time
constraints. One way to deal with this is to create a set of
policies, each of which fully specifies the primitive actions
to take in each state, that captures the diversity of possible
strategies. The reasoning problem is then reduced to choos-
ing, in a computationally efficient way, which policy to fol-
low at any point in time, effectively switching opportunis-
tically among policies. In this work, we consider formal
properties of one such policy switching approach, and report
on preliminary experiments in an RTS game.

Prior work (Chang, Givan, and Chong 2004) investigated
policy switching for (non-adversarial) MDPs, where a sim-
ulator is used at each state to select and execute the policy
from a given set with highest estimated value. It was proven

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the value of the switching policy is never worse than that
of the best policy. In practice switching often leads to signif-
icant improvements compared to the best individual policy.

Policy switching has also been investigated in the adver-
sarial setting of Markov games. Sailer, Buro, and Lanctot
(2007) used policy switching to control military strategies in
an abstract strategy game. Given a set of strategies, they sim-
ulate all pairs against one another at each time step and se-
lect one according to a minimax or Nash criterion. This ap-
proach outperformed the individual policies. Chang (2006)
gave a formal analysis of the switching criterion, bounding
the difference between the worst-case performance of the
switching policy compared to the best fixed policy.

Our first contribution is to show that the above perfor-
mance bound can be arbitrarily large and is in fact a tight
bound. Thus, unlike the case of MDPs, naive policy switch-
ing in Markov games can perform arbitrarily poorly com-
pared to a fixed policy. Next, we define a modified approach
that is guaranteed to be no worse than a fixed policy. Finally,
we summarize experimental results from applying policy
switching to an RTS game agent, which provide evidence
for the effectiveness of policy switching and also highlight
the impact of having an inaccurate simulator.

2 Minimax Policy Switching
A two player, zero-sum Markov game is a tuple,
(S,A1, A2, P, c), where S is a set of states, A1 and A2 are
the actions sets for the minimizing and maximizing players
respectively, P : S ×A1×A2×S 7→ [0, 1] is the transition
probability distribution, and c : S × A1 × A2 7→ R is the
instantaneous cost function that assigns a cost to each pair
of action choices in each state. A policy for a player is a
possibly stochastic mapping from states to actions, possibly
depending on time in the case of non-stationary policies.

We will consider a finite-horizon Markov game setting
with horizon H . To simplify our notation we will assume
that the only non-zero costs are received at the horizon (i.e.
the end of the game). This is without loss of generality, since
any finite-horizon Markov game can be converted into an
equivalent Markov game of this form. The h steps-to-go
cost (with respect to the minimizer) of minimizer policy π
and maximizer policy φ starting in state s ∈ S is

Ch(π, φ)(s) = E

[
h∑
t=0

c(Sh−t, π(Sh−t), φ(Sh−t))
∣∣∣Sh = s

]

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

322

where Sh is a random variable denoting the state when there
are h steps to go after following π and φ starting in s.

The policy switching approaches that we consider assume
the availability of policy sets for the minimizing and maxi-
mizing agent, denoted by Π and Φ respectively. Ideally the
policy sets capture the typical policies that one might en-
counter in actual game play and may be the same for the
minimizer and maximizer. In the context of robust optimiza-
tion, the maximizer policies might correspond to possible
conditions that we would like to be robust against. The min-
imax cost with respect to these sets for a given state s and
horizon h is defined as

MMCh(Π,Φ)(s) = min
π∈Π

max
φ∈Φ

Ch(π, φ)(s).

We also define the minimax policy for s and h, de-
noted by MMPh(Π,Φ)(s), to be a minimizer policy that
achieves the minimax cost. That is, a policy π∗ such that
maxφ∈Φ Ch(π∗, φ)(s) = MMCh(Π,Φ)(s).

The minimax switching policy πps(s, h) of Chang (2006)
and Sailer, Buro, and Lanctot (2007) can now be defined as

πps(s, h) = π∗h(s)

π∗h = MMPh(Π,Φ)(s).

We see that πps(s, h) simply selects a policy pair that
achieves the minimax value with respect to Π and Φ and then
returns the action selected by the minimizer policy. Note
that this approach requires the ability to evaluate the cost
Ch(π, φ)(s) for any policy pair. In practice, this is often ap-
proximated via Monte-Carlo sampling using an approximate
or exact simulator of the Markov game.

A question now is what guarantees can be made about the
performance of πps. Recall that in (non-adversarial) MDP
policy switching, one can show that the switching policy will
do no worse than the best policy in the set. The analogous
result for Markov games under a minimax objective would
show that for any horizon h and state s,

max
φ∈Φ

Ch(πps, φ)(s) ≤ min
π∈Π

max
φ∈Φ

Ch(π, φ)

If we believe that the set of opponent policies Φ captures
the typical range of opponents to be encountered, then this
guarantee is quite powerful, since we can gain the potential
benefits of switching without a downside.

Chang (2006) provided a first result in this direction in the
infinite-horizon discounted cost setting.
Theorem 2.1 (Chang 2006). In an infinite-horizon Markov
game with discount rate γ, for all s ∈ S, the worst-case
performance of πps is bounded by

max
φ∈Φ

C(πps, φ)(s) ≤ min
π∈Π

max
φ∈Φ

C(π, φ)(s) +
γε

1− γ
,

where C(π, φ)(s) is the expected discounted future cost of
playing π and φ starting from state s, and

ε = max
s∈S

(
min
π∈Π

max
φ∈Φ

C(π, φ)(s)−min
π∈Π

min
φ∈Φ

C(π, φ)(s)
)
.

It is straightforward to derive an analogous result for our
undiscounted finite-horizon setting.

Unfortunately, this bound is not very informative because
it involves ε, and ε can be arbitrarily large. Since ε measures
the difference between the minimax value and the best-case
value, it is small precisely when the maximizer’s choice of
policy has little influence over the cost; specifically, when
the minimizer has a response to every maximizer action that
achieves close to the best-case cost.

The question remains of whether the bound is tight. If it
is, then there is a fundamental deficiency in minimax policy
switching, in that the switching policy may perform arbitrar-
ily poorly compared to a fixed policy. We now show that this
is indeed the case, with the following counterexample.

Consider a Markov game with horizon one, and two poli-
cies each for the minimizer (π1 and π2) and the maximizer
(φ1 and φ2). The game begins in state s0. From there, the
game deterministically transitions to state sij , with i and j
determined by the actions πi and φj taken in s0. The cost
functions are defined in terms of an arbitrary positive con-
stant c. The instantaneous cost functions for this game (i.e.
the costs of the actions chosen by the policies) for each pair
of policies in each state are given by

c(s11) φ1 φ2

π1 −1 c+ 1
π2 c c

c(s12) φ1 φ2

π1 c+ 1 −1
π2 c c

c(s21) φ1 φ2

π1 c c
π2 0 c+ 1

c(s22) φ1 φ2

π1 c c
π2 c+ 1 0

The 1-horizon cost function for this game is
C1(s0) φ1 φ2 max minimax
π1 −1 −1 −1 *
π2 0 0 0

The minimax fixed policy in this game is π1, which
achieves a worst-case cost of −1. Now consider the behav-
ior of πps. Starting in s0, policy π1 will be chosen since
it has a 1-horizon minimax value of −1. Suppose that the
maximizer arbitrarily chooses φ1 in response. There is no
cost in s0, and the game deterministically transitions to s11.
In s11, π2 is the minimax choice, and πps selects it, caus-
ing the minimizer to receive a cost of c. The result is the
same if the maximizer chooses φ2 in s0. Thus, the worst
case performance of πps is equal to c, while the fixed policy
π1 achieves a worst case of −1. This shows that minimax
policy switching can perform arbitrarily poorly with respect
to worst case performance.

Minimax policy switching can incur an arbitrarily high
cost because the definition of Ch(π, φ)(x) assumes that the
chosen policies will be followed forever. However, this as-
sumption is invalid since πps can switch policies at future
time steps. The above example shows the consequences of
this inconsistency. At s0, policy π1 looks good under the as-
sumption that both players will follow their chosen policies
for the rest of the game. When arriving at s11, however, the
algorithm forgets about this assumption and switches away
from π1, receiving a cost of c.

3 Monotone Policy Switching
There are at least two ways to overcome the inconsistency
inherent in minimax policy switching. First, when making
switching decisions, the algorithm could reason about the

323

possibility of both players switching policies in the future.
This amounts to solving a Markov game over the reduced
action space defined by the policy sets. While this may be
easier than solving the original Markov game, it will often
still be impractical for time-constrained problems. A second
approach is to have decisions account for the assumptions
made at previous time steps, by considering the possibility
that both players do not switch away from the current min-
imax policy pair. In this paper, we consider the second ap-
proach, which we call monotone minimax policy switching.

Monotone policy switching is nearly identical to minimax
policy switching except that at each step it takes into consid-
eration the minimax policy π∗ selected in the previous step,
and its expected worst-case cost c∗. At horizon h and current
state s, monotone switching will only consider switching to
a new policy π if the worst case cost of π is better than c∗.
Otherwise, π∗ is again selected in state s, and c∗ is main-
tained as the expected cost.

More formally, let sh denote the state with h steps-to-go
and π̄h(π∗h+1, c

∗
h+1) denote the monotone switching policy

at horizon h parameterized by the minimax policy π∗h+1 se-
lected at the previous time step and its expected cost c∗h+1.
With these definitions, we can define the monotone switch-
ing policy recursively in two cases:

If c∗h+1 ≤ MMCh(Π,Φ)(sh):

π∗h = π∗h+1

c∗h = c∗h+1

If c∗h+1 > MMCh(Π,Φ)(sh):

π∗h = MMPh(Π,Φ)(sh)

c∗h = MMCh(Π,Φ)(sh)

The action selected by the monotone switching policy is
simply the action prescribed by its current policy choice,

π̄h(π∗h+1, c
∗
h+1)(sh) = π∗h(sh).

From this definition, one way to view π̄ is simply as mini-
max policy switching in which the minimizer has the option
to stick to the previous policy pair instead of switching. Note
that at the first time step in initial state sH , where H is the
problem horizon, there is no previous policy, so we define
(π∗H+1, c

∗
H+1) = (null,+∞). This causes the choice at the

first time step to behave just as in minimax policy switching.
It turns out that we can prove the desired worst case guar-

antee for monotone policy switching. We now state the main
result, which takes into account the accuracy of the cost es-
timates used to compute the switching policy. For this pur-
pose, we define a cost function Ĉ to be δ-accurate if

|Ĉh(π, φ)(s)− Ch(π, φ)(s)| ≤ δ
for all π ∈ Π, φ ∈ Φ, s ∈ S, and h = 0, . . . ,H .
Theorem 3.1. For any Markov game (S,A1, A2, P, c), for
any state s ∈ S and horizon H , where π̄ makes decisions
using a δ-accurate cost function Ĉ,

max
φ∈Φ

CH(π̄(null,+∞))(s) ≤ min
π∈Π

max
φ∈Φ

CH(π, φ)(s) + 2δ.

Proof. (sketch) Let π̄i denote a restricted version of the
switching policy π̄ that is allowed to consider switching only
in the first i time steps. We will prove the theorem by induc-
tion on the number of switches i.

In the base case when i = 1, π̄1 can switch only in the first
time step, and so the algorithm will play the fixed policy
π̄1 = arg minπ∈Π maxφ∈Φ ĈH(π, φ)(s), which under our
assumption about Ĉ will have a true worst case cost of at
most minπ∈Π maxφ∈Φ CH(π, φ)(s) + 2δ. This completes
the base case.

For the inductive step, we assume that

max
φ∈Φ

CH(π̄i−1, φ)(s) ≤ min
π∈Π

max
φ∈Φ

CH(π, φ)(s) + 2δ.

First, observe that π̄i and π̄i−1 are equivalent for the first
i − 1 steps. So SH−i(π̄i, φ∗) =d SH−i(π̄

i−1, φ∗), where
=d means “equal in distribution.” Call this random variable
SH−i for short.

Let sH−i be an arbitrary instantiation of SH−i. We now
need to compare π̄i and π̄i−1 at state sH−i. We can identify
two cases. If π̄i(sH−i) = π̄i−1(sH−i), then the conclusion
trivially follows from the inductive hypothesis.

Now consider the case when π̄i(sH−i) 6= π̄i−1(sH−i).
Let πi = π̄i(sH−i) be the concrete policy selected at hori-
zon H − i and φ∗ ∈ Φ be a fixed but arbitrary maximizer
policy. We then have the following:

CH−i(π̄
i, φ∗)(sH−i) ≤ ĈH−i(π̄i, φ∗)(sH−i) + δ

< c∗H−i+1 + δ

≤ min
π∈Π

max
φ∈Φ

CH(π, φ)(s) + 2δ.

The second inequality holds due to our assumption that the
policy switched at horizon H − i. The final inequality holds
because c∗h is non-increasing across time steps and the initial
value c∗H is guaranteed to be no worse than MMCH(s) + δ.
Since φ∗ was an arbitrary maximizer policy and sH−i was
an arbitrary instantiation of SH−i, the result follows.

4 Experiments
RTS games are widely popular video games that involve
building large economies to support military production and
tactics in order to defeat an opponent. They pose serious
challenges to existing AI techniques and most computer
players use relatively inflexible hand-coded strategies with
no look-ahead and minimal autonomy (Buro and Churchill
2012). We have constructed a game-playing agent for the
free RTS game Wargus that uses policy switching to manage
its high-level strategy. This adds a level of lookahead and re-
activity to the agent that purely script-based solutions gener-
ally lack, while leveraging a designer’s strategic knowledge
and existing policies via the required policy sets.

Our policy-switching agents uses an abstract, approxi-
mate simulator of the game engine to estimate the cost
of each strategy pair from a state. The simulator is fast
enough to allow for faster than real-time game-play using
the switching approach (with 9 policies per player). We
present two sets of results: 1) Perfect model results, where

324

the simulator is used in place of the game engine for evalua-
tion of the agents, modeling a situation where our cost esti-
mates are perfect; 2) Game engine results, where evaluation
is done using the real game engine, in which case the simu-
lator only provides approximate cost estimates. The details
of the simulator and RTS agent infrastructure are beyond the
scope of this paper, but can be found in (King 2012).

Policy Set. Our switching agents are provided with a set
of 9 hand-coded policies. Each policy is a prioritized assign-
ment of a certain number of military units to each of sev-
eral goal locations. We defined three goal locations for each
game map: the friendly base (“base”), the enemy base (“en-
emy”), and the choke point separating the bases (“choke-
point”). Though simple, this formulation gives us quite a
bit of flexibility. For example, defensive strategies are ob-
tained when “base” and “chokepoint” have higher priority
than “enemy”. Early aggression can be specified by prior-
itizing “enemy” and assigning a small number of units (so
that they will be ready sooner). Our experiments used the
same 9 policies for both the minimizer and maximizer. Each
such policy instantiates a hierarchical controller that issues
appropriate actions to the game engine or simulator.

Perfect Model Results. We evaluated the switching al-
gorithms on two game maps from the Wargus distribution
called 2bases and the-right-strategy using our simulator in
place of the game engine. Costs correspond to the differ-
ence in total unit hit points at the end of a game (negative
values indicate wins). Table 1 shows the worst case cost for
monotone switching and ordinary minimax switching when
played against each of the 9 policies in the policy set on
each map. We also played all 9 policies against one another
to find the minimax policy and cost within that set, denoted
as Fixed in the table, which is zero since the map is balanced
and policies can play against themselves. The results show
that both switching strategies significantly outperform the
fixed strategies in terms of worst-case performance, showing
the potential benefits of switching. We also see that in one
map the monotone strategy outperforms the ordinary mini-
max player. The reason for the improved performance is un-
clear and perhaps coincidental since an analysis of the games
did not show any obvious flaws of the minimax player.

Score Fixed minimax monotone
2bases 0 -8122 -8122
the-right-strategy 0 -2702 -5375

Table 1: Results using the simulator for game play (allowing for
perfect cost estimation) on two different game maps.

Game Engine Results. Table 2 shows the same results as
above but in games played in the real game engine, so that
the simulator only provides approximate cost estimates. Our
analysis of the simulator shows that it is accurate for some
strategies, but less accurate for others. A major source of
error is that the simulator estimates battle outcomes based
only on unit numbers and types, while in reality terrain has
a large impact. Whereas policy switching outperformed the
minimax fixed policy in simulation, the results show that the
switching strategies can do worse in terms of game costs
compared to the best fixed strategy. Note that this is not in-

consistent with the theory, which accounts for loss in perfor-
mance given inaccurate cost estimates. Our analysis showed
that these results are due to some systematic biases of the
simulator when evaluating particular policy pairs in certain
situations. This causes the switching policies to sometimes
switch to a policy that is actually inferior. The score dif-

Score Fixed minimax monotone
2bases 630 242 749
the-right-strategy 86 588 814

Table 2: Gameplay results using the real game engine on two dif-
ferent game maps.

ferences, however, do not correspond to large differences in
win rates. We played 50 games between all pairs of agents
including the fixed strategies and switching strategies and
measured the worst case win rate for each agent. Table 3
shows the results and illustrates that the win rates for the
methods are comparable, though the best fixed policy is still
the best overall. Finally, Table 3 also shows the win rate of
the switching policies against the built-in Wargus AI. The
switching strategies win nearly always on the first map and
win 57% of the games on the second map.

2bases Fixed minimax monotone
Fixed 46% 49% 45%
minimax - - 48%
built-in - 100% 100%
the-right-strategy
Fixed 50% 45% 42%
minimax - - 42%
built-in - 57% 57%

Table 3: Empirical win rates for the column player for games be-
tween the minimax fixed policy, the two switching policies, and
the built-in Wargus AI. Win rates are statistically identical within
rows.

5 Summary and Future Work
Unlike in the single-agent, MDP setting, policy switching
based on a local optimality criterion is not guaranteed to im-
prove upon the best fixed policy in Markov games. We have
shown that there exist Markov games in which naive pol-
icy switching achieves the worst possible result. To remedy
this, we have proposed monotone minimax policy switching,
which is guaranteed to perform at least as well as the best
fixed policy. When the opponent policy set captures the typ-
ical range of strategies that will be encountered, this is a
strong guarantee. However, we are also interested in de-
veloping switching algorithms that provide guarantees with
respect to a bounded amount of switching by the agents,
which would allow for high performance even if the set of
base policies is incomplete. A key issue illustrated by our
experiments is dealing with inaccurate simulations. One in-
teresting approach is to learn to correct simulator biases that
are observed during game play. We are also interested in
principled ways of integrating a model of an opponent’s be-
havior, possibly learned from historical data (Dereszynski et
al. 2011), into the policy switching framework.

325

Acknowledgements
This work was funded in part by NSF grant IIS-0905678
and by ARO grant W911NF-08-1-0242. The views and con-
clusions contained in this document are those of the authors
and do not necessarily represent the official policies of ARO,
NSF, or the United States Government.

Jesse Hostetler was supported in part by a scholarship
from the ARCS Foundation of Portland, Oregon.

References
Buro, M.; and Churchill, D. 2012. Real-time strategy game com-
petitions. AI Magazine 33(3):106-108.
Chang, H.; Givan, R.; and Chong, E. 2004. Parallel rollout for
online solution of partially observable Markov decision processes.
Discrete Event Dynamic Systems 14:309341.
Chang, H. S. 2006. On combining multiple heuristic policies in
minimax control. In 17th International Symposium on Mathemati-
cal Theory of Networks and Systems (MTNS 2006).
King, B. 2012. Adversarial planning by strategy switching in a
real-time strategy game. Master’s thesis, Oregon State University.
Dereszynski, E.; Hostetler, J.; Fern, A.; Dietterich, T.; Hoang, T.;
and Udarbe, M. 2011. Learning probabilistic behavior models
in real-time strategy games. In Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2011).
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial plan-
ning through strategy simulation. In IEEE Symposium on Compu-
tational Intelligence and Games (CIG 2007), 80–87.

326

