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Abstract

Perimeter search is a bidirectional search algorithm consist-
ing of two phases. In the first phase, a limited regression
search computes the perimeter, a region which must neces-
sarily be passed in every solution. In the second phase, a
heuristic forward search finds an optimal plan from the initial
state to the perimeter.
The drawback of perimeter search is the need to compute
heuristic estimates towards every state on the perimeter in the
forward phase. We show that this limitation can be effectively
overcome when using pattern database (PDB) heuristics in
the forward phase.
The combination of perimeter search and PDB heuristics has
been considered previously by Felner and Ofek for solving
combinatorial puzzles. They claimed that, based on theo-
retical considerations and experimental evidence, the use of
perimeter search in this context offers ”limited or no bene-
fits”. Our theoretical and experimental results show that this
assessment should be revisited.

Introduction
Perimeter search (Dillenburg and Nelson 1994) is a classical
bidirectional state-space search algorithm. It is parameter-
ized with a natural number r > 0 we call the radius and
proceeds in two phases.

The first phase, the backward phase, generates all states
from which the distance to the nearest goal state is r. This
set of states is called the perimeter (for radius r). It is tra-
ditionally generated through a backward breadth-first search
from the goal state(s) with complete duplicate elimination.
As a special case, if the initial state of the problem is reached
during the backward phase, the optimal solution to the prob-
lem can be reported directly.

The second phase, the forward phase, performs a normal
forward search using a heuristic search algorithm such as
IDA∗ or A∗ with two modifications. Firstly, the search ter-
minates as soon as a state on the perimeter is expanded. The
optimal solution then consists of the path to the perimeter
state that was found, followed by a shortest path from there
to the closest goal state (which can either be stored during
the backward phase or recomputed if memory is scarce).
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Secondly, the heuristic estimate for state s measures the dis-
tance to the closest perimeter state rather than to the goal:
hPer(s) = mins′∈Per h(s, s

′), where Per denotes the perime-
ter. This requires a heuristic function that can estimate dis-
tances between arbitrary states, not just distances to the goal.

Bidirectional heuristic search algorithms like perimeter
search were intensively studied in the 1990s (e.g., Manzini
1995; Kaindl and Kainz 1997). Since then, research activity
in this area has noticeably cooled off. In classical planning,
heuristic search algorithms represent the state of the art, but
bidirectional algorithms are rarely pursued.

A major reason why perimeter search is not used more
frequently is the need to compute distances towards every
state on the perimeter during each state evaluation, which
appears expensive.1 In some cases, however, it is possible to
circumvent this overhead through precomputations. In par-
ticular, with pattern database (PDB) heuristics (Culberson
and Schaeffer 1998), we can seed a single pattern database
with all perimeter states, perform a single search through
the abstract state space defined by the pattern, and then only
perform a single PDB lookup for each state evaluation.

The combination of perimeter search and PDB heuristics
has been considered previously by Felner and Ofek (2007)
for solving combinatorial puzzles. Their evaluation of the
approach is quite bleak. Based on theoretical observations
and experiments, they report that the discussed approach of-
fers “limited or no benefits” over a simpler approach that
uses a regular PDB seeded with the goal and only uses in-
formation from the backward search to increase heuristic es-
timates of states known to be outside the perimeter to r+ 1.

In this paper, we reconsider the combination of PDB
heuristics with perimeter search. We do so in the context
of classical planning, where PDB heuristics have been pre-
viously successful (e.g., Edelkamp 2001; Haslum, Bonet,
and Geffner 2005; Haslum et al. 2007; Sievers, Ortlieb, and
Helmert 2012). We show that despite several additional dif-
ficulties in the planning context that are not present in the
combinatorial puzzle setting, perimeter PDBs can signifi-
cantly reduce the search effort compared to regular forward-
search PDB heuristics.

1Manzini (1995) describes an optimization that avoids some of
these computations, but this does not change the situation funda-
mentally.
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Background
A planning task T = 〈V,O, sI, s?〉 consists of a set of finite
domain variables V , where each variable v ∈ V is associ-
ated with a domain Dv; a set of operators O; an initial state
sI that is given by a variable assignment (a state) over V ;
and a set of goal states s? that is defined by a partial vari-
able assignment (a partial state) over V . Analogously to the
Boolean setting we identify (partial) states with the set of
atoms that they make true. An atom is of the form (v :d)
where v is a variable and d ∈ Dv is a value. We refer to the
variable v of an atom x = (v :d) with var(x). We write s[v]
for the value associated with variable v in state s.

An operator o = 〈pre, eff〉 ∈ O consists of preconditions
pre and effects eff, both of which are partial states. We say
that o is applicable in state s if pre ⊆ s. The application
app(o, s) = s′ of o in s yields the state s′ such that s′[v] = d
if there is an effect (v :d) ∈ eff and s′[v] = s[v] if eff con-
tains no atom with variable v. A state s′ is reachable from
a state s if there are sequences of operators 〈o1, . . . , on〉 and
states 〈s0, . . . , sn〉 such that s0 = s, oi is applicable in si−1
and app(oi, si−1) = si for all i = 1, . . . , n. The cost of s
is the minimal n for which such sequences from s to a state
sn ⊇ s? exist. The objective of optimal classical planning is
to find such a sequence starting from sI.

A pattern P ⊆ V is a subset of variables. Let fP (x)
be a function that syntactically removes all atoms a with
var(a) /∈ P from x where x is a partial state or operator.
Given planning task T = 〈V,O, sI, s?〉, the abstract plan-
ning task for pattern P ⊆ V is given by T |P = 〈P, {fP (o) |
o ∈ O}, fP (sI), fP (s?)〉. A pattern database (PDB) PDBP

for P is a mapping from the states over P to their cost in
T |P . PDBs induce admissible heuristics: PDBP (fP (s))
never exceeds the cost of s for all states s of T .

Perimeter Search for Planning
When applying perimeter search to planning with pattern
databases, there are several challenges that are not present
in the combinatorial puzzle setting:

1. Existing work on perimeter search focuses on settings
with one goal state and invertible operators. In that case,
the backward search to compute the perimeter is struc-
turally identical to forward search from the initial state
and does not require any special measures. In planning,
there may be trillions of goal states, and a state can have
a huge number of predecessors via the same operator.

2. In the heuristic search literature, it is often assumed that
PDB construction time can be amortized over many runs
of the search algorithm. In planning, typically every plan-
ner run faces a different search space, so that PDB com-
putation must be amortized within a single run. The com-
bination with perimeter search aggravates this issue be-
cause we must match every abstract state of the PDB to
every state on the perimeter to seed the PDB.

3. In planning, it is usually assumed that no instance-specific
parameter tuning takes place, so we must find a suitable
automated way to set the perimeter radius.
We now discuss how we address these challenges.

Backward Search
Of the three challenges, dealing with huge state sets in the
backward search is the most pressing one: without a suitable
mechanism to deal with it, perimeter search is inapplicable
to many planning tasks. Fortunately, a well-known solution
to this issue exists in the form of regression. Formally, the
regression of a set of states S′ over an operator o, regr(o, S′),
is the set of states in which o is applicable and leads to a state
in S′. In other words, s′ = app(o, s) iff s ∈ regr(o, {s′}).

Let us say that a partial state s represents all states s̃ with
s ⊆ s̃. An important structural property of our planning
formalism is that whenever S′ is a state set that can be rep-
resented by a partial state s′, then regr(o, S′) can also be
represented by a partial state, and this partial state can be
efficiently computed from o and s′. Because the set of goal
states is also represented by a partial state (namely s?), we
can efficiently perform a search in regression space, where
each search node is associated with a partial state that repre-
sents a set of states backward-reachable from the goal.

Overall Algorithm Algorithm 1 shows how such a search
can be implemented. Function regressionSearch iteratively
conducts a breadth-first search that starts with the goal (line
3) and then explores one layer at a time (line 5). At any
time, the search layer of the last completed iteration forms
the perimeter that is returned upon termination (line 9).

Using a fixed perimeter radius is not a good option in a
general planning system because the number of regressable
operators varies too widely between tasks. Since we cannot
manually tweak the radius on a per-task basis, the algorithm
includes three different termination criteria: a maximal ra-
dius, a runtime limit and a memory bound (lines 4, 6, 17).

Efficiency Improvements To amortize perimeter PDB
construction within a single planner run, we must incorpo-
rate techniques that reduce the runtime as much as possible.
Here we describe some of the most important optimizations.
Taken together, they frequently reduce the time for comput-
ing the perimeter PDB by several orders of magnitude.

Two simple but effective optimizations are to check if the
regression of an operator o over partial state s results in
an inconsistent state before attempting to compute the re-
gressed partial state (line 16) and to avoid the construction
of regressed states that are dominated by their parent (line
19), which is a very common occurrence.2 We also use mu-
tex information computed by the translator component of
Fast Downward (Helmert 2009) to prune partial states which
only represent states that are known to be unreachable from
the initial state of the forward search (line 22).

The most important and most complex optimization is re-
lated to duplicate detection. Detecting duplicate nodes dur-
ing backward search is vital to keep runtime and memory
usage in check. It also tightens the perimeter: without elim-
inating duplicates, we only know that all states in breadth-
first search layer k have a goal distance of at most k. It
is preferable, however, to seed a perimeter PDB only with

2Partial state s dominates partial state s′ iff s ⊆ s′. In this case,
the states represented by s form a superset of the states represented
by s′, and hence all states represented by s′ are duplicates.
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states with a goal distance of exactly k. While the result-
ing perimeter PDBs are admissible in either case, tighter
perimeters lead to larger heuristic values.

Detecting duplicates is much more challenging in regres-
sion search than in progression search because detecting ex-
act matches (as in progression search, which use hash tables
for this purpose) does not suffice. Instead, we want to de-
tect whether a newly generated partial state is dominated by
any previously generated partial state, which involves subset
queries over large sets of partial states (line 24).

We address this problem by using a data structure based
on the successor generators of Fast Downward (Helmert
2006, Section 5.3.1). We refer to this data structure as match
trees here, since the original name is not descriptive in our
context. Roughly speaking, a match tree stores a set of par-
tial states (in Fast Downward: operator preconditions; here:
partial states previously encountered in the regression) and
allows efficient subset queries: is any of the partial states
stored in the tree a subset of a given query state s?

We extended match trees in two ways. Firstly, the trees
in Fast Downward must be queried with full states. We ex-
tended them to allow partial query states. Secondly, the orig-
inal trees are built for a fixed set of partial states known a pri-
ori. We must build match trees incrementally, adding partial
states as they are added to the next perimeter (line 26).

We remark that there are certain cases where we do not
detect duplicates in Algorithm 1 since (for efficiency rea-
sons) we do not remove regression states that have already
been previously added to the next perimeter. If two partial
states s and s′ with s ⊆ s′ are generated in the same search
layer, then the dominance relationship between the two is
only detected if s is processed before s′. We expect that the
impact of this lost opportunity is low since it only affects
partial states in the same search layer – all dominance rela-
tionships with respect to previous layers are found.

Computing Perimeter PDBs
The PDB for a pattern P ⊆ V in a regular forward search
algorithm is constructed by seeding all abstract states (states
over P ) that match fP (s?) to 0 and performing a backward
breadth-first search from these states to all abstract states.

The basic idea of incorporating a perimeter into PDBs is
to avoid initializing the abstract goal states to 0. Instead, for
all perimeter states s, we seed fP (s) to the perimeter radius
r. This is again followed by a backward breadth-first search
as in the regular approach. In the following, we refer to a
PDB that is computed in such a way as a perimeter PDB.

Properties of Perimeter PDBs To guarantee optimal so-
lutions, perimeter PDBs must be admissible for states on or
outside the perimeter, i.e., with cost at least r. States in-
side the perimeter do not matter, as they are never evaluated
by the perimeter search algorithm (which stops the regular
search as soon as a state on the perimeter is expanded).

For states on or outside the perimeter, the perimeter PDB
values are indeed admissible estimates. To see this, con-
sider a modified problem where the goal states are exactly
the perimeter states. (Such a goal set is not representable in
our planning formalism, but this does not matter.) A regular

Algorithm 1: Regression search.
1 def regressionSearch()
2 generateRegressionOperators()
3 perimeter← {goal}
4 for depth = 1 to maxRadius do
5 nextPerimeter← extendPerimeter(perimeter)
6 if nextPerimeter = failure then
7 break
8 perimeter← nextPerimeter
9 return perimeter

10 def extendPerimeter(perimeter)
11 nextPerimeter← ∅
12 for s ∈ perimeter do
13 if s matches originalInitState then
14 reportPlan(s)
15 exit
16 forall the operators o that are regressable in s do
17 if time or memory limit reached then
18 return failure
19 if s dominates regression of o in s then
20 continue
21 s′← regression of o in s
22 if s′ violates a mutex then
23 continue
24 if s′ dominated by a known partial state then
25 continue
26 nextPerimeter.add(s′)
27 return nextPerimeter

PDB for this problem would seed exactly the same states (to
0) that the perimeter PDB of the original problem seeds to r.
Since regular PDBs are admissible, and taking into account
that solving the original problem requires finding a shortest
path to the perimeter and then taking r more steps towards
the goal, this implies that perimeter PDBs are admissible.

It is also easy to see that each entry of a perimeter PDB is
at least as large as the corresponding entry of a regular PDB.
Consider an abstract state sP for which the perimeter PDB
is seeded to r. This means that there exists a perimeter state
s with fP (s) = sP . Then the regular PDB must have a value
of at most r for sP : otherwise it would be inadmissible for s,
contradicting the known properties of PDBs. We conclude
that perimeter PDBs dominate regular PDBs.

Efficient Seeding Seeding perimeter PDBs can be a ma-
jor bottleneck of the overall algorithm. Assume that we are
constructing a PDB with 106 states and a perimeter with 105

partial states. A naive implementation would test for each
PDB entry if it matches one of these partial states, requir-
ing 1011 tests. This can again be improved with match trees,
but there is a better solution: rather than iterating over the
PDB states, iterate over the partial states on the perimeter
and systematically construct all (and only the) PDB states
that match this pattern. This can even be done directly on
the level of the perfect hash values used to index PDBs, fol-
lowing ideas by Sievers, Ortlieb, and Helmert (2012).
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PDB 21 19 6 10 16 2 7 13 3 51 23 16 7 4 15 16 49 6 6 10 6 6 9 8 329
PPDB-1-∞-∞ 21 19 6 10 16 2 7 13 3 51 23 16 7 4 15 16 49 6 6 10 6 6 9 8 329
PPDB-3-∞-∞ 21 21 6 10 16 2 7 13 3 52 27 17 7 4 15 9 49 6 6 9 6 6 9 9 330
PPDB-5-∞-∞ 21 21 6 10 14 2 7 13 3 54 18 13 7 4 5 6 49 6 6 0 6 6 9 8 295
PPDB-∞-8-1024 18 28 6 11 15 2 7 13 3 56 27 17 7 4 15 13 50 6 6 10 6 6 9 9 344
PPDB-∞-8-256 21 27 6 11 16 2 7 13 3 55 27 17 7 4 15 16 50 6 6 10 6 6 9 9 349

Table 1: Solved problems per domain. PDB refers to a regular PDB heuristic. PPDB-r-t-m refers to the perimeter PDB
approach with a maximum radius of r, time limit of t minutes and memory limit of m MB for the backward phase.

Forward Search
Our final remark concerns the forward phase of perimeter
search. As discussed before, it must terminate when a state
on the perimeter is expanded, which requires efficiently test-
ing membership in the perimeter. If we consider that the
perimeter can comprise 105 or more partial states, a naive
approach is prohibitively expensive. We address this prob-
lem by only performing the check on states whose heuristic
value equals r (a necessary criterion for being on the perime-
ter) and by again using match trees.

Experiments
We implemented the perimeter PDB approach (PPDB) in
the planning system Fast Downward (Helmert 2006). Ta-
ble 1 shows coverage on all uniform-cost benchmarks of the
optimization tracks of past International Planning Competi-
tions. Our experiments were run on 2.3 GHz AMD Opteron
processors with a 2 GB memory limit of and a 30 minute
timeout. All configurations use a maximal PDB size of 106.

Regular PDBs and PPDBs with a fixed radius of 1 solve
the same set of tasks. With a fixed radius of 3, PPDB is able
to solve 9 more tasks than PDB across five domains. How-
ever, it also loses 8 tasks in two other domains. The reason
for this worse performance is that the backward phase does
not terminate within the time and memory bounds. This ef-
fect becomes more apparent with larger radius: PPDB with
a fixed radius of 5 solves 34 fewer problems than PDB.

Replacing the fixed radius by a time and memory limit for
the regression search solves this problem (see last two rows
of Table 1). The resulting radii of the perimeter vary widely,
from as little as 1 to more than 70. In the configuration that
allows a larger perimeter (memory limit 1 GB for backward
phase), another problem emerges in some domains: even
with the efficient implementation mentioned in the previous
section, checking the states of the forward search against the
perimeter becomes a bottleneck. This effect is very notice-
able in the AIRPORT domain, where increasing the memory
bound from 256 MB to 1 GB loses 3 tasks.

With empirically determined limits of 8 minutes and 256
MB, PPDB solves 20 more tasks than PDB, a nice improve-
ment considering the exponential growth in difficulty for
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Figure 1: Expansions of the forward phase, comparing PDB
to PPDB with 8 min/256 MB backward search limits.

these benchmark sets. As expected, PPDB works best in do-
mains with a low branching factor during regression search
like BLOCKS. Figure 1 compares the number of expansions
of PDB and perimeter PDB on all benchmark tasks and com-
plements the theoretical dominance result well.

Conclusion
We investigated the combination of pattern databases and
perimeter search for optimal classical planning. We argued
that PDBs seeded with the states of a perimeter are more
accurate than traditional PDBs, which is confirmed by our
experiments. We also discussed how to efficiently imple-
ment perimeter search for classical planning and experimen-
tally showed that the increased informativeness of perimeter
PDBs outweighs the overhead of the approach.

In future work we plan to extend perimeter PDBs to set-
tings of non-uniform action costs, incorporate it to the iPDB
approach of Haslum et al. (2007) and revisit its use for clas-
sical heuristic search domains.
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