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Abstract

Counterexample-guided abstraction refinement (CEGAR) is
a method for incrementally computing abstractions of tran-
sition systems. We propose a CEGAR algorithm for com-
puting abstraction heuristics for optimal classical planning.
Starting from a coarse abstraction of the planning task, we it-
eratively compute an optimal abstract solution, check if and
why it fails for the concrete planning task and refine the ab-
straction so that the same failure cannot occur in future iter-
ations. A key ingredient of our approach is a novel class of
abstractions for classical planning tasks that admits efficient
and very fine-grained refinement. Our implementation per-
forms tens of thousands of refinement steps in a few minutes
and produces heuristics that are often significantly more ac-
curate than pattern database heuristics of the same size.

Introduction
Counterexample-guided abstraction refinement (CEGAR) is
an established technique for model checking in large sys-
tems (Clarke et al. 2000). The idea is to start from a coarse
(i. e., small and inaccurate) abstraction, then iteratively im-
prove (refine) the abstraction in only the necessary places. In
model checking, this means that we search for error traces
(behaviours that violate the system property we want to ver-
ify) in the abstract system, test if these error traces generalize
to the actual system (called the concrete system), and only if
not, refine the abstraction in such a way that this particular
error trace is no longer an error trace of the abstraction.

Despite the similarity between model checking and plan-
ning, counterexample-guided abstraction refinement has not
been thoroughly explored by the planning community. The
work that comes closest to ours (Chatterjee et al. 2005) con-
tains no experimental evaluation or indication that the pro-
posed algorithm has been implemented. The algorithm is
based on blind search, and we believe it is very unlikely to
deliver competitive performance. Moreover, the paper has
several critical technical errors which make the main contri-
bution (Algorithm 1) unsound.

In model checking, CEGAR is usually used to prove the
absence of an error trace. In this work, we use CEGAR to
derive heuristics for optimal state-space search, and hence
our CEGAR procedure does not have to completely solve
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the problem: abstraction refinement can be interrupted at
any time to derive an admissible search heuristic.1

Haslum (2012) introduces an algorithm for finding lower
bounds on the solution cost of a planning task by iteratively
“derelaxing” its delete relaxation. Keyder, Hoffmann, and
Haslum (2012) apply this idea to build a strong satisfic-
ing planning system based on the FF heuristic. Our ap-
proach is similar in spirit, but technically very different from
Haslum’s because it is based on homomorphic abstraction
rather than delete relaxation. As a consequence, our method
performs shortest-path computations in abstract state spaces
represented as explicit graphs in order to find abstract so-
lutions, while Haslum’s approach exploits structural proper-
ties of delete-free planning tasks.

A key component of our approach is a new class of ab-
stractions for classical planning, called Cartesian abstrac-
tions, which allow efficient and very fine-grained refine-
ment. Cartesian abstractions are a proper generalization
of the abstractions that underlie pattern database heuristics
(Culberson and Schaeffer 1998; Edelkamp 2001).

Background
We consider optimal planning in the classical setting, us-
ing a SAS+-like (Bäckström and Nebel 1995) finite-domain
representation. Planning tasks specified in PDDL can be
converted to such a representation automatically (Helmert
2009).

Definition 1. Planning tasks.
A planning task is a 4-tuple Π = 〈V,O, s0, s?〉 where:

• V is a finite set of state variables, each with an associated
finite domain D(v).
An atom is a pair 〈v, d〉 with v ∈ V and d ∈ D(v).
A partial state is a function s defined on some subset of
V . We denote this subset by Vs. For all v ∈ Vs, we must
have s(v) ∈ D(v). Where notationally convenient, we
treat partial states as sets of atoms. Partial states defined
on all variables are called states, and S(Π) is the set of
all states of Π.

1In the model checking community, the idea of using CEGAR
to derive informative heuristics has been explored by Smaus and
Hoffmann (2009), although not with a focus on optimality.
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The update of partial state s with partial state t, s⊕ t, is
the partial state defined on Vs∪Vt which agrees with t on
all v ∈ Vt and with s on all v ∈ Vs \ Vt.
• O is a finite set of operators. Each operator o is given by

a precondition pre(o) and effect eff(o), which are partial
states, and a cost cost(o) ∈ N0.
• s0 is a state called the initial state
• s? is a partial state called the goal.

The notion of transition systems is central for assigning
semantics to planning tasks:

Definition 2. Transition systems and plans.
A transition system T = 〈S,L, T, s0, S?〉 consists of a finite
set of states S, a finite set of transition labels L, a set of
labelled transitions T ⊆ S × L × S, an initial state s0
and a set of goal states S? ⊆ S. Each label l ∈ L has an
associated cost cost(l).

A path from s0 to any s? ∈ S? following the labelled
transitions T is a plan for T . A plan is optimal if the sum of
costs of the labels along the path is minimal.

A planning task Π = 〈V,O, s0, s?〉 induces a transition
system with states S(Π), labelsO, initial state s0, goal states
{s ∈ S(Π) | s? ⊆ s} and transitions {〈s, o, s⊕ eff(o)〉 | s ∈
S(Π), o ∈ O, pre(o) ⊆ s}. Optimal planning is the problem
of finding an optimal plan in the transition system induced
by a planning task, or proving that no plan exists.

Cartesian Abstractions
Abstracting a planning task means losing some distinctions
between states to obtain a more “coarse-grained”, and hence
smaller, transition system. For this paper, it is convenient to
use a definition based on equivalence relations:

Definition 3. Abstractions.
Let Π be a planning task inducing the transition system
〈S,L, T, s0, S?〉.

An abstraction relation∼ for Π is an equivalence relation
on S. Its equivalence classes are called abstract states. We
write [s]∼ for the equivalence class to which s belongs. The
function mapping s to [s]∼ is called the abstraction func-
tion. We omit the subscript ∼ where clear from context.

The abstract transition system induced by ∼ is the tran-
sition system with states {[s] | s ∈ S}, labels L, transi-
tions {〈[s], l, [s′]〉 | 〈s, l, s′〉 ∈ T}, initial state [s0] and goal
states {[s?] | s? ∈ S?}.

Abstraction preserves paths in the transition system and
can therefore be used to define admissible and consistent
heuristics for planning. Specifically, h∼(s) is defined as the
cost of an optimal plan starting from [s] in the abstract tran-
sition system. Practically useful abstractions should be ef-
ficiently computable and give rise to informative heuristics.
These are conflicting objectives.

We want to construct compact and informative abstrac-
tions through an iterative refinement process. Choosing a
suitable class of abstractions is critical for this. For exam-
ple, pattern databases (Edelkamp 2001) do not allow fine-
grained refinement steps, as every refinement at least dou-
bles the number of abstract states. Merge-and-shrink (M&S)

abstractions (Helmert, Haslum, and Hoffmann 2007) do not
maintain efficiently usable representations of the preimage
of an abstract state, which makes their refinement compli-
cated and expensive.

Because of these and other shortcomings, we introduce a
new class of abstractions for planning tasks that is particu-
larly suitable for abstraction refinement. To state the defi-
nition of this class and the later example more elegantly, it
is convenient to introduce a tuple notation for states. We
assume that the state variables are (arbitrarily) numbered
v1, . . . , vn and write 〈d1, . . . , dn〉 to denote the state s with
s(vi) = di for all 1 ≤ i ≤ n.

Definition 4. Cartesian sets and Cartesian abstractions.
A set of states is called Cartesian if it is of the form A1 ×
A2 × ...×An, where Ai ⊆ D(vi) for all 1 ≤ i ≤ n.

An abstraction is called Cartesian if all its abstract states
are Cartesian sets.

Figure 1, which we will discuss in detail later, shows sev-
eral examples of abstract transition systems based on Carte-
sian abstraction. The name “Cartesian abstraction” was
coined in the model-checking literature by Ball, Podelski,
and Rajamani (2001) for a concept essentially equivalent to
Def. 4. (Direct comparisons are difficult due to different
state models.) Cartesian abstractions form a fairly general
class; e. g., they include pattern databases and domain ab-
straction (Hernádvölgyi and Holte 2000) as special cases.
Unlike these, general Cartesian abstractions can have very
different levels of granularity in different parts of the ab-
stract state space. One abstract state might correspond to
a single concrete state, while another abstract state corre-
sponds to half of the states of the task.

M&S abstractions are even more general than Cartesian
abstractions because every abstraction function can be repre-
sented as a M&S abstraction, although not necessarily com-
pactly. It is open whether every Cartesian abstraction has an
equivalent M&S abstraction whose representation is at most
polynomially larger.

Abstraction Refinement Algorithm
We now describe our abstraction refinement algorithm
(Alg. 1). For a more detailed description with notes on im-
plementation details we refer to Seipp (2012). At every time,
the algorithm maintains a Cartesian abstraction T ′, which it
represents as an explicit graph. Initially, T ′ is the trivial
abstraction with only one abstract state. The algorithm iter-
atively refines the abstraction until a termination criterion is
satisfied (usually a time or memory limit). At this point, T ′
can be used to derive an admissible heuristic for state-space
search algorithms.

Each iteration of the refinement loop first computes an op-
timal solution for the current abstraction, which is returned
as a trace τ ′ (i. e., as an interleaved sequence of abstract
states and operators 〈[s′0], o1, . . . , [s

′
n−1], on, [sn]〉 that form

a minimal-cost goal path in the transition system). If no such
trace exists (τ ′ is undefined), the abstract task is unsolvable,
and hence the concrete task is also unsolvable: we are done.

Otherwise, we attempt to convert τ ′ into a concrete trace
in the FINDFLAW procedure. This procedure starts from the
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Algorithm 1 Refinement loop.
T ′← TRIVIALABSTRACTION()
while not TERMINATE() do
τ ′← FINDOPTIMALTRACE(T ′)
if τ ′ is undefined then

return task is unsolvable
ϕ← FINDFLAW(τ ′)
if ϕ is undefined (there is no flaw in τ ′) then

return plan extracted from τ ′

REFINE(T ′, ϕ)
return T ′

initial state of the concrete task and iteratively applies the
next operator in τ ′ to construct a sequence of concrete states
s0, . . . , sn until one of the following flaws is encountered:

1. Concrete state si does not fit the abstract state [s′i] in τ ′,
i. e., [si] 6= [s′i]: the concrete and abstract traces diverge.
This can happen because abstract transition systems are
not necessarily deterministic: the same state can have
multiple outgoing arcs with the same label.

2. Operator oi is not applicable in concrete state si−1.

3. The concrete trace has been completed, but sn is not a
goal state.

If none of these conditions occurs, we have found an opti-
mal solution for the concrete task and can terminate. Other-
wise, we proceed by refining the abstraction so that the same
flaw cannot arise in future iterations. In all three cases, this
is done by splitting a particular abstract state [s′] into two
abstract states [t′] and [u′].

In the case of violated preconditions (2.), we split [si−1]
into [t′] and [u′] in such a way that si−1 ∈ [t′] and oi is
inapplicable in all states in [t′]. In the case of violated goals
(3.), we split [sn] into [t′] and [u′] in such a way that sn ∈
[t′] and [t′] contains no goal states. Finally, in the case of
diverging traces (1.), we split [si−1] into [t′] and [u′] in such
a way that si−1 ∈ [t′] and applying oi to any state in [t′]
cannot lead to a state in [s′i].

2 It is not hard to verify that such
splits are always possible and that suitable abstract states
[t′] and [u′] can be computed in time O(k), where k is the
number of atoms of the planning task.

Once a suitable split has been determined, we update the
abstract transition system by replacing the state [s′] that
was split with the two new abstract states [t′] and [u′] and
“rewiring” the new states. Here we need to decide for each
incoming and outgoing transition of [s′] whether a corre-
sponding transition needs to be connected to [t′], to [u′],
or both. To do this efficiently, we exploit that for arbitrary
Cartesian sets X and Y and operators o, we can decide in
time O(k) whether a state transition from some concrete
state in X to some concrete state in Y via operator o exists.

2Performing this split involves computing the regression of [s′i]
over the operator oi. We exploit here that regressing a Cartesian
set over an operator always results in a Cartesian set. Similarly, for
cases 2. and 3., we exploit that the set of states in which a given
operator is applicable and the set of goal states are Cartesian.

{A,B} × {A,B,G}a)

{A,B} × {A,G} {A,B} × {B}b)
pick/drop-in-B

{A} × {A,G} {A,B} × {B}
{B} × {A,G}

c)

move pick/drop-in-B

{A} × {A,G} {B} × {G} {A,B} × {B}

{B} × {A}

d)

move

move pick/drop-in-B

{A} × {G} {B} × {G} {A,B} × {B}

{B} × {A}{A} × {A}

e)
move

pick/drop-in-A pick/drop-in-B

move

Figure 1: Refining the example abstraction. (Self-loops are
omitted to avoid clutter.)

Example CEGAR Abstraction

We illustrate the creation of a CEGAR abstraction with a
simple example task from the Gripper domain (McDermott
2000) consisting of a robot with a single gripper G, one
ball and two rooms A and B. Formally the SAS+ task
is Π = 〈V,O, s0, s?〉 with V = {rob, ball}, D(rob) =
{A,B}, D(ball) = {A,B,G}, O = {move-A-B, move-B-
A, pick-in-A, pick-in-B, drop-in-A, drop-in-B}, s0(rob) =
A, s0(ball) = A, s?(ball) = B.

Figure 1a shows the initial abstraction. The empty ab-
stract solution 〈〉 does not solve Π because s0 does not sat-
isfy the goal. Therefore, REFINE splits [s0] based on the
goal variable, leading to the finer abstraction in Figure 1b.

The plan 〈drop-in-B〉 does not solve Π because two pre-
conditions are violated in s0: ball = G and rob = B. We
assume that REFINE performs a split based on variable rob
(a split based on ball is also possible), leading to Figure 1c.

A further refinement step, splitting on ball, yields the sys-
tem in Figure 1d with the abstract solution 〈 move-A-B,
drop-in-B 〉. The first operator is applicable in s0 and takes
us into state s1 with s1(rob) = B and s1(ball) = A, but
the second abstract state a1 = {B} × {G} of the trace does
not abstract s1: the abstract and concrete paths diverge. Re-
gression from a1 for move-A-B yields the intermediate state
a′ = {A}×{G}, and hence REFINE must refine the abstract
initial state [s0] in such a way that a′ is separated from the
concrete state s0. The result of this refinement is shown in
Figure 1e.

The solution for this abstraction is also a valid concrete
solution, so we stop refining.
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Coverage h0 hCEGAR hiPDB hm&s
1 hm&s

2

airport (50) 19 19 (13) 20 22 15
blocks (35) 18 18 (11) 28 28 20
depot (22) 4 4 (2) 7 7 6
driverlog (20) 7 10 (6) 13 12 12
elevators-08 (30) 11 16 (2) 20 1 12
freecell (80) 14 15 (6) 20 16 3
grid (5) 1 2 (1) 3 2 3
gripper (20) 7 7 (4) 7 7 20
logistics-00 (28) 10 14 (10) 20 16 20
logistics-98 (35) 2 3 (2) 4 4 5
miconic (150) 50 55 (40) 45 50 74
mprime (35) 19 27 (23) 22 23 11
mystery (30) 18 24 (15) 22 19 12
openstacks-08 (30) 19 18 (9) 19 8 19
openstacks (30) 7 7 (5) 7 7 7
parcprinter-08 (30) 10 11 (9) 11 15 17
pathways (30) 4 4 (4) 4 4 4
pegsol-08 (30) 27 27 (8) 3 2 29
pipesworld-nt (50) 14 15 (8) 16 15 8
pipesworld-t (50) 10 12 (5) 16 16 7
psr-small (50) 49 49 (46) 49 50 49
rovers (40) 5 6 (4) 7 6 8
satellite (36) 4 6 (4) 6 6 7
scanalyzer-08 (30) 12 12 (6) 13 6 12
sokoban-08 (30) 19 19 (4) 28 3 23
tpp (30) 5 6 (5) 6 6 7
transport-08 (30) 11 11 (6) 11 11 11
trucks (30) 6 7 (4) 8 6 8
woodworking-08 (30) 7 8 (7) 6 14 9
zenotravel (20) 8 9 (8) 9 9 11
Sum (1116) 397 441 (277) 450 391 449

Table 1: Number of solved tasks by domain. For hCEGAR,
tasks solved during refinement are shown in brackets.

Experiments
We implemented CEGAR abstractions in the Fast Down-
ward system and compared them to state-of-the-art abstrac-
tion heuristics already implemented in the planner: hiPDB

(Sievers, Ortlieb, and Helmert 2012) and the two hm&s con-
figurations of IPC 2011 (Nissim, Hoffmann, and Helmert
2011). We applied a time limit of 30 minutes and memory
limit of 2 GB and let hCEGAR refine for at most 15 minutes.

Table 1 shows the number of solved instances for a num-
ber of IPC domains. While the total coverage of hCEGAR

is not as high as for hiPDB and hm&s
2 , we solve much more

tasks than hm&s
1 and the h0 (blind) baseline. We remark

that hCEGAR is much less optimized than the other abstrac-
tion heuristics, some of which have been polished for years.
Nevertheless, hCEGAR outperforms them on some domains.
In a direct comparison we solve more tasks than hiPDB, hm&s

1
and hm&s

2 on 5, 9 and 7 domains. While hCEGAR is never the
single worst performer on any domain, the other heuristics
often perform even worse than h0. Only one task is solved
by h0 but not by hCEGAR, while the other heuristics fail to
solve 30, 68, 40 tasks solved by h0. These results show that
hCEGAR is more robust than the other approaches.

Although hCEGAR typically uses far fewer abstract states,
its initial plan cost estimates are often best among all ap-
proaches. On commonly solved tasks the estimates are 38%,
134% and 21% higher than those of hiPDB, hm&s

1 and hm&s
2
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Figure 2: Initial state heuristic values for transport-08 #23.
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Figure 3: h(s0) for a subset of the domains where hCEGAR

has a better estimate of the plan cost than hiPDB.

on average. Figure 2 shows how the cost estimate for s0
grows with the number of abstract states on an example
task. The hCEGAR estimates are generally higher than those
of hiPDB and grow much more smoothly towards the perfect
estimate. This behaviour can be observed in many domains.
Figure 3 shows a comparison of initial state estimates made
by hCEGAR and hiPDB for a subset of domains.

Conclusion
We introduced a CEGAR approach for classical planning
and showed that it delivers promising performance. We be-
lieve that further performance improvements are possible
through more space-efficient abstraction representations and
speed optimizations in the refinement loop, which will en-
able larger abstractions to be generated in reasonable time.

All in all, we believe that Cartesian abstraction and
counterexample-guided abstraction refinement are useful
concepts that can contribute to the further development of
strong abstraction heuristics for automated planning.
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M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SOCS 2012), 105–111. AAAI Press.
Smaus, J.-G., and Hoffmann, J. 2009. Relaxation refine-
ment: A new method to generate heuristic functions. In
Peled, D. A., and Wooldridge, M. J., eds., Proceedings of
the 5th International Workshop on Model Checking and Ar-
tificial Intelligence (MoChArt 2008), 147–165.

351




