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Abstract

In planning, hybrid system states consisting of logical and
numerical variables are usually assumed to be completely
known. In particular, for numerical state variables full knowl-
edge of their exact values is assumed. However, in real world
applications states are results of noisy measurements and im-
perfect actuators. Therefore, a planned sequence of state tran-
sitions might fail to lead a hybrid system to the desired goal.
We show how to propagate and reason about uncertain state
information directly in the planning process, enabling hybrid
systems to find plans that satisfy numerical goals with prede-
fined confidence.

Introduction
Planning is decision-making by reasoning about predicted
future states which emerge from a current state, called ini-
tial state. Hybrid systems have numerical and logical state
variables. Which confidence has a plan in the case of uncer-
tainties within the numerical part of the initial state?

Domain Predictive Control (DPC) is a planning-based
control approach applicable to hybrid systems with finite
sets of discretizable inputs and modes, e.g., actuator, sen-
sor, or controller configurations. It suits best to systems
that involve many logical dependencies (Löhr et al. 2012).
The inherent convergence of numerical states (stability) of
switching systems cannot be guaranteed in general (Liber-
zon 2003). Therefore, DPC generates interleaved sequences
of control signals and mode switches by utilizing plannig
methods that explicitly calculate and heuristically evaluate
future states to avoid instable evolutions.

DPC has been applied in numerical time simulations to
safely land spacecraft on extraterrestrial surfaces, reacting
on changing environment information and system failures
by continuous replanning (Löhr, Nebel, and Winkler 2012).

Handling of uncertainties is very common in control of
dynamic systems (Gelb 1974). Also in path planning the
consideration of uncertainties leads to more robust results
(Blackmore, Li, and Williams 2006). Especially when esti-
mating system states by using stochastic filters like Kalman-
Filters, uncertainties play an important role (Kalman 1960).

The contribution of this paper is an extension of DPC that
allows it to guarantee predefined confidences of generated
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plans by propagating uncertainties in the initial state to pre-
dicted future states. While this extension does not directly
guarantee deployable systems based on DPC, it brings DPC
more close to applicability for real-world scenarios.

The remainder of the paper is structured as follows. After
giving some background information we show how to con-
sider uncertainties and noise in planning actions. Then the
need of planning with uncertainties in real world applica-
tions is shown by exemplifying the approach to orbital ma-
neuver planning of spacecraft. Finally, we conclude.

Planning Hybrid System Transitions
Domain Predictive Control is an approach that utilizes ac-
tion planning for the control of dynamic systems. It gen-
erates logically consistent control strategies for hybrid sys-
tems by planning sequences π = ⟨a1, a2, . . . , az⟩ of actions
ai, called plans, that lead dynamic systems from an initial
state s0 to a state satisfying the goal conditions sz ∈ s⋆. An
action ai consists of numerical input signals defined over the
duration δi of ai, and specifies which sensors, actuators and
controllers are active.

Modeling Disturbed Systems
A hybrid system state [xTn ,xTl ]T is composed of a numerical
part xn and a logical part xl. The numerical states xn ∈ Rp
evolve according to the plant dynamics

ẋn = Axn +Biu +Giw, (1)
where A ∈ Rp×p is the state matrix, B ∈ Rp×m is the input
matrix, and G ∈ Rp×g is the noise input matrix. The actuator
noise w ∈ Rg is a zero-mean Gaussian white signal.

A vector of q measurements y ∈ Rq , provided by sensors,
is given by

y = Cixn + n, (2)
where C ∈ Rq×p is the measurement matrix and the sensor
noise n ∈ Rq is a zero-mean Gaussian white signal.

The input signal
u = uff + ucl + uef ∈ Rm (3)

consists of a feed-forward input uff , an error state feedback
uef , introduced in the paragraph on reference tracking be-
low, and a closed-loop input

ucl = −Kiy (4)
due to measurement feedback via controller gainK ∈ Rm×q .
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Figure 1: Tracking the computed trajectory of the plan.

True State, Error and Estimate The true state vector
xn = x̂n + e (5)

is composed of the estimate x̂n and the error
e = [e1, e2, . . . , ep]T , where ei are random variables
defining a normally distributed uncertainty on the estimates.
Inserting Eqs. 2 to 5 into Eq. 1 leads to the dynamics of the
true state in dependency of the estimate and the error

ẋn= ˙̂xn+ė= Acl,ix̂n+Acl,ie−BiKin+Giw+Bi(uff+uef) (6)
where Acl,i = A − BiKiCi is the closed loop state matrix
switched between actions ai, but invariant during an action.

Reference Tracking During the execution of z planned
actions the system can continuously compare its mea-
surement with the expected measurements called reference
r(t) ≡ ŷ(t) = Cix̂n(t), t ∈ [t0, t0 +∑zi=1 δi] that can be ob-
tained by online trajectory computation of the plan. This
enables (future) generation of the error feedback signal

uef = Ri (r − y) = −Ri(Cie + n) (7)
reducing the errors e using the control matrix Ri ∈ Rm×q , as
depicted in Figure 1. Effects of future error state feedback
can be accounted for directly in the planning process.

Inserting Eq. 7 into Eq. 6, the state dynamics becomes
˙̂xn+ė = Acl,ix̂n+Fcl,ie−Bi(Ki+Ri)n+Giw+Biuff , (8)

where Fcl,i = A − Bi(Ki + Ri)Ci is the closed loop er-
ror state matrix . The error dynamics is called stable if all
eigenvalues of Fcl,i have negative real parts resulting in er-
ror states reducing with time (Bellman 1953). It is worth
mentioning that the evolution of x̂n is not affected by Ri. In
the following the evolution of the estimated states and the
error dynamics are treated separately.

Planning the Evolution of the Estimate
Instead of planning with the unknown true numerical state
vector xn we plan with the estimate, which is the expected
value E{xn} = x̂n of xn that is usually available in real
dynamic systems from state estimation. Since E{e} = 0 and
with (zero-mean) white noise assumption of w and n, the
expected evolution of Eqs. 6 and 8 is given by

˙̂xn(t) = Acl,i x̂n(t) +Biuff(t) (9)
within the time interval t ∈ [tk, tk + δi] of an action ai. The
effect E⊣ of an action ai on the estimated numerical state
can be obtained by discretization of Eq. 9
E⊣(ai) ∶ x̂n(tk + δi) = Φtk+δi,tk x̂n(tk) +Ψi, (10)

where Φη,ξ = eAcl,i (η−ξ),

and Ψi = ∫
tk+δi

tk
(Φtk+δi,τBiuff(τ)) dτ,

ρij = 0
ρij > 0

σi

σj

σi

σj

Figure 2: Upper border of covariance ellipses for two ran-
dom variables ei and ej with standard deviations σi and σj
and varying correlation coefficient ρij.

where Φη,ξ is the state transition matrix from time ξ to η
denoted by Φi for actions ai. This prediction of future nu-
merical estimations expressible in PDDL 2.1 (Fox and Long
2003) and can be performed directly in the planning process,
whereas Φi and Ψi can be precomputed in a way much as in
Löhr et al. (2012).

Planning the Evolution of the Error
The evolution of the error e on the estimates in Eq. 9 is given
by the remaining terms of Eq. 8:

ė(t) = Fcl,i e(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

error propagation

−Bi(Ki +Ri)n(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sensor noise

+ Giw(t).
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

actuator noise

(11)

Error Representation The direct propagation of Eq. 11
is not possible, since both error e and the time series of
the random signals n(t) and w(t) for t > t0 are unknown.
Therefore, we plan with the second central momentE{e eT }
also known as the covariance matrix P . The covariance ma-
trix defines the confidence of the current estimated state and
should be part of the planning states. The errors can be cross
correlated resulting in a symmetrically filled matrix

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1 σ2

12 . . . σ2
1p

σ2
21 σ2

2 ⋮

⋮ ⋱

σ2
p1 . . . σ2

p

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P ∈ Rp×p, (12)

where the diagonal elements σ2
i are also known as variance

of the error ei with standard deviation σi (Kamen and Su
1999). Two random variables ei and ej form elliptical re-
gions of constant probability of presence, called confidence
region. The ellipse has principal axis σi and σj and is com-
pressed and rotated depending on the correlation coefficient

ρij = σ2
ij

σiσj
of both variables. Eigenvalue decompositions

for exact calculation of the elliptical confidence region1 dur-
ing the planning process can be avoided since σi and σj are
upper borders as depicted in Figure 2.

We provide the planner with knowledge about the error
variance beside the estimated state. The covariance matrix
P is used as a stochastic entity to describe the error of the
estimation requiring p2+p

2
additional state variables Pij in

the domain model.
1The covariance ellipses can be generated by transforming

Cartesian coordinates of the unit circle with the matrix T = E
1
2 V ,

resulting from the eigenvalue decomposition of P , with eigenvalue
matrix E and modal matrix V .
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Figure 3: Confidence interval ±aσj of state xn,j within goal.

Error Propagation Using Eq. 11, we propagate the er-
ror covariance through an action ai, accounting for the error
dynamics and the additional noise terms. The error state
transition matrix Ξη,ξ = eFcl,i(η−ξ) from time ξ to η. Ξi is
denoted as error transition matrix of ai with duration δi.
• HOMOGENEOUS ERROR EVOLUTION using covariances

is well known from e.g. propagation steps in Kalman fil-
tering (Gelb 1974). The evolution of the covariance ma-
trix during an action of duration δi is given by

P (tk + δi) = Ξi P (tk) ΞTi .

• ACTUATOR NOISE wi induces more uncertainty into the
system and increases the variance of the error state during
execution of an action by

Γw = E{(Giw(t)) (Giw(τ))T }.

= ∫
tk+δi

tk
Ξtk+δi,τGiSiG

T
i ΞTtk+δi,τ dτ,

where Si is the power spectral density matrix of the actu-
ator noise acting during action ai .

• SENSOR NOISE ni induces more uncertainty into the sys-
tem and increases the covariance by

Γn = E{(−Bi(Ki +Ri)n(t)) (−Bi(Ki +Ri)n(τ))T }

= ∫
tk+δi

tk
Ξtk+δi,τBi(Ki+Ri)Ti(Ki+Ri)TBTi ΞTtk+δi,τ dτ,

where Ti is the power spectral density matrix of the sensor
noise while executing action ai.

Finally, the effect E⊣(ai) of error propagation, sensor and
actuator noise on element Pij of the covariance matrix is

Pij =
p

∑
m=1

p

∑
n=1

(Ξi jm Pmn Ξi in) + Γw ij + Γn ij, (13)

if n,w and e are zero cross-correlated. The prediction of
future error covariances is expressible in PDDL 2.1 (Fox and
Long 2003) and can be performed directly in the planning
process, whereas Ξi, Γn, and Γw can be precomputed.

Plan Confidence
We formulate numerical goals as a conjunction of intervals
x⋆n,j ∈ gj ± εj usually specified by two conjunctive goals
x⋆n,j ≤ gj + εj ∧ x⋆n,j ≥ gj − εj, where εj denotes the suf-
ficient accuracy of the desired set point. Considering confi-
dence intervals in goals is enabled by standard deviations

x̂n,j + aσj ≤ gj + εj ∧ x̂n,j − aσj ≥ gj − εj, (14)

see Figure 3. It is convenient to reformulate Eq. 14 in terms
of the available variances Pjj as follows:

a2 Pjj ≤ (gj − x̂n,j ± εj)2. (15)

A commonly used scaling factor is a = 3 for the confidence
interval of Gaussian distributions with probability density
function f(xn,j), meaning that the true state xn,j lies with
probability pj = ∫

x̂n,j+3σj
x̂n,j−3σj f(xn,j) dxn,j ≈ 99,73% within

the 3σj bounds. Formulating N goals component-wise (as
in Eq. 15) leads a probability of ∏Nj=1 pj that trajectories
satisfy the confidence intervals and herewith the goals. This
is called confidence of a plan.

Exemplary Simulation
V

R

goal

init pos

Figure 4: Nadir frame in
the spacecraft orbit ren-
dezvous problem.

The motivation to include
handling of uncertainties
into DPC arose from a
spacecraft orbit rendezvous
domain, where thrust and
coast phases of a satellite
have to be combined intel-
ligently in order to reach
a desired rendezvous po-
sition. As this domain
can be discretized and lin-
earized straight-forwardly,
DPC is well suited to gen-
erate maneuver-based ap-
proach strategies in princi-
ple. However, because ac-

tions are relatively long, small uncertainties in the initial
state typically accumulate to large errors in the goal state.
Both uncertain initial conditions and noisy thrusters and sen-
sors can affect the final position such that the found plan
leads to a potential crash with the other spacecraft. The orbit
maneuvers are planned within the Nadir frame with origin
at the goal position (Figure 4), moving on a circular orbit
around Earth. The R axis of the frame points towards the
center of the Earth, while the V axis points in flight direc-
tion (Fehse 2003).

The orbital relative dynamics can be linearized at the
nadir frame (Clohessy and Wiltshire 1960) and yield dy-
namic and input matrices of Eq. 1

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 2( 2π

TP
)

0 3( 2π
TP

)2 −2( 2π
TP

) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1
m

0
0 1

m

⎤⎥⎥⎥⎥⎥⎥⎦

,

also known as Hill equations (Hill 1878), where TP is the
orbital period time and m is the mass of the spacecraft. The
state xn = [x, y, vx, vy]T contains the position and velocity
components along the R- and V-direction of the spacecraft.
The measurement matrix C is the unit matrix I ∈ R4×4 and
the noise input matrix G equals B.

Planning Domain In this example a simplified domain
model with the actions ai defined in Table 1 is used. The
thruster provides a force in flight direction and can either be
switched on or off. A controller K is used to avoid move-
ments of the spacecraft in R direction while thrusting in V
direction. Additional possibilities of thrusting in ±R direc-
tion resulting in circular fly-around or −V direction thrusts
are not considered here for simplicity.
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Figure 5: Trajectories of nominal and robust plans. Detailed
view on Monte Carlo simulations (light grey) on the right.

The uncertainties due to noisy measurements and actua-
tors are specified in Table 2. The noise of the thrusters w is
assumed to be Gaussian white with power spectral density
(PSD) matrix S and the frequency range [−facts /2, facts /2].
The sensor noise n is also Gaussian white and the frequen-
cies of the power spectral density matrix T lie within the
spectrum [−fsenss /2, fsenss /2]. It is worth to mention that
the variance of Gaussian white noise and its PSD A are re-
lated by σ2 = A ∫

fs/2
−fs/2 df = Afs. The initial state knowledge

of the spacecraft is given by the initial covariance matrix P0.
Exemplary Planning Instance A sequence of
thrust pulses shall be planned that moves the space-
craft from xn,0 = [−26483.3m,4456.3m,7.67 m

s ,0
m
s ]
T

to the target orbit with a period of TP = 6000s
at x⋆n ∈ [0m,0m,0 m

s ,0
m
s ]
T ± ε corresponding to

a region around the origin of the Nadir frame
ε = [10m,10m,0.5 m

s ,0.5
m
s ]
T . The uncertainties of the

final positions have to lie within the desired orbit area given
by the intervals x ∈ [−500m,500m] and y ∈ [−60m,60m]
due to the adjacent other spacecraft. This is accounted
for by adding N = 2 constraints a2p⋆1,1 ≤ (x̂⋆1 ± 500m)2
and a2p⋆2,2 ≤ (x̂⋆1 ± 60m)2 to the goal conditions. Choos-
ing a = 3 leads to a predefined confidence of at least
0.9973N = 99.46% of the plan, if the covariance is
accounted for during planning.
Results The result of the planning process without prop-
agation of the error state covariance using Temporal Fast
Downward (Eyerich, Mattmüller, and Röger 2009) is
π1 = ⟨a2, a1, a2, a2, a1, a1, a2, a3, a1, a3⟩. The planned tra-
jectory is shown in Figure 5 and hits the designated goal
position. However, uncertainties of the initial states and dis-
turbances during plan execution let the spacecraft possibly
crash with the target spacecraft (see Figure 6A).

Propagating the covariance matrix during planning yields
the plan π2 = ⟨a1, a2, a2, a3, a1, a2, a3, a1, a2⟩. It reaches
the goal position and makes the 3σ confidence ellipse of e1
and e2 matching the desired orbit zone, see Figure 6B.

Allowing for one reference tracking phase with ac-

ai duration dynamic error actuator sensor uff

δi controller controller PSD PSD

1 TP
2 0 ∈ R2×4 0 ∈ R2×4 0 ∈ R4×4 T [0,0]T N

2 100 s K 0 ∈ R2×4 S T [0,1]T N
3 50 s K 0 ∈ R2×4 S T [0,1]T N
4 TP

2 0 ∈ R2×4 R S T [0,0]T N

Table 1: Set of actions.
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Figure 6: Trajectories close to the goal positions and final
3σ confidence ellipses: (A) without and (B) with covariance
propagation, (C) with planned reference tracking phase.

tive error controller R (in action a4) leads to plan
π3 = ⟨a2, a1, a2, a2, a1, a1, a2, a3, a4, a3⟩. The evolution of
x̂n is identical to π1. However, the planned reference track-
ing phase actively damps out the error states and leads to a
final state satisfying the goal conditions, see Figure 6C.

In conclusion, plans π2 and π3, computed in a couple of
seconds, ensure that the goal position is reached with the
predefined confidence by either reordering actions intelli-
gently (π2) or by performing reference tracking (π3). In con-
trast, planning without reasoning about errors and uncertain-
ties (π1) does not give any information about the probability
to reach the goal position.

Parameter Value
m 300 kg

facts , fsenss 10 Hz, 1 Hz

P0 diag[4.5m2,4m2,3.125 10−6 m2

s2
,1.225 10−5 m2

s2
]

S diag[10−5 N2

Hz ,10
−5 N2

Hz ]
T diag[4.5 m2

Hz ,4
m2

Hz ,3.125 10−6 m2

s2Hz
,1.225 10−5 m2

s2Hz
]

K [0,0,0,2m( 2π
TP

); 0,3m( 2π
TP

)2,−2m( 2π
TP

),0]
R [0.0001,0,0.02,0.6283; 0,0.0011,−0.6283,0.02]

Table 2: Model and simulation parameters.

Conclusion
The success of planning-based guidance of hybrid systems is
sensitive to the uncertainty of the initial state and the noise
induced by sensors and actuators. Estimates of states and
their covariances are usually available in autonomous sys-
tems and the power spectral density of induced noises are
known properties of sensors and actuators. These are suit-
able entities for the enhancement of planning domains and
the exploitation of this additional information leads to more
robust results, as exemplary shown in the spacecraft ren-
dezvous domain. Nevertheless, the propagation of covari-
ances during planning is costly due to the additional numer-
ical states. However, beside intelligent reordering of actions
to fulfill a predefined confidence, the propagation of covari-
ances enables the planner to reason about reference tracking
phases which opens completely new fields of applications.
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