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Abstract

An elegant way to tackle a problem that you cannot
solve is to cast it to a problem that you can solve
very well. Cyclic Scheduling problems are very simi-
lar to Resource Constrained Project Scheduling Prob-
lems (RCPSP), except that the project activities are re-
peated over time. Due to the similarity, reducing Cyclic
Scheduling problems to RCPSPs seems an appealing
approach. In this paper we discuss four methods to
perform the reduction. The first two are existing tech-
niques. The remaining ones are novel and include the
first (to the best of our knowledge) equivalent RCPSP
formulation of a cyclic problem. We compare the pre-
sented approaches in an experimental evaluation.

Introduction
The classical Resource Constrained Project Scheduling
Problem (RCPSP) consists in ordering a set A of activities
ai, connected by a set E of precedence constraints (ai, aj).
The two sets form the so-called Project Graph. Each activity
has a fixed duration di and requires some amount of one or
more resources with limited capacity. For sake of simplicity
we consider here a single resource with capacity c and re-
fer to the requirements as rqi. The objective is to minimize
the makespan. Cyclic scheduling problems (see e.g. [Draper
et al., 1999; Hanen, 1994]) are very similar, with the main
difference that activities are repeated indefinitely over time.

We refer as 〈i, ω〉 to the ω-th execution of activity ai,
where ω ∈ Z is called execution number. A schedule is an
assignment of a start time s(i, ω) to each 〈i, ω〉 and has in
principle infinite size. From a practical perspective, one is
typically interested in finding a periodic schedule, where:

s(i, ω) = s(i, 0) + ω · λ (1)

where λ ≥ 0 is the period and measures the solution quality:
the lower the period, the better the schedule.

As a second difference w.r.t. the RCPSP, precedence con-
straints may link activity executions with different ω. In de-
tail, each arc (ai, aj) ∈ E is labeled with a delay δi,j and
means that 〈j, ω〉 must wait for the end of 〈i, ω − δi,j〉. In
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Figure 1: A) A Cyclic Scheduling Problem. B) A Periodic
Schedule.

other words, the execution 0 of aj must wait for at least δi,j
executions of ai before it can start. Formally:

s(j, ω) ≥ s(i, ω − δi,j) + di (2)

In the case of a periodic schedule, Equation (2) becomes:

s(j, 0) + ω · λ ≥ s(i, 0) + di + (ω − δi,j) · λ (3)

i.e. s(j, 0) ≥ s(i, 0) + di − δi,j · λ (4)

which is not dependent on ω. Hence, if the constraints are
satisfied for ω = 0, then they are satisfied in general.

Figure 1A shows a problem instance. Note that arcs with
δi,j > 0 may lead to feasible cycles in the Project Graph.
Figure 1B shows the corresponding optimal periodic sched-
ule. We refer as makespan to the length of the interval
spanned by all the executions having the same ω value. The
makespan may be considerably larger than the period (9 time
units vs 4 in the figure). As a consequence, different sched-
ule executions may require the resource concurrently.

Cyclic Scheduling problems can be solved via ad hoc ap-
proaches, based on Integer Linear Programming (e.g. [Ar-
tigues et al., 2012]), Constraint Programming (e.g. [Bonfietti
et al., 2012]) or specialized heuristics (e.g. [Blachot, Dupont
de Dinechin, and Huard, 2006]). It seems however reason-
able to tackle Cyclic Scheduling problems by casting them
to a RCPSP, since this allows the application of all the con-
straint techniques developed for traditional scheduling prob-
lems [Baptiste, Le Pape, and Nuijten, 2001]. In the follow-
ing, we discuss four methods to perform the reduction. The
first two are existing techniques based on simplifying as-
sumptions, that can therefore incur a loss of optimality. The
third method is novel and consists in the first (to the best of
our knowledge) equivalent RCPSP formulation of a cyclic
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Figure 2: A) An optimal blocked schedule. B) Unfolded
graph with u = 2. C) An unfolded schedule.

problem. The fourth method leads to a quasi-RCPSP formu-
lation, which can however be modeled by many constraint
solvers without ad hoc extensions.

Existing Reduction Approaches
Blocked Scheduling: Blocked Scheduling is the most
straightforward reduction approach and consists in forcing
the period to be equal to the makespan. Formally:

λ = maxai∈A {s(i, 0) + di} (5)

As a consequence, all precedence constraints with δi,j > 0
are trivially satisfied, since Equations (4) are in the form
s(i, 0) ≥ θ, with θ ≤ 0. Moreover, executions with different
ω do not compete for the resource. Hence, a periodic sched-
ule can be obtained by: 1) removing the arcs with δi,j > 0.
2) Solving the problem as a classical RCPSP. The solution
becomes the schedule for execution 0. An optimal blocked
schedule for our example is shown in Figure 2A. The ap-
proach is easy to implement, but may incur a substantial loss
of solution quality (e.g. in the figure λ changes from 4 to 9).

Unfolded Scheduling: The Unfolded Scheduling technique
[Parhi and Messerschmitt, 1991] improves over Blocked
Scheduling by adding a preprocessing step. This consists in
obtaining a new graph, representing a number u (a.k.a. un-
folding factor) of consecutive executions. Figure 2B shows
the unfolded graph with u = 2 for the example problem,
which contains two replicas of each activity.

Then, a solution is obtained via Blocked Scheduling. Fig-
ure 2C shows an optimal schedule for the unfolded example
graph. The schedule follows a periodic pattern every u rep-
etitions. The corresponding macro-period in this case is 13,
corresponding to an ‘average λ’ of 6.5. Unfolded Schedul-
ing achieves better period values by allowing different ex-
ecutions to overlap, at the price of solving a larger RCPSP.
Determining the optimal unfolding factor is not trivial, since
increasing u does not necessarily decrease the period.

Novel Formulation
In the following we outline a novel technique to solve a
Cyclic Scheduling problem as a RCPSP that incurs no loss

of optimality. We focus on the feasibility version of the prob-
lem, i.e. finding a feasible periodic schedule with period
equal to a fixed value λ0. Optimization can be done by per-
forming (e.g.) binary search on the possible λ0 values.

Dealing with Precedence Constraints: Since the period is
fixed, the precedence constraints from Equation (4) become:

s(j, 0) ≥ s(i, 0) + di − δi,j · λ0 (6)

If di− δi,j ·λ0 ≥ 0, then we have a start-to-start precedence
constraint with a minimal time lag (an end-to-start constraint
if δi,j = 0). If instead di − δi,j · λ0 < 0, then we get:

s(i, 0)− s(j, 0) ≤ |di − δi,j · λ0| (7)

that is, a start-to-start precedence constraint between aj and
ai with a maximal time lag. Therefore we can model the
temporal constraints by building a RCPSP with an activity
for each execution 〈i, 0〉 and by adding arcs as from Equa-
tion (6). Figure 3A shows the RCPSP for the problem from
Figure 1A, with λ0 = 4. Note that the arc (a1, a0) with
δ1,0 = 1 has become a start-to-start arc between a0 and a1,
with maximal time lag equal to |d1 − δ1,0 · λ0| = 3.

Dealing with Resource Constraints: We take into account
cyclic resource restrictions by modeling multiple executions
as additional RCPSP activities. We also constrain the activi-
ties representing consecutive executions so that:

s(i, ω + 1) = s(i, ω) + λ0 (8)

Hence we retain the periodicity, while in Unfolded Schedul-
ing the solver is free to assign non-periodic start times. As
a consequence, the precedence constraints for execution 0
hold for every ω and there is no need to compute an unfolded
graph. Now, we call a modular interval a time interval in the
form [t, t+ λ0[ with t ∈ R. For a periodic schedule:

Statement 1. If the resource constraints are satisfied on a
modular interval I , they are satisfied on the whole schedule.

Statement 2. Any modular interval I contains the start time
of exactly one execution of each activity, i.e.:

∀ai ∈ A , ∃!ω ∈ Z : s(i, ω) ∈ I (9)

Both the statements follow directly from Equation (1).
Hence, our goal is to use additional activities and constraints
to provide a correct model of at least one modular interval.

Now, let us assume an upper bound M on the makespan
of a periodic schedule is available. Due to the periodicity
constraints, no more than ρ = 	M/λ0


 executions of the
periodic schedule can overlap in a single modular interval.
Hence, it is enough to build ρ replicas of each activity ai,
corresponding to executions 〈i, 0〉 ... 〈i, ρ− 1〉. For the ex-
ample graph, assuming M = 11, we have to build 3 replicas
of each activity (see Figure 3B). The start times of the repli-
cas representing consecutive execution obey the periodicity
constraints, depicted as dashed double arrows.

We now need to make sure that there exists a modular in-
terval which is guaranteed to contain the start time of exactly
one of the replicas of each ai (see Statement 2). Due to the
periodicity constraints (8), this is equivalent to proving that
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Figure 3: A) The equivalent RCPSP for the precedence con-
straints. B) The equivalent RCPSP for the full problem.
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Figure 4: A) Part of a periodic schedule. B) Base and peak
functions. C) Peak function crossing the interval boundaries.

at least one replica starts in the interval. Now, since M is a
makespan bound, with no loss of generality we can post:

s(i, 0) ≥ 0 and s(i, 0) + di ≤M, ∀ai ∈ A (10)

Now, consider the modular interval I∗ = [M − λ0,M [. Let
us assume by contradiction that no replica of ai starts in I∗.
This means that either s(i, ρ−1) < M−λ0 or s(i, 0) ≥M .
However, assuming di > 0:

s(i, ρ− 1) < M − λ0 ⇒ s(i, 0) < 0 (11)

s(i, 0) ≥M ⇒ s(i, 0) + di > M (12)

Since s(i, ω) = s(i, 0) + ω · λ0 and ρ =
⌈
M/λ0

⌉
. If di = 0

there is no resource usage at all. Therefore, Constraints (10)
guarantee that the modular interval I∗ contains the start time
of at least one replica of each activity.

Equivalent RCPSP Formulation: In summary, our equiva-
lent RCPSP formulation consists in the following Constraint
Satisfaction Problem (CSP):

s(i, ω + 1) = s(i, ω) ∀ai ∈ A,ω ∈ 0..ρ− 2 (13)

s(j, 0) ≥ s(i, 0) + di − δi,j · λ0 ∀(ai, aj) ∈ E (14)

cumulative([s(i, ω)], [di], [rqi], c) (15)

s(i, ω) ∈ [0..M − di[ ∀ai ∈ A,ω ∈ 0..ρ− 1 (16)

where in Equation (15) we use the classical cumulative con-
straint [Baptiste, Le Pape, and Nuijten, 2001] to model re-
source capacity restrictions. With [s(i, ω)] we refer to the
vector of all execution start variables. We assume the [di]
and [rqi,k] vectors are adjusted to match the size of [s(i, ω)].

Computing a Makespan Bound: By makespan bound we
mean an upper bound on the makespan of a feasible peri-
odic schedule. Here we propose two partial bounds (M0 and

M1), which respectively guarantee the satisfaction of prece-
dence and resource constraints. A valid makespan bound is
given by max(M0,M1). The bounds require to have δi,j ≥
0 for all arcs, which is true in all known Cyclic Scheduling
applications. We also recall that the original cyclic problem
has no time window and no time lag. Then:

Theorem 1. Assuming no resource restriction is enforced,
than a feasible schedule exists iff there is a feasible schedule
with makespan ≤M0 =

∑
ai∈A di.

Proof. We need to show that there exists a schedule with
makespan≤M0 that satisfies all the precedence constraints.
If δi,j = 0 for each arc, then Constraints (6) are classical

end-to-start precedence relations and M0 is a well-known
valid bound. Any δi,j > 0 leads to a reduction of the tem-
poral distance between ai and aj , possibly making it nega-
tive. This may render the problem infeasible, but it cannot
increase the length of any feasible schedule.

We can obtain a second bound, by reasoning on the resource
constraints alone. The bound builds on the following theo-
rem (from [Lombardi et al., 2011]):

Theorem 2. The resource usage due to the overlapping
executions of ai in a modular interval I is the sum of a
base and a peak function. The base function has height
rqi ·

⌊
di/λ0

⌋
and spans the whole interval. The peak func-

tion has height rqi, length di mod λ0, starts (within I) at
s(0, 0) mod λ0, and can “cross” the interval boundary.
Figures 4B and C show the cumulative usage of activities a2
and a3 in the modular interval from Figure 4A. Note that the
peak function of a3 crosses the interval boundary.

Theorem 3. Assuming no precedence restriction is en-
forced, then a feasible schedule exists iff there is a feasible
schedule with makespan ≤M1 = maxai∈A (λ0 + di).
Proof. As a consequence of Theorem 2, the existence of a
resource-feasible schedule depends only on the start time of
the peak functions. If s(i, 0) + di < λ0 + di, then the start
times of the peak functions, i.e. s(i, 0) mod λ0, are free to
take any value in the modular interval [0, λ0[.

Performing Period Optimization: We can find the optimal
period for a Cyclic Scheduling problem by performing bi-
nary or linear search on λ. A valid lower bound on λ (based

on the resource constraints) is
∑

ai
rqi·di/c. Possibly better

bounds can be computed via more advanced techniques (see
[Artigues et al., 2012]) . A valid upper bound for the period
is M0, which corresponds to the blocked scheduling case.

Quasi-RCPSP Formulation: Here we describe another re-
formulation for the Cyclic Scheduling problem. This is tech-
nically not a RCPSP, but the resulting model can be han-
dled without custom extensions by several constraint solvers
(such as IBM ILOG CP Optimizer [IBM Corp., 2012]).

The main idea is to to build a schedule for the peak func-
tions appearing in the the modular interval [0, λ0[. From
Theorem 2 we know that the base function of each activity
permanently consumes a portion of the resource capacity.
This can be modeled by reducing the capacity c to:

c = c−∑
ai∈A rqi ·

⌊
di/λ0

⌋
(17)
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Figure 5: A) Quasi-RCPSP formulation. B,C) A solution for
the Quasi-RCPSP formulation

The remaining resource usage is due to the peak functions,
which we model via RCSP activities ai (referred to as re-
duced activities). Each ai has duration di = di mod λ0

and resource requirement equal to rqi. For each ai we intro-
duce a start time variable s(i), ranging in [0..λ0[. Then, we
need to model the precedence and the resource constraints.

The problem with the precedence constraints is that they
are defined for the s(i, 0) variables rather than for the s(i)
ones. However, from Theorem 2 we know that s(i) = s(i, 0)
mod λ0 or, equivalently:

s(i, 0) = s(i) + b(i) · λ0 (18)

We use integer decision variables to represent the b(i) val-
ues. Their domain can be limited to {0..ρ − 1}, since we
know that s(i, 0) ≤ M . By combining Equation (18) and
(6), we can reformulate every arc (ai, aj) as:

s(j) + b(j) · λ0 ≥ s(i) + b(i) · λ0 + di − δi,j · λ0 (19)

which is an end-to-start precedence constraint with a

decision-dependent time lag, equal to (b(i)−δi,j−b(j))·λ0.
This is fairly easy to model with modern constraint systems.

The resource constraints can be modeled exactly as in the
previous formulation. As a considerable advantage, since

s(i) < λ0 and d < λ0, the makespan for the schedule of
peak functions is always strictly lower than 2 · λ0. As a con-
sequence, it is sufficient to introduce a single replica a′i of
each reduced activity ai. The start time of the replica will
be s′(i) = s(i) + λ0. Figure 5A shows the graph for the
reformulation of the example problem. Figure 5B and C re-
spectively show an optimal solution and the corresponding
schedule of the peak functions.

Experiments
We finally compare the performance of the approaches
discussed in the paper on 200 synthetically generated in-
stances1 with 5 to 25 activities and a resource with large
capacity (the most interesting case for cyclic scheduling).

We solved the unfolded formulation with IBM ILOG CP
1.5 and the schedule-or-postpone search strategy, with un-
folding factor u up to 5 (u = 1 is Blocked Scheduling). For

1The instances are available for download at http://ai.unibo.it/
data/de-cycling.

u=1 u=3 u=5 RCPSP Q-RCPSP

N TIME TIME GAP TIME GAP TIME GAP TIME GAP

5 0.01 0.01 -55.18% 0.41 -68.99% 3.55 -72.43% 2.17 -72.57%

10 0.01 0.59 -37.55% 2.03 -49.43% 3.27 -57.88% 4.65 -58.33%

15 0.01 1.71 -33.75% 4.51 -39.58% 4.04 -44.35% 5.16 -45.01%

20 0.02 3.1 -36.76% 7.4 -41.31% 5.08 -43.17% 5.55 -44.70%

25 0.026 4.65 -31.58% 8.03 -33.84% 6.01 -34.51% 5.17 -36.18%

30 0.067 9.72 -22.39% 11.71 -22.1% 7.12 -21.96% 6.09 -24.12%

35 0.089 11.14 -18.14% 12.94 -10.02% 7.42 -15.33% 5.55 -17.47%

40 0.14 11.73 -13.28% 14.00 -13.02% 6.61 -13.14% 5.29 -15.15%

45 2.65 11.74 -12.54% 14.65 -12.11% 8.71 -12.19% 5.83 -13.99%

50 3.98 13.08 -8.46% 15.11 -8.06% 8.31 -8.56% 6.53 -10.49%

Table 1: Results of the comparison

the two novel formulations (referred to as RCPSP and Q-

RCPSP) we employed the CP Optimizer from IBM ILOG
CPLEX Studio 12.4, with default search. In all cases, opti-
mization is performed via binary search, with a time limit
of 2 seconds on each step: this makes the whole process
heuristic, which is common for practical usage settings of
Cyclic Scheduling. For each approach we report in Table 1
the average solution time and the average gap over Blocked

Scheduling, computed as (λ∗
approach−λ∗

blocked )/λ∗
blocked

. The re-
sults are grouped by the number N of activities.

Blocked Scheduling is the fastest approach, but yields the
worst quality solutions. Increasing the unfolding factor leads
to lower period values, at the cost of a higher solution time
(although mitigated by the 2 sec. time limit). The novel for-
mulations (in particular the Q-RCPSP one) are faster than
Unfolded Scheduling and find higher quality solutions. This
is a remarkable result, since both the approaches are easier to
implement than Unfolded Scheduling. On larger graphs, the
2 sec. time limit becomes a bit too tight for the largest un-
folding factors and the RCPSP formulation, causing a small
decrease of performance. The Q-RCPSP method in unaf-
fected, since it always contains only two replicas of each
activity. Finally, our largest graphs have a higher number
of possibly overlapping activities, which makes it easier for
Blocked Scheduling to exploit the resource and explains the
strong gap decrease from N = 5 to N = 50.

Conclusions
We have introduced the first (to be best of our knowl-
edge) equivalent RCPSP reformulation and a more efficient,
RCPSP based, CSP model. The novel formulations consid-
erably improve over the existing ones in our experimenta-
tion and they are easy to implement. Possible developments
include devising tighter makespan bounds. By combining
the novel formulations with an unfolding step it is possi-
ble to obtain so-called K-periodic schedules [Hanen, 1994;
Kampmeyer, 2006], which are known to dominate periodic
schedules in the presence of limited capacity resources. We
also plan to extend the comparison to include ad hoc ap-
proaches, such as those mentioned in the introduction.
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