
Plan Repair for Resource Constrained Tasks
via Numeric Macro Actions

Enrico Scala
Dipartimento di Informatica - Universita’ Di Torino

C.so Svizzera 185, Turin, Italy
scala@di.unito.it

Abstract

The paper addresses the problem of plan repair for tasks
involving mandatory constraints on consumable and
continuous resources, modeled as numeric fluents. The
approach starts by proposing a new notion of numeric
macro actions allowing to handle - as an extension to
the classical macro action formulation - conditions and
operations not only on the propositional fragment, but
also on the numeric one. By reasoning directly on the
current plan, the paper shows two techniques for select-
ing useful macro actions. Such macro actions, toghether
with the original actions model, are then used by an off-
the-shelf numeric planner for a faster plan repair task.
To evaluate the techniques and the contribution of nu-
meric macro actions, we experimented the approach on
several numeric planning domains using Metric-FF as
off-the-shelf planner. Results show that both strategies
enhance the performance of the same planning system
without macro actions. Even, one of the strategies turns
out to be very competitive also with the specialized plan
repair system LPG-ADAPT, both in terms of cpu-time,
and stability of the repaired plan.

Introduction
The success of plan execution in real world domains can be
several times compromised because of the occurrence of un-
expected contingencies. Exogenous events, wrong assump-
tions on the state of the world or new goals to be achieved
must be taken into account all along the task to accomplish.

Some uncertainty can be anticipated at planning time via
conformant or contingent planning (Hoffmann and Brafman
2006; 2005), but the computational complexity of the arising
planning problem would pose a severe bound on the applica-
bility of these approaches in realistic scenarios; for instance
conformant planning is EXPSPACE-complete, see (Haslum
and Jonsson 2000).

As an alternative to these approaches, many authors sug-
gest the continual planning paradigm (desJardins et al. 1999;
Brenner and Nebel 2009; Ghallab, Nau, and Traverso 2014)
as a viable and effective solution to the problem of plan ex-
ecution in dynamic environments. Basically, in a continual
planning approach an agent is allowed to interleave planning

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and execution all along the plan execution; in this way she
can take into account unexpected situations (including new
and/or different goals to achieve) once they actually arise.
Of course, the efficiency of the replanning becomes crucial
for reacting in a timely fashion. To this end, despite con-
trasting complexity results (Nebel and Koehler 1995), sev-
eral approaches have adopted plan repair techniques, such as
(Gerevini and Serina 2010; Garrido, C., and Onaindia 2010;
van der Krogt R. and de Weerdt M. 2005; Cushing and
Kambhampati 2005).

While such approaches provide an empirical evidence of
the benefit of plan repair over replanning from scratch, the
current methodologies are mainly focused on the mainte-
nance of propositional conditions. Research on plans involv-
ing consumable and continuous resources has been mostly
devoted to the problem of (off-line) plan generation (Hoff-
mann 2003; Do and Kambhampati 2003; Coles et al. 2012;
Gerevini, Saetti, and Serina 2008). To the best of our knowl-
edge, the only system supporting numeric fluents in a plan
repair modality, and hence able to handle consumable and
continuous resources (Fox and Long 2003), is the one re-
ported in (Fox et al. 2006).

The main contribution of this paper is a new method for
the plan repair problem involving continuous and consum-
able resources, modeled as numeric fluents. The approach
grounds on the introduction of numeric macro actions. In
extension to the classical macro action formulation (Botea et
al. 2005), a numeric macro action captures not only propo-
sitional conditions, but also (i) the sufficient and necessary
numeric conditions for the valid applicability of a sequence
of actions, and (ii) how this sequence affects the numeric
part of the current state (e.g., the impact on the resources).
The paper will show how such aspects can be formulated
as regular numeric preconditions and effects of PDDL 2.1
actions (Fox and Long 2003).

As previous approaches to the plan repair problem, we ex-
pect that, for the resolution of small deviations from the pre-
dicted trajectory (included unexpected resources consump-
tion), the prior knowledge can benefit the efficiency of the
plan repair task. The motivation of adopting a plan reuse
step is even stronger considering all those scenarios where
stability is a critical issue (Fox et al. 2006).

In this perspective, the paper presents two strategies for
selecting useful numeric macro actions directly from the

280

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

plan in execution. Both strategies generate an enhanced do-
main representation to be used in combination to an off-the-
shelf numeric planner. Provided that the underlying plan-
ner used is complete, the enhancement does not prevent the
completeness of the approach as also the original model of
the actions is considered.

These strategies are implemented in a (planner indepen-
dent) continual planning system handling dynamic envi-
ronments and changing goals. To evaluate the mechanism,
the strategies have been experimented over several numeric
planning domains from the planning competition, and have
been compared with LPG-ADAPT, the plan repair version
of LPG (Gerevini, Saetti, and Serina 2008), and Metric-
FF (Hoffmann 2003), which simulates a replanning from
scratch methodology.

After a brief introduction on the formalism and the prob-
lem of reference, we present the method for building macro
actions and these two plan repair strategies; then we describe
how these strategies are implemented in a continual planning
system. Finally, an experimental section is reported.

Motivating Example
To exemplify the mechanism that we propose in this pa-
per, we consider a simple instance of problem from the nu-
meric version of the ZenoTravel domain1. Assume to have
3 cities (c1,c2,c3) 2 airplane (a1,a2) and 2 passen-
gers (p1,p2) and that our initial planning task involves
as goal that the passenger p1 must be in c2, and as ini-
tial state that all the airplanes and the passengers are in c1.
A solution for this planning task is (board a1 p1 c1)
(fly a1 c1 c2) (debark a1 p1 c2). Note that,
differently from the classical version, here actions encom-
pass numeric conditions and effects. For instance, the fly
action is possible only when there is enough fuel, and such
fuel will be consumed after its execution.

Imagine that, just before the board starting, the user de-
cides that also p2 must be moved from c1 to c3.

It is clear that the sub-plan for ”moving passenger p1
from c1 to c2” is still feasible, despite the goal modifi-
cation. The idea of this paper is to exploit this knowledge
in form of macro action, and provide such a knowledge to
the planner. In addition to previous works on macro actions,
here we need to model resource profiles as well.

By using macro actions, we expect (i) an enhancement
on the time performance of the planner, and (ii) that plans
remain quite stable. Similarly to (Fox et al. 2006), we would
like in fact that the system advantages situations exploiting
past decisions, like for instance that the passenger p1 takes
the airplane a1.

Background
This section reports the reference planning language and the
plan repair problem we are interested in. We assume the
reader is familiar to the PDDL terminology (Fox and Long
2003).

1Zenotravel is one of the most widely employed benchmark do-
mains in the international planning competitions. For details see
http://ipc.icaps-conference.org/.

Basic Definitions
In line with the PDDL 2.1 formulation, we model consum-
able and continuous resources by means of numeric fluents.
A numeric fluent is a special function mapping set of objects
to a real value (e.g., (fuel a1)). Therefore, a world state
has to specify each numeric fluent value of interest. Extend-
ing to the classical representation, we formally have:

Definition 1 (World State) A world state is built upon a set
F of propositions and a set X of numeric variables. Thus a
state s is a pair < F (s), X(s) >, where F(s) is the set of
atoms that are true in s (Closed World Assumption) and X(s)
is an assignment in Q for each numeric variable in X.

A world state in our formalism changes by means of nu-
meric actions. Formally:

Definition 2 (Numeric Action) Given F and X as defined
above, a numeric action ”a” is a pair < pre(a), eff(a) >
where:

• ”pre(a)” is the applicability condition for ”a”; it consists
of:
– a numeric part (prenum(a)), i.e. a set of comparisons

of the form (exp {<,≤,=,≥,>} exp’).
– a propositional part (preprop(a)), i.e. a set of proposi-

tions defined over F .
• ”eff(a)” is the effects set of a; it consists of:

– a set of numeric operations (effnum(a)) of the form
(f ,op,exp), where f ∈ X is the numeric fluent affected
by the operation op, which is one of {+ =,− =,=}.

– an ”add” and a ”delete” list (eff+(a) and eff−(a)),
which respectively formulate the propositions produced
and deleted after the action execution

Here, exp and exp’ are arithmetic expressions involving
variables from X . An expression is recursively defined in
terms of (i) a constant in Q (ii) a numeric fluent (iii) an
arithmetical combination among {+,*,/,-} of expressions2.

An action a is said to be applicable in a state s iff its propo-
sitional and numeric preconditions are satisfied by s. Mean-
ing that (i) preprop(a) ⊆ F(s) and (ii) prenum(a) must be
satisfied (in the arithmetical sense) by X(s).

Given a state s and a numeric action a (such that a is
applicable in s), the application of a in s, denoted by s[a],
(deterministically) produces a new state s′ as follows. s′ is
initialized to be s; each atom present in eff+(a) is added
to F (s′) (whether this is not already present); each atom
present in eff−(a) is removed from F (s′); each numeric
fluent f such that (f ,op,exp) ∈ effnum(a) is modified ac-
cording to the exp and the op involved.

The state obtained by a non applicable action is undefined.
An undefined state does not satisfy any condition.

2For computational reasons, several numeric planners request
such expressions to be linear (Hoffmann 2003; Coles et al. 2012).
In our case, such a restriction is not necessary for the implementa-
tion of macro action. However, it becomes newly necessary once a
numeric planner has to be used.

281

Having defined a state and the underlying state transition
system given by the formulation of numeric actions, the fol-
lowing defines how a numeric plan can be obtained as a so-
lution of a Numeric Planning Problem.

Definition 3 (Numeric Planning Problem) A numeric
planning problem Π is the tuple < s0, G,A > where, s0
is the intial state, G3 is a goal condition and A is a set of
ground actions. A solution for Π is a total ordered set of n
actions from A such that the (ordered) execution of these
actions transforms s0 into a state sn where G is satisfied.

As we are interested in reasoning about (sub)sequences
of actions, given the formulation above, we allow the ac-
cess to a segment of the plan by subscripting the plan sym-
bol. More precisely, πi→j with i < j identifies the sub-plan
starting from the i-th till the j-th action. Moreover when the
right bound is omitted the length of the plan is assumed, i.e.
πi ≡ πi→|π|. Finally, we identify by s[π] the state produced
executing π starting from s.

Following the plan validity conditions defined in (Fritz
and McIlraith 2007) and extended for the numeric setting in
(Scala 2013), we consider the plan valid (and hence ”exe-
cutable”) for a state si and a goal G, when the kernel associ-
ated to the suffix plan πi is satisfied by si.

In real world dynamic environments, a plan has a very
low chance to be valid till the end of the mission. There
are many reasons why this could happen; there may be un-
expected resources consumptions, some exogenous events
may invalidate the current solution, the user may request a
different set of goals. Assuming that, in order to monitor the
current plan execution, the agent is capable of observing the
environment where it is operating, similarly to the dynamic
planning problem defined in (Fox et al. 2006), we can define
a numeric plan repair problem (for an invalid plan) at the i-th
step of the execution as follows:

Definition 4 (Numeric Plan Repair Problem) A numeric
plan repair problem Ψ is the tuple < si, G

′, A, πi > where
si is the state observed after the execution of the (i-1)-th ac-
tion from the plan π , G′ is a new set of goals4, A is the
universe of actions we are considering, and πi is the suffix
of the plan still to be executed. A solution for Ψ is a totally
ordered set of actions from A such that the execution of these
actions brings the state si to a state satisfying the conditions
expressed in G′.

As highlighted in (Fox et al. 2006), even if some mod-
ifications could be necessary, in several scenarios it is re-
quested that plans should remain as close as possible to the
original formulation. For this reason, we consider optimal
the plan solution for Ψ that minimizes the distance from the
starting solution plan πi. As metric for measuring this dis-
tance we exploit the action based distance defined in (Fox
et al. 2006)5. That is, given two plans π and π′ the distance

3A goal condition is expressed as an action precondition.
4G′ represents a variation w.r.t. the initial goal, where some

predicate/comparison could be added/removed.
5This distance has been also exploited in (Nguyen et al. 2012)

for finding ”diverse” plans.

D(π, π′) is the sum of the number of actions in π that are
not in π′ with the number of actions in π′ but not in π.

Numeric Macro Actions
The work by (Botea et al. 2005) presents a mechanism for
the macro actions construction for classical planning. The
approach relies on combining (incrementally) pairs of (suc-
cessive) actions; the result is a macro action that keeps trace
of the progressive effects of these actions with the regressive
conditions that are necessary for executing such actions.

The construction mechanism reported in this section in-
herits this two basic steps, extending the work for handling
also the numeric characteristic of the model of the action.

For clarity reasons, in the following we will focus just on
the numeric aspect of the macro action creation6. In particu-
lar, given an actions sequence P, the objective is to infer:

• what are the numerical conditions for the execution of P,
(e.g., the minimum amount of the power needed for the
execution of a set of fly actions)

• what is the numeric contribution of executing P, (e.g., the
overall amount of fuel consumed by the system after the
execution of actions in P).

The crucial step refers to the way in which a pair of ac-
tions is combined; having defined this, it suffices to repeat
the step as many actions the sequence of interest consists of.
Algorithm 1 summarizes the procedure for the construction
of a numeric macro action c starting from actions a and b.

As a first step, the routine unifies the parameters and the
names of a and b. Doing so, we have a way to recognize
the primitive actions the resulting macro action comprises.
For instance, if we merge the board (p1,a1,c1) ac-
tion with the fly (a1,c1,c2) action, then we will have
the action board_fly(p1,a1,c1,c2). Afterwards, the
action must express which are the conditions for the appli-
cability of a followed by b.

While the preconditions of a must be added - without any
modification - in the set of preconditions of the macro action
(line 6), we must take care somehow also of the precondi-
tions expressed in the b model (lines 4 and 5).

To capture this aspect, the numeric preconditions of b
have to be regressed toward a by keeping trace of all the nu-
meric effects that a has on the variables involved in b precon-
ditions7. This is achieved by the substitution of each numeric
fluent involved in the expression reported in b (in particular
in the comparison elements), with the numeric expression
modeling how this fluent is modified by means of effects of
a (line 5). For instance, if we have the pair (refuel, fly)
we are sure that the fuel at disposal after the execution of the
refuel corresponds to the capacity of the airplane. For this
reason the arising condition for the refuel_fly will not
involve a comparison on the fuel, but just on the airplane fuel

6For details on the propositional progression and regression
mechanism, take a look at (Botea et al. 2005).

7The numeric regression mechanism here is similar to the nu-
meric kernel generation for a plan. For details look at (Scala 2013),
where it is showed that such mechanism effectively computes the
weakest set of numeric conditions for the applicability of a plan.

282

capacity. Let us assume that fly requires 10 units of fuel.
Since the refuel brings the fuel to the maximum capac-
ity level (and in the ZenoTravel domain this is an invariant
information of the problem), the fly action will not require
any condition from the point of view of the macro action.
As matter of facts the fluent fuel will be substituted with
the fuel capacity of the airplane that, in case is greater than
10 unities, it always will be satisfied. Otherwise, the macro
action is thrown away as it is an unfeasible actions sequence.

Note that the simplification and the possible removal
should be done only once the macro is associated to a par-
ticular plan repair task. Doing so, a macro is able to cap-
ture variation also on numeric fluents, considered irrelevant
(invariant) at planning time (e.g., the average consumption
contributing in defining the applicability of the fly action
in the Zenotravel domain may be different than expected).

The description for the propagation of the effects is very
similar to the previous case, but in the opposite direction.
Also in this case, the substitution mechanism is key in deter-
mining how each fluent is affected by means of the cumula-
tive execution of a and b. Here, each expression involved in
the numeric effects of action b (in particular the third term of
the tuple (f, op, exp)), must take into account how the flu-
ents taking part of the expression of the operator have been
modified by a. As matter of facts, the generic fluent f repre-
sents the future while exp is evaluated in the state where the
action has been applied. In the case of the macro action, this
state is not represented explicitly (and this is one of the great
advantage of the compression given by the macro actions);
however, we can keep trace of the internal behavior of the
action: this is what is moved ahead.

For instance, if we have an action modifying the fluent
f by means of the operator += with the real value 5, we
know that the action effect on this fluent is f = f + 5, i.e.
(f,+ =, 5). Now if the action is merged with a previous ac-
tion modifying the same fluent, and decreasing it according
to the expression g + 3, we have to substitute the fluent f in
exp (which is implicit in the increase operator), with the way
it is modified f - g - 3. So, in PDDL terms, we can combine
(f,+ =, 5) with (f,− =, g+3) obtaining (f,+ =, 2−g) as
new numeric effect of the resulting macro action. By doing
so, the substitution mechanism is able to keep trace of the
(possible several) interactions arising from (all) the numeric
fluents involved in the merged actions (lines 8 to 10).

The point above is the only tricky part in the progression
mechanism. In addition to this phase, we need to move for-
ward also the effects of a on each fluent f such that f is not
affected by b (lines 13 to 15), and numeric effects of b that
do not have nothing to do w.r.t. the execution of a (line 12).

Plan Repair via Macro Actions

In literature, the utility of macro actions has been ex-
ploited in off-line plan generation for the purpose of pro-
viding shortcuts on the search space (Chrpa et al. 2013;
Botea et al. 2005; Coles and Smith 2007). The main claim of
this paper is that the macro action formulation can be even

Algorithm 1: Numeric Macro Action Construction
Input: a , b - action
Output: ab - macro action

1 name(ab) = name(a) name(b)
2 par(ab) = par(a) ∪ par(b)
/* Precondition Constr. -- Regression */

3 preprop(ab)= (preprop(b) \ eff+
prop(b)) ∪ preprop(a)

4 foreach comp ∈ prenum(b) with f ∈ affected(effnum(a)) do
5 prenum(ab).add(subst(f,comp,effnum(a)))

6 prenum(ab).addAll(prenum(a))
/* Effects Constr. -- Progression */

7 eff+
prop(ab) = (eff+

prop(a) \ eff−prop(b)) ∪eff+
prop(b)

8 foreach numEff ∈ effnum(b) do
9 if numEff involves an f : f ∈ affected(effnum(a)) then

10 effnum(ab).add(subst(f,numEff,effnum(a)))

11 else
12 effnum(ab).add(numEff)

13 foreach numEff ∈ effnum(a) do
14 if numEff refers to f : f /∈ affected(effnum(b)) then
15 effnum(ab).add(numEff)

16 return ab

more beneficial in the task of repairing a plan8.
Given a particular problem, the idea is that the plan to

repair can be a rich source of knowledge for building macro
actions. Such macro actions can be in fact built reasoning on
all the subsequences of the actions the plan consists of. We
expect in fact that a large part of the plan is still useful, and
can be exploited during the search.

However, if we exhaustively pick up all the possible con-
tiguous actions in a plan of length n, we will have to deal
with n(n−1)

2 macro actions; this can become an issue for the
branching factor of a planner.

In order to preserve only (hopefully) relevant macro ac-
tions, keeping out the ones which could represent useless
additional information, in the next sections we propose two
strategies: Suffix/Prefix Macro Actions (SPMA) and Causal
Links Macro Actions (CLMA). Such strategies aim at trad-
ing off between considering or not all the possible macro
actions given the plan at hand.

Suffix/Prefix Macro Actions
As we have observed in the formulation of a dynamic repair
problem, the discrepancies encountered during the execution
can refer to the current state and/or the goal. That is, the
state where the remaining part of the plan has to be applied,
and the conditions that the plan has to meet at the last plan
execution state.

From this consideration, the first strategy we are going to
propose is quite straightforward, but, as we will see in the
experimental section, already effective. The idea is to cre-
ate macro actions from the suffixes and the prefixes of the

8Of course, as anticipated, under the condition that the repair
arises just because of a limited amount of discrepancies, or little
changes in the goal set. This is somehow also justified by the results
presented in (Liberatore 1998).

283

plan. Macro actions representing prefixes capture pieces of
the plan (heuristically) easy to apply at the current state but
that scarcely satisfy the goal set. On the other hand, macro
actions representing suffixes capture sequences of actions
that already achieve the goal set but that need extra actions at
the beginning in order to become executable at some point.

To manage the (still large) amount of suffixes and pre-
fixes to consider, the strategy is limited in picking up just K2
macro-actions for each subset (prefix or suffix)9. In particu-
lar, we take the ones which are closer to the initial state (in
terms of satisfaction of preconditions), and better support
the goals set (in terms of satisfied goal conditions). More
formally, given a macro action a, a state si and a goal G′ we
prioritize macros minimizing the following distance:

D(a, si, G
′) = |prep(a)\F (si)|+

|G′p\eff+(a)|+ |G′p ∩ eff−(a)|+∑
c∈prenum(a),si 6|=c

EucDist(X(si), c)

where the first three terms model the ”propositional” dis-
tance, while the fourth approximates the numeric one. In the
current SPMA implementation, we compute numeric dis-
tances only when c involves linear expressions. EucDist
represents the euclidean distance between the point associ-
ated with X(si) and the hyperplane associated with c. As
you can see from the formula, we take only the contribution
of the constraints not satisfied by s. The overall measure is
intended to provide an approximation on the effort the plan-
ner should spend to satisfy such conditions.

A limit of this strategy is that it tends to pick up very sim-
ilar macro actions, since the selection of the macro does not
consider previous selected macros, but just the relation be-
tween the current macro and the problem. To overcome this
limitation, we propose an alternative strategy, which reasons
about the plan and its internal (in)consistencies.

Causal Links Macro Actions
The idea at the basis of this strategy comes from the consid-
eration that, during the plan execution, even if the plan is not
consistent given the goal and the current world state, there
may be sub-sequences of the plan that still preserve con-
sistency in their internal structure. However, there are po-
sitions all along the plan that present inconsistencies. Such
inconsistencies are actually open preconditions, also called
missing causal links in the context of Partial Order Planning
(POP) (Kambhampati 1997).

Taking inspiration from POP approaches, the ”Causal
Links Macro Action” reasons on the causal links structure
arising from the plan repair problem.

In particular, the strategy saves each point where the in-
consistency is detected, and uses such points to split the plan
in a number of macro-actions. The idea is to preserve each
subsequence of actions that is executable as a whole, once its
(macro) preconditions are satisfied. Moreover, we add extra

9In the experiments, we empirically set K = 6 (3 prefixes and
3 suffixes).

points for all those actions whose effects threaten the goal
satisfaction. The procedure is described by algorithm 2.

Algorithm 2: Causal Links Macro Action
Input: πi - plan, si - current state, G′ - goal
Input: S - Macro Actions Set

1 begin
2 S = {};
3 splittingPoints = {i,|π|};
4 foreach j : aj ∈ πi, aj has open preconditions or

aj−1 threatens G′ do
5 splittingPoints := splittingPoints ∪ {j}
6 foreach pair s, e : s, e ∈ splittingPoints, s < e and

@k : s < k < e do
7 S = S ∪ {build macro(πi, s, e)}
8 return S

As a first step, the algorithm selects all the ”incon-
sistency” points (the splittingPoints set) by considering
those actions whose preconditions are not satisfied or whose
effects threaten the goal satisfaction (lines from 3 to 5). The
missing preconditions come from (propositional/numeric)
services that should be provided by the initial state, while the
action threatening the goal can arise when the set of goal has
been changed w.r.t. the original objectives. Afterwards, the
procedure computes as many actions as there are fragments
of ”valid subplan”. We expect that the real effort in the reso-
lution of the arising planning task corresponds to overcome
the multiple inconsistencies all along the plan. While these
actions preserve the most of the computation done for solv-
ing some of the sub-problems of the overall planning task.
As for the SPMA strategy, having the macro action model,
the planner is informed of the requirements to apply these
(sub)solutions, and of the (propositional and numeric) con-
sequences of their application.

Running Example
In our motivating example, the two macro selection strate-
gies presented so far would have acted as follows:

• SPMA: the suffixes and the prefixes selected
are (board a1 p1 c1) (fly a1 c1 c2),
(fly a1 c1 c2) (debark a1 p1 c2),
and (board a1 p1 c1) (fly a1 c1 c2)
(debark a1 p1 c2), i.e., the whole plan. So the
system produces three macro actions.

• CLMA: the only action produced is the one corresponding
to the whole plan. As matter of facts, the only open condi-
tion is in the goal conditions set. In fact all the actions are
still applicable but the passenger p2 must be carried on
in c3. So, the planner is allowed to combine the previous
solution with the actions to bring p2 at destination.

The domain can be hence enhanced with the knowledge
of the previous plan. It is worth noting however, that SPMA
have produced very similar sub-plans, while CLMA built
only a macro action that is actually the most significant one.

284

Figure 1: Continual Planning Architecture

As we will see in the experimental phase, this is key in de-
termining the difference of performances between such two
macro action generators.

Implementation and Evaluation
To evaluate the macro action notion, and the selection strate-
gies built upon, we implemented a continual planner system.
The architecture, Plan REpair via MACro actions (PReMac,
see figure 1), is capable of monitoring the execution of the
plan and triggering the plan repair task once such a plan be-
comes inconsistent w.r.t. the encountered observed state of
the system, and the goal set. The plan repair is faced by
the domain enhancer (i.e. either SPMA or CLMA) while
Metric-FF (Hoffmann 2003) is used as numeric planner for
the resolution of the arising planning task10.

The main difference w.r.t. the most of continual planners11

is the adoption of a preprocessing step just before the invo-
cation of the planning tool. The module in charge of per-
forming this operation is the domain enhancer anticipated
above. This module takes in input the piece of the plan exe-
cute and produces macros according to the selected strategy.
Such macros are then formalized in PDDL, but, differently
from the original action schema set, they do not need any
parameters. In fact, a macro action in our work is a ground
actions sequence. In order to represent grounded predicates
and numeric fluents, the domain model is enriched with a set
of constants representing objects of the problem.

The system has been tested on 6 numeric domains of the
International Planning Competition (IPC): DriverLog, Zeno-
Travel, Hard ZenoTravel, Rovers, Depots, and Satellite. To
challenge the system in the management of resource con-
straints, we preferred domains where actions are precon-
ditioned also in numeric terms, not only in the classical

10The performance can be very different considering the particu-
lar search strategy employed in the planner. We adopted Metric-FF
as it is the only able to handle actions with large preconditions and
effects. Of course, modifications to the core of the planner could
considerably increase the performances of the system.

11An exception is the work reported in (Garrido, C., and Onain-
dia 2010), where the Lama planning system (Richter and Westphal
2010) is used as black box for the plan repair problem. Knowledge
compilation based approaches have received a considerable suc-
cess also for other problem reformulation; e.g., (Taig and Brafman
2013; Albore, Palacios, and Geffner 2009)

sense. As difference to standard domains we considered also
a harder ZenoTravel where the refuel for airplanes is pos-
sible only in specific airports, and in the used DriverLog,
we conditioned the drive-truck action to be executed
only given a particular fuel threshold. To generate several
instances of plan repair problems we used an approach simi-
lar to the one reported in (Fox et al. 2006). The suite of cases
referring to the standard ZenoTravel comes directly from the
benchmark made available by these authors.

In our experiments a test case corresponds to the tuple
< domain, problem, problem′, plan >: the plan is the so-
lution of the planning task given by< domain, problem >.
In the context of plan execution, the plan is actually the sub-
plan of actions still to be executed, while problem’ keeps
trace of the current world state and the (possibly modified)
goals set. problem’ represents a slight variation of problem:
the initial state or the goals can be different in order to sim-
ulate unexpected contingency, or changes in the goals set.

Cases have been in fact generated by randomly modify-
ing the initial state and the goals set of problem’, both in
terms of propositional atoms (mimicking unexpected action
effects, or different assumptions on the world state) and in
terms of resources amount at disposal (e.g. the fuel of the air-
plan). We aim at understanding the systems behavior when
discrepancies affect propositional and resource aspects, in a
crosswise fashion.

The generation of plan repair problems starts from the 10
most difficult problems of the benchmarks planning suite.
For each of them, a starting plan has been generated (by us-
ing LPG), and a set of variant problems have been collected.
Each variant differs from the starting problem up to 3 initial
state information and 3 goals.

For comparison reasons, test cases have also ran with
the LPG-ADAPT system, and Metric-FF used as replanning
from scratch methodology. The performances of the systems
are measured by taking into consideration the International
Planning Competition metric12 for the time, the coverage
and the distance13 score. Let S be a set of systems to be eval-
uated (SPMA, CLMA, LPG-ADAPT, and Metric-FF in our
case), for each parameter p (time or distance or coverage),
the score of a case for the system s is defined by means of
bestV alue(p,S)
value(p,s) . When p is time, value indicates the cpu-time

spent for solving the repair task. The distance value is com-
puted comparing the current plan and its repaired version
and finally the coverage score is 1 when the case is solved,
0 otherwise. Note that when the case is not solved, also the
other scores (time and distance) take 0. The total score for
a domain is the sum of the scores obtained for each case in
that domain.

Experiments ran on Ubuntu 10.04 with an Intel Core
Duo@2.53GHz cpu and 4 GB of Ram. To emulate a plan
execution in a real world scenario (where solution must be
quickly provided), each computation has been allotted with

12Experimented for several years in the planning community, the
IPC metric is a well established technique for measuring planner
performances. For details look at http://ipc.icaps-conference.org/

13This distance, also used in (Nguyen et al. 2012), has been
firstly introduced in (Fox et al. 2006).

285

Figure 2: Percentage of cases solved in a given interval of cpu-time (msec), for each domain considered. CLMA, SPMA,
LPGADT, LPGADT-S and MET-FF stands, respectively, for the two strategies proposed in this paper, the LPG-ADAPT system
used with the quality and the speed (-S) setting. Metric-FF is the system playing the role of a replanner from scratch.

a maximum of 100 seconds of cpu-time.

Table shows the collected IPC results. In parenthesis
the number of cases considered for each domain. Besides
the strategies presented in this paper, LPGADJ, LPGADJ-
S and MET-FF stand for LPG-ADAPT with the quality set-
ting, LPG-ADAPT with the speed setting, and the Metric-FF
with the original domain definition, respectively. Note that,
for the strategies presented in this paper, the time-score in-
cludes also the cpu-time spent for macro actions preprocess-
ing. However, such a time has been always negligible; the
actual overhead of the strategies is due to the larger branch-
ing factor the planner has to cope with.

In all the experimented domains, the addition of the macro
actions to the Metric-FF planning system turned out to be
quite beneficial, for all the parameters tested. In particular,
for the CLMA case, the advantage is quite large (408 vs
244) for the time score and also the coverage is increased.
Of course, the distance score of Metric-FF w.r.t. all other
systems is not comparable, as Metric-FF is not built with the
concept of the stability, so the resulting plan could be also
quite ”distant” from the initial formulation.

What is surprising in the experiments is that CLMA out-
performs also LPG-ADAPT in its speed version, as far as it

is concerned by the time score14. Making exception for the
Rover domain, the time score of CLMA outperformed all the
systems tested. The advantage is quite large for the two ver-
sions of the Zenotravel domain, while it is less prominent,
but still significant for Satellite and DriverLog.

As refers the distance and the coverage score, LPG-
ADAPT-S has been the best system used, even if the two
plan repair strategies turned out to be very competitive in
some domains (i.e., Zenotravel and DriverLog).

Finally, histograms reported in figure 2 provide an
overview of the cpu-time spent by the systems, over all
the tested domains. In particular, they show the percent-
age of cases solved for 5 intervals of time (0-1000,1001-
10000,10001-50000,50001-99999,Timeout). Basically, the
aim is to highlight some aspects of the time score presented
in table , as the IPC scores are very coverage oriented.

Except for Depots, SPMA, but in particular CLMA
are able to substantially decrease the number of timeouts
of Metric-FF. In particular, in the DriverLog domain the
CLMA strategy reduces the timeouts from 55 to 5. How-
ever, CLMA and SPMA often encountered more timeouts

14This was unexpected since CLMA is built to be planner inde-
pendent, while LPG-ADAPT can take advantage from search con-
trol that are specific for the plan repair.

286

Score CLMA SPMA LPGAD LPGAD-S MET-FF
Time 94 80 13 24 58

ZenotravelHard Distance 86 38 60 86 16
(155) Coverage 112 116 84 109 112

Time 37 21 21 33 29
Depots Distance 41 5 39 49 3
(121) Coverage 46 46 52 52 47

Time 107 67 10 81 52
DriverLog Distance 107 41 50 126 10

(145) Coverage 135 96 108 143 66
Time 63 35 4 24 37

Zenotravel Distance 34 12 42 53 8
(100) Coverage 72 67 48 59 67

Time 23 21 35 137 35
Rover Distance 69 49 89 119 16
(151) Coverage 88 82 139 151 63

Time 84 69 21 52 33
Satellite Distance 78 39 100 128 3

(149) Coverage 97 97 135 146 64
Time 408 293 104 349 244

Total Distance 414 184 380 562 56
(821) Coverage 550 504 566 660 419

Table 1: Overall Results considering the IPC Scores. Mea-
sures refer to the cpu-time, the distance and the coverage for
each system, over all the tested domains.

than LPG-ADAPT (this is also evident by looking at the cov-
erage score), and the reason why CLMA obtained a higher
time score is that, when the task is solved, CLMA is very
fast; otherwise the system is not able to provide an answer
given the time deadline. This is evident by looking at the
high percentage of cases solved rather efficiently (from 0
to 1 sec) by both CLMA and SPMA. Conversely, the LPG-
ADAPT has a more stably behavior, and this is the reason of
the advantage on the other two parameters tested.

Finally, it is also easy to see that CLMA performs better
than SPMA in all the domains. In particular CLMA causes
less timeouts, and in most of the domains solved more cases
of SPMA in less than 1 sec. This means that the reasoning on
the actual in-consistencies arising in the plan repair context
(and hence on the affected causal links structure) is benefi-
cial to select more informative macro actions.

Related Work
Several works have appeared in literature for the plan re-
pair problem (Gerevini and Serina 2010; van der Krogt R.
and de Weerdt M. 2005; Garrido, C., and Onaindia 2010;
Brenner and Nebel 2009). Basically, these works have an
underlying continual planning approach; actions are exe-
cuted from the plan till this remains valid, in the sense de-
fined by (Scala 2013) and (Fritz and McIlraith 2007), or the
goal is achieved. As soon as an inconsistency is detected, a
plan repair step is invoked. In particular, these works sug-
gest that the plan repair can be more effective by exploit-
ing a plan adaptation step. In this perspective a variety of
techniques have been presented (Gerevini and Serina 2010;
van der Krogt R. and de Weerdt M. 2005; Garrido, C., and
Onaindia 2010). However, the most of them does not deal
with consumable resources, but just focuses on the proposi-
tional fragment of planning problems. Resources have been
dealt in the LPG-ADAPT system (Fox et al. 2006), where
moreover the concept of plan stability has been introduced.
Our work is able to manage consumable resources, but, dif-
ferently from the LPG-ADAPT system, the methodology
presented in this paper does not rely on a specific planner.

Therefore, it can be adopted as a repair mechanism in any
other planning systems. For the sake of evaluation, our strat-
egy has been compared w.r.t. LPG-ADAPT.

In the more general context of robust execution, resources
(in the limited form of the renewable case) have been man-
aged in building (pro-actively) robust schedule (Policella et
al. 2009). The robustness here is intended to provide toler-
ance on the time taken by actions. Similarly, temporal flexi-
bility is proposed by the adoption of particular forms of Dis-
junctive Temporal Network (Conrad and Williams 2011). As
innovation w.r.t. these methodologies, we deal with robust
execution combining the reasoning on the resources, with
the classical causal aspects of propositional planning. More-
over, since we model resources by means of numeric fluents,
we do not require that such resources are just renewable;
they can be in fact consumable, too.

The idea to combine two or more actions in a big unified
structure is not new. Several approaches have been studied
the adoption of macro actions in the off-line planning phase
(Botea et al. 2005; Chrpa et al. 2013; Coles and Smith 2007).
Basically the goal of these approaches is to supply the do-
main with additional action schemas encapsulating knowl-
edge on the way actions can be combined each other.

In this paper we adopt macro actions for the plan repair
problem. As we will see, differently to the plan genera-
tion phase, in our problem we do not need of restricting the
macro generation to few primitive actions. This because we
are mainly interested on grounded representations and hence
our method does not suffer from the combinatorial explosion
due to the increasing of the number of action parameters.

Finally, as an innovation to the current state of the art in
the context of macro actions, we extended the structure to
deal also with numeric information. Our construction mech-
anism does not need that predicates and numeric fluents are
grounded, so the notion can be exploited also in off-line
planning (Botea et al. 2005).

Conclusion
The paper presented an approach for the plan repair problem
in presence of numeric fluents, which can appear in manda-
tory conditions to be satisfied for the applicability of actions,
as well as for the reachability of the goal.

Firstly, the approach proposed the notion of numeric
macro action; this structure extends the classical macro ac-
tion (Botea et al. 2005; Coles and Smith 2007; Chrpa et al.
2013) for allowing to keep trace (both in the regression and
progression mechanism) of the numeric information of an
action. In addition to that, an effective method to build macro
actions is introduced.

The numeric macro action formulation is essential for
two plan repair strategies the paper proposes, namely SPMA
and CLMA. Both strategies perform the repair in two steps:
firstly, an enhanced version of the starting planning domain
enriched with macro actions is created; then a numeric plan-
ner system off-the-shelf is invoked. The difference of these
two strategies is in the way macro actions are selected.
In particular, the strategy reasoning on the (possibly com-
promised) causal links structure of the plan to be repaired

287

(CLMA), turned out to be the most effective one. Experi-
mental results showed that the strategy improves the planner
performance, in the most of numeric tested domains. Even,
the exhibited performances are competitive with the state of
the art in plan repair, i.e. LPG-ADAPT (Fox et al. 2006).

As future work, we are planning an experimental phase
with other planning systems, to understand which kinds of
planner are suitable for macro actions. Intuitively, we ex-
pect that strategies should work well for planner where the
branching factor is not a particular issue (e.g., Metric-FF);
while they have scarce chance of success in optimal plan-
ners.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
09), 1623–1628.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-ff: Improving ai planning with automatically
learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Journal of Au-
tonomous Agents and Multiagent Systems 19(3):297–331.
Chrpa, L.; Vallati, M.; McCluskey, T. L.; and Kitchin, D. E.
2013. Generating macro-operators by exploiting inner en-
tanglements. In Symposiium on Abstraction, Reformulation
and Approximation (SARA-13).
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research (JAIR) 28:119–156.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Conrad, P. R., and Williams, B. C. 2011. Drake: An effi-
cient executive for temporal plans with choice. Journal of
Artificial Intelligence Research (JAIR) 42:607–659.
Cushing, W., and Kambhampati, S. 2005. Replanning: A
new perspective. In Poster Session in International Confer-
ence in Automated Planning and Scheduling (ICAPS-05).
desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolver-
ton, M. J. 1999. A Survey of Research in Distributed, Con-
tinual Planning. AI Magazine 20(4).
Do, M. B., and Kambhampati, S. 2003. Sapa: A multi-
objective metric temporal planner. Journal of Artificial In-
telligence Research (JAIR) 20:155–194.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of Arti-
ficial Intelligence Research (JAIR) 20:61–124.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proc. of Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-06), 212–221.
Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. In Proc. of International Confer-

ence on Automated Planning and Scheduling (ICAPS-07),
144–151.
Garrido, A.; C., G.; and Onaindia, E. 2010. Anytime plan-
adaptation for continuous planning. In Proc. of P&S Special
Interest Group Workshop (PLANSIG-10).
Gerevini, A., and Serina, I. 2010. Efficient plan adaptation
through replanning windows and heuristic goals. Funda-
menta Informaticae 102(3-4):287–323.
Gerevini, A.; Saetti, I.; and Serina, A. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. Artificial Intelligence 172(8-9):899–944.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: A position paper.
Artificial Intelligence 208(0):1 – 17.
Haslum, P., and Jonsson, P. 2000. Some results on the com-
plexity of planning with incomplete information. In Recent
Advances in AI Planning. Springer. 308–318.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In
Proc. of International Conference on Automated Planning
and Scheduling (ICAPS-05), 71–80.
Hoffmann, J., and Brafman, R. 2006. Conformant planning
via heuristic forward search: A new approach. Journal Arti-
fificial Intelligence Research (JAIR) 170(6–7):507–541.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing ”ignoring delete lists” to numeric state variables. Journal
of Artificial Intelligence Research (JAIR) 20:291–341.
Kambhampati, S. 1997. Refinement planning as a unifying
framework for plan synthesis. AI Magazine 18(2):67–97.
Liberatore, P. 1998. On non-conservative plan modification.
In European Conference on Artificial Intelligence (ECAI-
98), 518–519.
Nebel, B., and Koehler, J. 1995. Plan reuse versus plan
generation: A theoretical and empirical analysis. Artificial
Intelligence 76(1-2):427–454.
Nguyen, T. A.; Do, M.; Gerevini, A. E.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190:1–31.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2009. Solve-
and-robustify. Journal of Scheduling 12:299–314.
Richter, S., and Westphal, M. 2010. The lama planner: guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research (JAIR) 39(1):127–177.
Scala, E. 2013. Numeric kernel for reasoning about plans
involving numeric fluents. In et al., M. B., ed., AI*IA 2013,
LNAI 8249, Springer International Publishing Switzerland.
Taig, R., and Brafman, R. I. 2013. Compiling conformant
probabilistic planning problems into classical planning. In
Proc. of International Conference on Automated Planning
and Scheduling (ICAPS-13).
van der Krogt R., and de Weerdt M. 2005. Plan repair as an
extension of planning. In Proc. of International Conference
on Automated Planning and Scheduling (ICAPS-05), 161–
170.

288

