
Optimization Model and Heuristic Approach
for Blocks Retrieval Processes in Warehouses

Christopher Expósito-Izquierdo, Belén Melián-Batista, and J. Marcos Moreno-Vega
{cexposit, mbmelian, jmmoreno}@ull.es

Department of Statistics, Operative Research and Computation
University of La Laguna, Spain

Abstract

In this paper we introduce a planning problem termed
as Q-Blocks Relocation Problem, which pursues to re-
trieve a subset of blocks located in a warehouse by min-
imizing the number of relocation movements. We for-
malize the problem by means of a Mixed Integer Lin-
ear Programming model. However, the high computa-
tional burden required by the model encourages us to
develop a heuristic algorithm for tackling it. The ratio-
nale behind the proposed heuristic is both to retrieve
the requested blocks as soon as possible while reducing
the number of blocks placed above another one with a
higher priority. The computational results indicate that
the heuristic reports near-optimal solutions for realistic
instances by short computational times, which makes it
attractive to be applied by management systems.

Introduction
Over the last decades, the management of supply chains has
gained increasing interest within the research community
(Breiter et al. 2009). In this environment, the warehouses are
facilities aimed at storing goods temporarily at all phases in
the supply chain. Their relevance lies in their essential role
as intermediate points in the flow of goods, from producers
to customers (Melo, Nickel, and da Gama 2009).

The block stacking is the most widespread storage strat-
egy used in warehouses when storing goods packed in robust
load units (Gu, Goetschalckx, and McGinnis 2010). In this
strategy, homogeneous blocks are piled up one on each other
in stacks in such a way that they make up three-dimensional
storage structures, that is, sets of bays arranged in parallel
(Gudehus and Kotzab 2009). The number of tiers is usually
established by the physical features of the warehouse, the
load strength (crushability), and the stability of the stacks.
The storage location of a block is therefore given by the bay,
stack, and tier in which is placed (Park and Kim 2010).

Order-picking is known to be the most labor-intensive
and time-consuming process in warehouse logistics (Tomp-
kins et al. 2010)(Grosse, Glock, and Jaber 2013). An order-
picking can be understood as the retrieval of one or sev-
eral blocks from their storage locations in a warehouse (de
Koster, Le-Duc, and Roodbergen 2007). In this context, the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time involved when retrieving the blocks requested by the
customers constitutes the main indicator of the competitive-
ness of a warehouse (Chan and Chan 2011). However, it
is worth mentioning that the main shortcoming associated
with the block stacking arises from the Last In First Out
(LIFO) policy used to access the blocks. Consequently, the
retrieval time is short whenever the requested blocks are cur-
rently placed at the top of the stacks. Furthermore, reloca-
tion movements must be performed with the goal of freeing
up the target blocks when they are buried below other ones
(Caserta, Schwarze, and Voβ 2011).

The block relocation movements give rise to low perfor-
mance in warehouses. As a result, the labor costs are in-
creased whereas the customer satisfaction is highly impaired
(Dekker, Voogd, and Asperen 2007). In order to avoid this
scenario, suitable planning strategies are required to mini-
mize the number of relocation movements during a given
time horizon (Choe et al. 2011). These planning strategies
pursue to place the incoming blocks in storing locations in
which they will be accessible for their future retrieval. In
spite of the exhaustive analysis of the most likely order-
pickings, the high level of unpredictability inherent in the
supply chains precludes to guarantee a constant retrieval
time of the blocks (Zhao and Goodchild 2010).

The previous discussion draws forth the need of efficient
approaches to retrieve the relevant blocks associated with in-
coming order-pickings. With this goal in mind, in this work
we introduce the Q-Blocks Relocation Problem (Q-BRP) as
a generalization of the known Blocks Relocation Problem
(Caserta, Schwarze, and Voβ 2012) with practical applica-
tion in warehouses. The Q-BRP pursues to retrieve a subset
of blocks from a bay by minimizing the number of relocation
movements. We firstly formalize this problem by a mixed in-
teger linear programming model. The computational burden
required by the model when solving real scenarios has also
encouraged us to develop a heuristic algorithm.

The remainder of this work is organized as follows. We
firstly introduce the Q-BRP and review the related works
from the literature. We then proceed with a mathemati-
cal formulation for the Q-BRP. Afterwards, we propose a
heuristic approach for the Q-BRP. The computational exper-
iments carried out are later discussed. We finish the work
with the main concluding remarks and several directions for
further research.

111

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



Q-Blocks Relocation Problem
The Q-Blocks Relocation Problem (Q-BRP) is a combina-
torial optimization planning problem in which we are given
a bay composed of W stacks, H tiers, and N blocks. Each
block c has a given priority, p(c), which indicates its order in
the retrieval sequence. The stack in which the block c is cur-
rently placed is denoted by s(c), whereas its tier is denoted
by t(c). The number of blocks in the stack s is denoted by
h(s), whereas max(s) and min(s) report the highest and the
lowest priority of s, respectively. The goal of the Q-BRP is to
determine the sequence of movements with minimum length
that should be performed in order to retrieve a subset of K
blocks from the bay, where K ≤ N . The retrieval of blocks
must be carried out according to their decreasing order of
priorities, in such a way that, the block with the highest pri-
ority, 1, must be retrieved before the block with priority 2,
the block 2 must be retrieved before the block 3, and so forth,
until all theK blocks with the highest priorities are retrieved
from the bay. Note that after finishing the retrieval process
M = N − K blocks are still placed into the bay. At each
step, the block with the highest priority among those cur-
rently placed into the bay is denoted by c∗. The technical
features of the handling equipment (e.g. gantry crane, fork-
lift truck, etc.) used in the storage environment establish the
following types of block operations to perform:

1. Retrieval operation. The block with the highest priority,
c∗, currently placed at the top of some stack into the bay
is retrieved from it.

2. Relocation operation. A subset of at mostQ blocks placed
at the top of some stack is moved from its current stack to
another one. It should be noted that, if several blocks are
relocated at once their relative order in the target stack has
to be exactly the same as in the source one.
The Q-BRP introduced in this work is a generalization of

the BRP in which only one block can be relocated at once.
Consequently, this problem is NP-hard by reduction to the
BRP (Caserta, Schwarze, and Voβ 2012).

A solution for the Q-BRP is a sequence of tuples with the
shape (a, b, q), where a is the source stack, b is the target
stack, and q ≤ Q is the number of blocks to move at each
step. In this context, the retrieval movements are represented
as (a,−, 1), which indicates that one block is retrieved from
the top of the stack a. It is worth mentioning that, each fea-
sible solution for the Q-BRP containsK retrieval operations
and, therefore, the objective of the problem can be tackled
as minimizing the number of relocation movements.

In order to illustrate the Q-BRP let us consider the exam-
ple depicted in Figure 1. This example shows a bay with 6
stacks, 4 tiers, and 16 blocks with exclusive priorities that
are going to be retrieved on the basis of the prescribed prior-
ity order. The priority of each block is represented through
a number in it. A solution for the example at hand when set-
ting Q = 1 is as follows: ((4, 3, 1)(4, 3, 1)(4, 6, 1)(4, -, 1)(2,
5, 1)(2, 4, 1)(2, -, 1)(1, -, 1)(6, 4, 1)(6, -, 1)(3, 2, 1)(3, -,
1)(1, -, 1)(2, -, 1)(5, -, 1)(6, 3, 1)(6, -, 1)(3, -, 1)(2, -, 1)(4, 6,
1)(4, -, 1)(6, -, 1)(5, -, 1)(3, 1, 1)(3, -, 1)(1, -, 1)). As can be
checked, this solution is composed of 10 relocation move-
ments. However, the number of relocation movements can

be greatly reduced whenever the features of the available
handling equipment allow to move several blocks at once.
For instance, a solution when setting Q = 2 is as follows:
((4, 3, 2)(4, 6, 1)(4, -, 1)(2, 4, 2)(2, -, 1)(1, -, 1)(6, 2, 1)(6, -,
1)(3, -, 1)(1, -, 1)(3, -, 1)(4, -, 1)(6, 1, 1)(6, -, 1)(1, -, 1)(2,
6, 1)(2, -, 1)(4, -, 1)(6, -, 1)(5, -, 1)(3, 1, 1)(3, -, 1)(1, -,
1)), which is composed of 7 relocation movements. Finally,
a solution when setting Q = 3 is as follows: ((4, 5, 3)(4, -,
1)(2, 3, 2)(2, -, 1)(1, -, 1)(6, -, 1)(5, -, 1)(1, -, 1)(5, -, 1)(3, -,
1)(6, 4, 1)(6, -, 1)(4, -, 1)(2, -, 1)(3, -, 1)(5, -, 1)(5, -, 1)(3,
1, 1)(3, -, 1)(1, -, 1)), which is composed of only 4 reloca-
tion movements. The reduction in the number of relocation
movements stemming from handling several blocks at once
encourages us to develop optimization techniques aimed at
exploiting this potential.

A straightforward analysis of the aforementioned exam-
ple draws forth the following classification of the blocks ac-
cording to their priorities and the slots in which they are cur-
rently placed into the bay:

1. Non-located block. That block currently placed above an-
other one with a higher priority. See those blocks with
gray background in Figure 1. It should be noted that this
type of blocks has to be relocated in a different stack of the
bay in order to allow the retrieval of the block with higher
priority placed below it. The set of non-located blocks in
the stack s is defined as follows:

Ω(s) = {c | (s(c) = s) ∧ ∃ c′ : (s(c′) = s)∧
(t(c′) < t(c)) ∧ (p(c′) < p(c))}. (1)

The set of non-located blocks into the bay is denoted as
follows:

Ω =
⋃

1≤s≤S

Ω(s). (2)

2. Well-located block. That block not currently placed above
any other with a higher priority. See those blocks with
white background in Figure 1. This type of blocks does
not require any relocation movement before its retrieval.
The set of well-located blocks in the stack s is defined as
follows:

Υ(s) = {c | (s(c) = s) ∧ (c /∈ Ω(s))}. (3)

In the following we present a method for computing an
upper bound for the Q-BRP. This upper bound can be used
to provide a preliminary solution for the Q-BRP or setting a
planning horizon as illustrated in the next section.

Algorithm 1 is the pseudocode of the method. It goes over
each block into the bay according to the decreasing order of
priorities (lines 3 - 14). At each step, that block with the
highest priority, c∗, is found (line 4). If c∗ is placed at the
top of its stack, it can be directly retrieved from the bay (line
13). Otherwise, while it is not freed up, the method identi-
fies those blocks currently placed on it (line 6), denoted by
O(c∗) and formally defined as follows:

O(c∗) = {c | (s(c) = s(c∗)) ∧ (t(c) > t(c∗))}. (4)

This set is composed of non-located blocks (Equation 2)
and, therefore, they have to be relocated in a different stack.

112



Figure 1: Example of a bay with 6 stacks, 4 tiers and 16 blocks.

With this goal in mind, the method pursues to define at this
step a subset of blocks included into O(c∗) to be relocated
(line 8). According to the definition of the Q-BRP, the num-
ber of blocks that can be potentially relocated in each move-
ment ranges from 1 up toQ. However, this range is restricted
in order to fulfill those environments in which the number of
blocks included into O(c∗) is lower than Q (line 7). An ex-
ample of this fact is presented when the block 1 is about to
be retrieved from the bay and Q > 3. In spite of the fact that
more than 3 blocks can be handled at once, at most 3 blocks
can be moved in the next relocation movement. Once de-
fined the blocks to relocate at each step, denoted by O(c∗)′,
the method identifies all the feasible target stacks for them,
denoted by Θ (line 9). A stack, s, could be used as target of
O(c∗)′ if, and only if, the number of empty slots is at least
equal to the cardinality of O(c∗)′. That is:

H − h(s) ≥ |O(c∗)′|. (5)

One stack, s′, is selected at random from Θ (line 10) and
O(c∗)′ is relocated in s′ (line 11), by means of the move-
ment (s(c∗), s′, |O(c∗)′|). Finally, in order to provide a tight
upper bound the method is embedded into a restarting strat-
egy (lines 2 - 16) which iterates max times, where max is a
parameter whose value is set by the user.

Literature Review
The literature contains multitude works in which reducing
the time required to fulfill the incoming order-pickings is ad-
dressed (Tompkins et al. 2010). Many authors, e.g. (Kang,
Ryu, and Kim 2006), (van Zelst et al. 2009), (Rei and Pe-
droso 2012), and (Rei and Pedroso 2013), have propose dif-
ferent stacking policies aimed at storing blocks in ware-
houses in such a way that they are eventually retrieved ef-
ficiently. The works by (Lee and Hsu 2007), (Bortfeldt and
Forster 2012), and (Expósito-Izquierdo, Melián-Batista, and
Moreno-Vega 2012) focus on reshuffling the blocks stacked
into a bay before their retrieval is started with the goal of
piling they up according to their precedence relationships.

Algorithm 1 Method for calculating the upper bound of the
Q-BRP
Require: Bay with the blocks to retrieve
Require: max, number of iterations
Ensure: Solution of the Q-BRP

1: BestSolution← ∅
2: for i = 1→ max do
3: for p = 1→ K do
4: c∗ ← Find block with priority p
5: while !(c∗ is topmost) do
6: O(c∗)← Blocks placed on c∗ (Equation 4)
7: q′ ← Select random number in

[1..min{Q, |O(c∗)|}]
8: O(c∗)′ ← Select q′ topmost blocks from O(c∗)
9: Θ← Feasible target stacks for O(c∗)′

10: s′ ← Select stack from Θ at random
11: Relocate O(c∗)′ from s(c∗) to stack s′
12: end while
13: Retrieve c∗ from the top of its stack
14: end for
15: Update BestSolution
16: end for
17: return BestSolution

The BRP has been studied previously in several works,
e.g. (Kim and Hong 2006), (Caserta, Voβ, and Sniedovich
2011), (Caserta, Schwarze, and Voβ 2009), (Zhang et al.
2010), and (Caserta, Schwarze, and Voβ 2012). A clear
trend stemming from the related literature is to develop
heuristic approaches aimed at solving the BRP. As indicated
by (Caserta, Schwarze, and Voβ 2012), despite the effort
carried out in developing exact techniques, these have not
proved to be sufficiently efficient when solving real-world
instances so far. Examples of this fact are both the Branch
& Bound proposed by (Kim and Hong 2006) and the itera-
tive deepening A* search algorithm designed by (Zhang et
al. 2010).

113



Optimization Model
This section is devoted to model the Q-BRP by means of a
Mixed Integer Linear Programming (MILP). Let us assume
we have a planning horizon, T , obtained by some optimiza-
tion technique (e.g. Algorithm 1) and, without loss of gen-
erality, that all the blocks placed in the bay are going to be
retrieved, that is, K = N . In the following we firstly intro-
duce the families of variables used by the model:

bijnt =

{
1, if block n is in (i, j) in time period t
0, otherwise

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T

xijklqt =

{
1, if q blocks are relocated from (i, j)

in (k, l) in time period t
0, otherwise

∀i, k = 1..W, j, l = 1..H, n = 1..N, t = 1..T

yijnt =

{
1, if block n is retrieved from (i, j) in

time period t
0, otherwise

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T

vnt =

{
1, if block n has been retrieved before

time period t
0, otherwise

∀n = 1..N, t = 1..T

aijnt =

{
1, if block n is relocated from (i, j) in

time period t
0, otherwise

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1

cijnt =

{
1, if block n is relocated in (i, j) in time

period t
0, otherwise

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1

dijnt, number of blocks placed on the block n
before its relocation from (i, j) in time period t,
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1

eijnt, number of blocks placed on the block n
after its relocation in (i, j) in time period t,
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1

The objective function of the MILP is to maximize the
periods that the last block to retrieve (N ) is out of the bay:

maximize
T∑

t=1

vNt (6)

Each block has to be in or out the bay:
W∑
i=1

H∑
j=1

bijnt + vnt = 1,∀n = 1..N, t = 1..T (7)

In each slot has to be at most one block:
N∑

n=1

bijnt ≤ 1,∀i = 1..W, j = 1..H, t = 1..T (8)

The blocks have to be placed one on each other and, there-
fore, empty slots between them are not allowed:

N∑
n=1

bijnt ≥
N∑

n=1

bij+1nt,

∀i = 1..W, j = 1..H − 1, t = 1..T (9)

At each time period at most one block operation is allowed:

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

Q∑
q=1

j+q−1≤H
l+q−1≤H

xijklqt+

W∑
i=1

H∑
j=1

N∑
n=1

yijnt ≤ 1,∀t = 1..T (10)

The retrieval operations have to be carried out according
to the block priority order:

T∑
t=1

vnt ≥
T∑

t=1

vn+1t + 1, ∀n = 1..N − 1 (11)

The blocks are out of the bay if they have been previously
retrieved:

vnt =
W∑
i=1

H∑
j=1

t−1∑
t′=1

yijnt′ ,∀n = 1..N, t = 1..T (12)

The block n is relocated from the slot (i, j) in time pe-
riod t if it is placed in that slot (bijnt = 1) and there is one
relocation movement associated with one of the slots (i, j),
(i, j− 1),..., (i, j−Q− 1). In these cases, at least 1, 2,..., Q
blocks have to be moved to other slots, respectively:

aijnt ≤ bijnt,
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (13)

aijnt ≤
Q−1∑
j′=0

j−j′≥1

W∑
k=1

H∑
l=1

Q∑
q=1

j−j′+q−1≤H
l+q−1≤H

q>j′

xij−j′klqt,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (14)

aijnt ≥ bijnt+
Q−1∑
j′=0

j−j′≥1

W∑
k=1

H∑
l=1

Q∑
q=1

j−j′+q−1≤H
l+q−1≤H

q>j′

xij−j′klqt − 1,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (15)

114



The location of each relocated block depends on its pre-
vious position and the relocation movement carried out:

cijnt ≤ bijnt+1,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (16)

cijnt ≤
Q−1∑
j′=0

j−j′≥1

W∑
k=1

H∑
l=1

Q∑
q=1

j−j′+q−1≤H
l+q−1≤H

q>j′

xklij−j′qt,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (17)

cijnt ≥ bijnt+1+

Q−1∑
j′=0

j−j′≥1

W∑
k=1

H∑
l=1

Q∑
q=1

j−j′+q−1≤H
l+q−1≤H

q>j′

xklij−j′qt − 1,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (18)

The location of each block depends on its previous loca-
tion and the movements carried out:

bijnt = bijnt−1 + cijnt−1 − aijnt−1 − yijnt−1,
∀i = 1..W, j = 1..H, n = 1..N, t = 2..T (19)

Number of blocks placed on each one to be relocated:

dijnt ≤ Q · aijnt,
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1,

subject to Q− 1 ≥ 1 (20)

dijnt ≤
H∑

j′=j+1

N∑
n′=1

aij′n′t,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (21)

dijnt ≥
H∑

j′=j+1

N∑
n′=1

aij′n′t −Q · (1− aijnt),

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1,

subject to Q− 1 ≥ 1 (22)

Number of blocks placed on each block after a relocation
movement is performed:

eijnt = cijnt

H∑
j′=j+1

N∑
n′=1

cij′n′t,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (23)

eijnt ≤ Q · cijnt,
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1,

subject to Q− 1 ≥ 1 (24)

eijnt ≤
H∑

j′=j+1

N∑
n′=1

cij′n′t,

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (25)

eijnt ≥
H∑

j′=j+1

N∑
n′=1

cij′n′t −Q · (1− cijnt),

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1,

subject to Q− 1 ≥ 1 (26)
The number of blocks placed on each block involved in

the relocation movements have to be equal before and after
the movement:

W∑
i=1

H∑
j=1

dijnt =
W∑
i=1

H∑
j=1

eijnt,

∀n = 1..N, t = 1..T − 1 (27)
Relocation of q blocks from the slot (i, j) is allowed only

when there are exactly q blocks being removed:
W∑
i=1

H∑
j=1

N∑
n=1

aijnt =

W∑
i=1

H∑
j=1

W∑
k=1

H∑
l=1

Q∑
q=1

j+q−1≤H
l+q−1≤H

q · xijklqt,

∀t = 1..T − 1 (28)
Relocation movements within a stack are not allowed:

xijilqt = 0,

∀i = 1..W, j, l = 1..H, q = 1..Q, t = 1..T

subject to j + q − 1 ≤ H and l + q − 1 ≤ H (29)
Domain of the variables:

bijnt ∈ {0, 1},
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T (30)

xijklqt ∈ {0, 1},
∀i, k = 1..W, j, l = 1..H, q = 1..Q, t = 1..T

subject to j + q − 1 ≤ H and l + q − 1 ≤ H (31)

yijnt ∈ {0, 1},
∀i = 1..W, j = 1..H, n = 1..N, t = 1..T (32)

vnt ∈ {0, 1},∀n = 1..N, t = 1..T (33)

aijnt ∈ [0..1],

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (34)

cijnt ∈ [0..1],

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (35)

dijnt ∈ [0..Q− 1],

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (36)

eijnt ∈ [0..Q− 1],

∀i = 1..W, j = 1..H, n = 1..N, t = 1..T − 1 (37)

115



Heuristic Approach
As described in the next section, the large number of vari-
ables of the mathematical formulation previously introduced
constricts its scope of application to only small instances. In
order to overcome this limitation, in the following we pro-
pose a heuristic approach which allows us to obtain high
quality solutions by means of short computational times.

The rationale behind the proposed heuristic is both to re-
trieve the requested blocks as soon as possible while reduc-
ing the number of non-located blocks into the bay (Equation
2). It should be noted that the shorter the number of non-
located blocks into the bay the shorter the probability of re-
quiring additional relocation movements in the future.

The pseudocode of the heuristic is depicted in Algorithm
2. As done in Algorithm 1, it iterates over all the requested
priorities (lines 1 - 21). At each step, the next block to re-
trieve, c∗, is found (line 2). If c∗ is currently placed at the
top of some stack into the bay, it can be retrieved directly
(line 20). Otherwise, the set of blocks placed above c∗, de-
noted by O(c∗) (Equation 4), is checked (line 3). See block
c∗ = 1 in Figure 1, for which O(1) = {5, 7, 13}.

The main objective is to reduce the number of non-located
blocks by building stacks with only well-located blocks
(Equation 3). That is, stacks in which all the blocks are
placed following their increasing priority order, in such a
way that, the topmost block has the highest relative prior-
ity. With this goal in mind, the heuristic identifies the largest
subset of O(c∗) placed at the top of s(c∗) that already satis-
fies the increasing priority order, denoted by O(c∗)+ (line
8). For instance, if Q = 2 is set in Figure 1, we obtain
O(c∗)+ = {5, 7}. Note that the maximum size of O(c∗)+ is
constrained by Q and the cardinality of O(c∗) (line 5).

The target stack of O(c∗)+ is selected by using the fol-
lowing scoring function over each stack s:

f(O(c∗)+, s) =

 0, if (h(s) + |O(c∗)+| > H)∨
(s = s(c∗))

max(s), otherwise
(38)

The previous function f(·, ·) measures the attractiveness
of the stacks by estimating the time in which they would re-
quire a relocation movement if O(c∗)+ is placed on them.
Stacks with no empty slots and the source stack are not in-
cluded into the set of feasible target stacks, denoted by Φ
(line 9). The target stack of O(c∗)+, denoted by s∗, is se-
lected at random among those δ stacks with the highest value
(line 11), where δ ∈ [1..(W−1)] is a parameter whose value
is set by the user. It is worth mentioning that if any feasible
stack is found for relocating O(c∗)+, the heuristic reduces
the length of the subset of blocks to relocate (line 16). The
process finishes when all the blocks initially included into
O(c∗) are relocated in another stack.

After relocatingO(c∗)+ in s∗, there could be empty slots,
denoted by e(s∗) = H − (h(s∗) + |O(c∗)+|). These slots
can be exploited in order to reduce the number of non-
located blocks. Before relocating O(c∗)+, the heuristic i)
identifies all the topmost non-located blocks of some stack
s (s 6= s(c∗)) and ii) selects that with the lowest priority

Algorithm 2 Pseudocode of the heuristic approach aimed at
solving the Q-BRP
Require: Bay with the blocks to retrieve
Require: δ, range of target stacks
Ensure: Solution of the Q-BRP

1: for p = 1→ K do
2: c∗ ← Find block with priority p
3: O(c∗)← Blocks placed on c∗ (Equation 4)
4: while (O(c∗) 6= ∅) do
5: q∗ ← min{Q, |O(c∗)|}
6: placed← false
7: while (!placed) do
8: O(c∗)+ ← Find the largest subset of O(c∗)

(|O(c∗)+| ≤ q∗) with increasing priority order
9: Φ← Feasible target stacks for O(c∗)+

10: if (Φ 6= ∅) then
11: s∗ ← Select stack from Φ by using δ
12: Fill s∗ with non-located blocks
13: Relocate O(c∗)+ from s(c∗) in s∗
14: placed← true
15: else
16: q∗ ← q∗ − 1
17: end if
18: end while
19: end while
20: Retrieve c∗ from the top of its stack
21: end for

that would satisfy the increasing priority order. The reason
is that we pursue to maximize the number of potential blocks
to be placed in s∗ without requiring new relocations in the
future. Figure 2 illustrates the filling strategy. In this case,
the feasible target stacks of O(1)+ = {5, 7} are 1, 3, and
5. The attractiveness measure reported by Equation (38) is
depicted at the top of the figure. Before relocating O(1)+ in
the stack 5, the potential non-located blocks to fill the empty
slot (e(5) = 1) are identified, blocks 8, 16, and 4. As we can
see, the block 8 is relocated due to the fact that it is that with
the lowest priority that satisfy the increasing priority order.

Figure 2: Filling strategy applied before relocating
O(c∗)+ = {5, 7}

116



Computational Results
The experiments presented along this section were carried
out on a PC with an Intel Core 2 Duo E8500 3.16 GHz and 4
GB of RAM, the MILP was implemented by using CPLEX
12.41 and the heuristic algorithm was programmed by the
Java SE 7 language. In the experiments we have used the
most extended benchmark suite for the BRP (Caserta, Voβ,
and Sniedovich 2011). It is composed of 840 realistic in-
stances generated at random in which each slot contains one
block. In all the cases we include two empty rows at the top
of the bays with the aim of allowing relocation movements.

The first computational experiment pursues to evaluate
the performance of the proposed MILP. Table 1 shows the re-
sults obtained for the 3x3 instances when Q = 1 and Q = 2
by using the solution reported by Algorithm 1 (max = 100)
as initial solution. In spite of the fact we are addressing the
smallest instances, the computational time (several days in
some cases) required by the MILP increases exponentially
with the value of Q and makes it impractical in real-world
scenarios. The reason is found in the large number of vari-
ables involved, which are aimed at identify the state of each
block in each slot during the whole planning horizon.

In the following we compare the results obtained by our
heuristic and those reported by that proposed by (Kim and
Hong 2006) for the BRP (Q = 1). It is worth mentioning that
the computational times required by the heuristic by (Kim
and Hong 2006) are shorter than 0.1 seconds in all the cases.
We have executed our heuristic with δ = 3 and embedded
it into a restarting strategy that finished when 100 iterations
have been executed without any improvement in the objec-
tive function value of the best solution found so far. Table 2
shows the comparison between both heuristics when solving
the first 5 instances of 9 groups from the benchmark suite
with Q = 1. Additionally, we report the results obtained
when setting Q = 2 and Q = ∞ (all the blocks in a stack
can be relocated at once) with future comparative purposes.

As can be seen, when Q = 1 our heuristic reports solu-
tions with at least the same or better quality than those ob-
tained by (Kim and Hong 2006) in most of the cases, with an
overall average improvement of 1.38 relocation movements.
The computational times are short (less than 1 second) in
all the cases, in such a way that, the heuristic can be ef-
ficiently embedded into integrated warehouse management
systems. In those cases in which we have not obtained the
best known solution (instances 4x5-1 and 4x5-5) our heuris-
tic reports high quality solutions. It should be noted that we
have obtained the optima solutions for the first 5 instances
belonging to the group 3x3 (see Table 1).

On the other hand, if we carry out an analysis concerning
the impact of increasing the number of blocks handled by
the equipment we can see that the relocations perform dur-
ing the retrieval process is highly influenced. The number of
relocation movements decreases fastly as the value of Q in-
creases, from 8.75 relocation movements on average down
to 7.02 and 6.58 relocations when we setQ = 2 andQ =∞,
respectively.

1http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/

Index MILP (Q=1) MILP (Q=2)
fopt t (s.) fopt t (s.)

1 6 5680.46 4 18609.78
2 5 5268.28 4 37707.09
3 2 16.62 2 217.17
4 4 1284.81 2 142.75
5 1 0.55 1 12.29
6 6 31760.24 5 374588.30
7 6 20871.43 3 5198.82
8 2 30.33 2 4640.57
9 7 160620.96 5 756859.12

10 5 2832.22 4 8841.69
11 3 216.78 2 2392.90
12 5 3003.08 4 7260.20
13 8 231314.47 5 613968.37
14 7 16483.72 4 15293.46
15 6 66376.00 3 9073.46
16 7 37603.17 5 66814.56
17 5 3934.84 4 42402.27
18 2 3.97 2 32.07
19 8 224421.26 4 17181.60
20 7 65574.23 4 19781.15
21 7 75849.64 4 137415.12
22 4 9552.62 4 20611.03
23 6 2541.81 4 577138.87
24 6 16114.17 5 232760.50
25 4 269.68 3 2141.35
26 4 82.80 3 5520.55
27 5 4749.58 4 15336.56
28 5 6015.75 5 137143.41
29 7 20577.23 5 68665.67
30 6 14026.59 3 6562.33
31 5 6972.97 4 26523.38
32 2 25.68 2 507.22
33 3 1930.35 3 4172.73
34 6 9843.51 4 7302.84
35 5 4636.64 4 14539.76
36 7 136872.48 6 1828854.31
37 5 2606.56 4 54184.31
38 4 743.46 4 28461.44
39 0 0.48 0 2.28
40 6 72599.96 3 7968.58

4.98 31582.73 3.58 129420.75

Table 1: Performance of the MILP over 40 instances with 3
stacks, 3 tiers and 2 empty rows at the top of the bay

Concluding Remarks and Future Lines
The time required when retrieving blocks from a warehouse
is a critical factor. This time is increased when the blocks are
not placed according with their retrieval order and, therefore,
relocations must be carried out. In this work we model this
planning problem by a MILP. Reducing its computational
burden is an open direction for further research. On the other
hand, we have proposed a heuristic algorithm aimed at min-
imizing the number of non-located blocks. In future works
we are going to study the integration of the Q-BRP with

117



Instance Kim & Hong
Heuristic

(Q=1)
Heuristic

(Q=2)
Heuristic
(Q=∞)

H W Index fHeu t (s.) fHeu t (s.) fHeu t (s.)

3 3

1 7 6 0.94 4 0.80 3 0.72
2 7 5 0.68 4 0.68 4 0.60
3 2 2 0.34 2 0.23 2 0.25
4 4 4 0.33 2 0.21 2 0.21
5 1 1 0.30 1 0.14 1 0.25

3 4

1 5 5 0.12 5 0.93 5 0.89
2 4 3 0.48 2 0.40 2 0.49
3 9 7 0.99 6 0.75 6 0.82
4 6 5 0.30 5 0.69 5 0.72
5 7 6 0.31 5 0.22 5 0.82

3 5

1 8 6 0.16 5 0.19 5 0.81
2 10 7 0.16 5 0.11 5 0.75
3 9 8 0.35 7 0.11 7 0.35
4 6 6 0.21 5 0.23 5 0.26
5 12 9 0.28 7 0.24 7 0.30

3 6

1 12 10 0.28 6 0.20 6 0.18
2 11 7 0.48 7 0.79 7 0.11
3 11 11 0.47 9 0.75 9 0.58
4 7 7 0.53 6 0.31 5 0.25
5 4 4 0.24 4 0.17 4 0.19

3 7

1 7 7 0.23 7 0.26 7 0.23
2 11 10 0.10 8 0.57 8 0.52
3 10 9 0.86 6 0.60 6 0.51
4 8 8 0.47 7 0.48 7 0.48
5 12 12 0.61 9 0.81 9 0.65

3 8

1 9 8 0.27 7 0.27 7 0.27
2 10 10 0.10 8 0.11 7 0.15
3 12 9 0.67 8 0.50 8 0.58
4 11 10 0.12 9 0.48 9 0.56
5 14 13 0.64 10 0.82 10 0.53

4 4

1 11 10 0.27 8 0.22 7 0.19
2 15 10 0.47 9 0.64 9 0.12
3 13 10 0.43 8 0.36 8 0.33
4 9 7 0.44 7 0.25 7 0.30
5 12 9 0.33 8 0.38 8 0.32

4 5

1 13 17 0.19 12 0.30 10 0.35
2 11 10 0.85 9 0.51 8 0.55
3 15 13 0.11 10 0.42 9 0.44
4 11 9 0.32 7 0.36 6 0.34
5 14 15 0.10 10 0.50 9 0.44

4 6

1 20 17 0.39 11 0.28 9 0.82
2 8 7 0.78 6 0.87 6 0.58
3 14 13 0.59 9 0.82 9 0.84
4 20 15 0.73 11 0.65 9 0.60
5 24 17 0.85 15 0.61 9 0.85

10.13 8.75 0.41 7.02 0.45 6.58 0.49

Table 2: Comparison between the heuristic proposed by (Kim and Hong 2006) and our heuristic with different values of Q

other logistical problems such as dispatching of vehicles.

Acknowledgments
This work has been partially funded by the European
Regional Development Fund, the Spanish Ministry of

Economy and Competitiveness (project TIN2012-32608).
Christopher Expósito-Izquierdo thanks the Canary Govern-
ment the financial support he receives through his doctoral
grant.

118



References
Bortfeldt, A., and Forster, F. 2012. A tree search proce-
dure for the container pre-marshalling problem. European
Journal of Operational Research 217(3):531 – 540.
Breiter, A.; Hegmanns, T.; Hellingrath, B.; and Spinler, S.
2009. Coordination in supply chain management - review
and identification of directions for future research. In Voβ,
S.; Pahl, J.; and Schwarze, S., eds., Logistik Management.
Physica-Verlag HD. 1–35.
Caserta, M.; Schwarze, S.; and Voβ, S. 2009. A new bi-
nary description of the blocks relocation problem and bene-
fits in a look ahead heuristic. In Cotta, C., and Cowling, P.,
eds., Evolutionary Computation in Combinatorial Optimiza-
tion, volume 5482 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. 37–48.
Caserta, M.; Schwarze, S.; and Voβ, S. 2011. Container
rehandling at maritime container terminals. In Böse, J. W.;
Sharda, R.; and Voβ, S., eds., Handbook of Terminal Plan-
ning, volume 49 of Operations Research/Computer Science
Interfaces Series. Springer New York. 247–269.
Caserta, M.; Schwarze, S.; and Voβ, S. 2012. A mathemati-
cal formulation and complexity considerations for the blocks
relocation problem. European Journal of Operational Re-
search 219(1):96 – 104.
Caserta, M.; Voβ, S.; and Sniedovich, M. 2011. Apply-
ing the corridor method to a blocks relocation problem. OR
Spectrum 33:915–929.
Chan, F. T., and Chan, H. 2011. Improving the productiv-
ity of order picking of a manual-pick and multi-level rack
distribution warehouse through the implementation of class-
based storage. Expert Systems with Applications 38(3):2686
– 2700.
Choe, R.; Park, T.; Oh, M.-S.; Kang, J.; and Ryu, K. 2011.
Generating a rehandling-free intra-block remarshaling plan
for an automated container yard. Journal of Intelligent Man-
ufacturing 22(2):201–217.
de Koster, R.; Le-Duc, T.; and Roodbergen, K. J. 2007.
Design and control of warehouse order picking: A litera-
ture review. European Journal of Operational Research
182(2):481 – 501.
Dekker, R.; Voogd, P.; and Asperen, E. 2007. Ad-
vanced methods for container stacking. In Kim, K. H., and
Günther, H.-O., eds., Container Terminals and Cargo Sys-
tems. Springer Berlin Heidelberg. 131–154.
Expósito-Izquierdo, C.; Melián-Batista, B.; and Moreno-
Vega, M. 2012. Pre-marshalling problem: Heuristic solu-
tion method and instances generator. Expert Systems with
Applications 39(9):8337 – 8349.
Grosse, E. H.; Glock, C. H.; and Jaber, M. Y. 2013. The
effect of worker learning and forgetting on storage reassign-
ment decisions in order picking systems. Computers & In-
dustrial Engineering.
Gu, J.; Goetschalckx, M.; and McGinnis, L. F. 2010. Re-
search on warehouse design and performance evaluation: A
comprehensive review. European Journal of Operational
Research 203(3):539 – 549.

Gudehus, T., and Kotzab, H. 2009. Storage systems. In
Comprehensive Logistics. Springer Berlin Heidelberg. 449–
533.
Kang, J.; Ryu, K.; and Kim, K. 2006. Deriving stacking
strategies for export containers with uncertain weight infor-
mation. Journal of Intelligent Manufacturing 17(4):399–
410.
Kim, K. H., and Hong, G.-P. 2006. A heuristic rule for relo-
cating blocks. Computers & Operations Research 33(4):940
– 954.
Lee, Y., and Hsu, N.-Y. 2007. An optimization model for
the container pre-marshalling problem. Computers & Oper-
ations Research 34(11):3295 – 3313.
Melo, M.; Nickel, S.; and da Gama, F. S. 2009. Facility lo-
cation and supply chain management - A review. European
Journal of Operational Research 196(2):401 – 412.
Park, T.-K., and Kim, K. H. 2010. Comparing handling and
space costs for various types of stacking methods. Comput-
ers & Industrial Engineering 58(3):501 – 508.
Rei, R. J., and Pedroso, J. P. 2012. Heuristic search for
the stacking problem. International Transactions in Opera-
tional Research 19(3):379–395.
Rei, R., and Pedroso, J. 2013. Tree search for the stacking
problem. Annals of Operations Research 203(1):371–388.
Tompkins, J.; White, Y.; Bozer, E.; and Tanchoco, J. 2010.
Facilities planning. John Wiley & Sons, 4th edition edition.
van Zelst, S.; van Donselaar, K.; van Woensel, T.; Broek-
meulen, R.; and Fransoo, J. 2009. Logistics drivers for shelf
stacking in grocery retail stores: Potential for efficiency im-
provement. International Journal of Production Economics
121(2):620 – 632.
Zhang, H.; Guo, S.; Zhu, W.; Lim, A.; and Cheang, B. 2010.
An investigation of ida* algorithms for the container relo-
cation problem. In Garca-Pedrajas, N.; Herrera, F.; Fyfe,
C.; Bentez, J.; and Ali, M., eds., Trends in Applied Intelli-
gent Systems, volume 6096 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg. 31–40.
Zhao, W., and Goodchild, A. V. 2010. The impact of truck
arrival information on container terminal rehandling. Trans-
portation Research Part E: Logistics and Transportation Re-
view 46(3):327 – 343.

119




