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Abstract

This work combines recent advances in AI planning under
memory limitation, namely bitvector and symbolic search.
Bitvector search assumes a bijective mapping between state
and memory addresses, while symbolic search compactly
represents state sets. The memory requirements vary with
the structure of the problem to be solved. The integration
of the two algorithms into one hybrid algorithm for strongly
solving general games initiates a BDD-based solving algo-
rithm, which consists of a forward computation of the reach-
able state set, possibly followed by a layered backward ret-
rograde analysis. If the main memory becomes exhausted, it
switches to explicit-state two-bit retrograde search. We use
the classical game of Connect Four as a case study, and solve
some instances of the problem space-efficiently with the pro-
posed hybrid search algorithm.

Introduction
This work combines two recent advances in AI planning un-
der memory limitation, namely planning with bitvectors and
planning with BDDs (binary decision diagrams).

Planning with bitvectors (Cooperman and Finkelstein
1992) assumes a perfect hash function, in form of a one-to-
one mapping between state and memory address indices, so
that each state only takes a constant number of bits (the state
itself is implicitly encoded in the memory address), while
planning with BDDs compactly represents and progresses
state sets (McMillan 1993). Bitvectors have been success-
fully applied in solving single-agent planning problems like
Pancake Flipping (Korf 2008), and Rubik’s Cube, for an-
alyzing multi-agent games like Chinese Checkers (Sturte-
vant and Rutherford 2013), Nine-Men-Morris (Edelkamp,
Sulewski, and Yücel 2010), and Awari (Romein and Bal
2002). They have also been employed for constructing
endgames, e.g., in Checkers (Schaeffer et al. 2005), and
for generating pattern databases (Breyer and Korf 2010;
Sievers, Ortlieb, and Helmert 2012).

Symbolic planning has been successfully applied in
exploring single-agent challenges (Edelkamp and Reffel
1998), cost-optimal tasks (Edelkamp and Kissmann 2009;
Torralba, Edelkamp, and Kissmann 2013; Torralba and Al-
cázar 2013), for computing pattern databases (Edelkamp

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2005) and for strongly solving general games (Edelkamp
and Kissmann 2008; Kissmann and Edelkamp 2010).

When addressing practical needs in the applications, the
memory requirements for planning based on a bitvector en-
coding of the state space, and for planning with BDDs based
on a binary encoding of a state, vary with the structure of the
problem to be solved. The sweet spot of efficient space us-
age is often located between the two extremes.

We will address the integration of the two algorithms into
a single hybrid. We strongly solve the planning problem by
computing what is sometimes referred to as the universal
plan: an optimal policy (here in form of winning sets) that
returns the best possible action for each state (this policy can
be extracted to form an optimal controller.) Our setting is
adversarial, where a protagonist plays a game against an an-
toganist. More specifically, we use the technique to strongly
solve general games described in the game description lan-
guage GDL (Love, Hinrichs, and Genesereth 2006).

First, we initiate a BDD-based planning algorithm, which
consists of a forward computation of the reachable state set,
followed by a layered backward retrograde analysis. For the
exploration and solving we will apply the layered approach
that is described in (Kissmann and Edelkamp 2010). After
storing BDDs for each layer of the set of reachable states,
the solving algorithm chains backward layer by layer, with
decreasing distance to the initial state instead of increasing
distance to the goal states. This way, the BDDs for all but
the currently addressed layers reside on disk.

For the explicit-state space analysis we will use a
bitvector-based retrograde analysis algorithm. The impor-
tant contribution of this paper is the connection from the ex-
plicit to the symbolic representation obtained in the reach-
ability analysis by applying efficient ranking and unranking
with BDDs (Dietzfelbinger and Edelkamp 2009).

If the forward stage is completed or if main mem-
ory requirements become exhausted, the hybrid algorithm
switches to backward bitvector search. The BDD represen-
tation of the forward-layer that is currently worked on in the
retrograde analysis serves as a perfect hash function to ad-
dress the index in the bitvector with the state and to retrieve
and reconstruct it from the index.

We use Connect Four as a case study, and solve GDL in-
stances of the problem space-efficiently with the proposed
hybrid planning algorithm. Moreover, we predict the search
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Figure 1: The game Connect Four: The player with the
pieces shaded in gray has won.

efforts needed for strongly solving larger Connect Four
problems. (The game was weakly solved von James Dow
Allen and Victor Allis; and close-to-strongly solved by John
Tromp.) We center around this problem, since memory lim-
itations are real on current technology, and none of the ex-
isting algorithms can solve it. Nonetheless, the hybrid plan-
ning approach itself is domain-independent.

The paper is structured as follows. First, we motivate the
problem of limited main memory capacity that we encoun-
tered, while trying to strongly solve the game of Connect
Four. Next, we introduce planning with BDDs and with
bitvectors and turn to ranking and unranking with BDDs.
We then show how to combine the algorithms into one hy-
brid. Finally, we provide initial experiments in smaller in-
stances of the Connect Four problem, predict the search ef-
forts for solving larger instances, and discuss the results.

Case Study
Although most of the algorithms are applicable to sev-
eral two-player games, our focus is on one particular case,
namely the game Connect Four (see Fig. 1). The game (Al-
lis 1988; Allen 2011) is played on a grid of c columns and
r rows. In the classical setting we have c = 7 and r = 6.
While the game is simple to follow and play, it can be rather
challenging to win. This game is similar to Tic-Tac-Toe,
with two main differences: The players must connect four
of their pieces (horizontally, vertically, or diagonally) in or-
der to win and gravity pulls the pieces always as far to the
bottom of the chosen column as possible. The numbers of
states for different settings of c× r are shown in Table 1.

BDD search can efficiently execute a breadth-first enu-
meration of the state space in (7 × 6) Connect Four
(Edelkamp and Kissmann 2008). It has been formally shown
that – while the reachable set leads to polynomially-sized
BDDs – the symbolic representation of the termination cri-
terion appears to be exponential (Edelkamp and Kissmann
2011). The set of all 4,531,985,219,092 reachable states can
be found within four hours of computation, while explicit-
state disk-based search took more than one year.

As illustrated in Table 2, of the 4,531,985,219,092 reach-
able states only 1,211,380,164,911 (about 26.72%) have
been left unsolved in the layered BDD retrograde analy-
sis. (More precisely, there are 1,265,297,048,241 states
left unsolved by the algorithm, but the remaining set of
53,916,883,330 states in layer 30 is implied by the solvabil-

ity status of the other states in the layer.) Even while provid-
ing space in form of 192 GB of RAM, however, it was not
possible to proceed the symbolic solving algorithm to layers
smaller than 30. The reason is that while the peak of the so-
lution for the state sets has already been passed, the BDDs
for representing the state sets are still growing.

This motivates looking at other options for memory-
limited search and a hybrid approach that takes the symbolic
information into account to eventually compute the com-
plete solution of the problem.

BDDs for Strongly Solving Games
Binary decision diagrams (BDDs) are a memory-efficient
data structure used to represent Boolean functions (Bryant
1986) as well as to perform set-based search (McMillan
1993). In short, a BDD is a directed acyclic graph with one
root and two terminal nodes, the 0- and the 1-sink. Each
internal node corresponds to a binary variable and has two
successor eges, one (along the Then-edge) representing that
the current variable is true (1) and the other (along the Else-
edge) representing that it is false (0). For any assignment of
the variables derived from a path from the root to the 1-sink
the represented function will be evaluated to 1.

Bryant (1986) imposes a fixed variable ordering, for
which he also provided two reduction rules (eliminating
nodes with the same Then- and Else-edge and merging two
nodes representing the same variable that share the same
Then-edge as well as the same Else-edge). These BDDs
are called reduced ordered binary decision diagrams (RO-
BDDs). Whenever we mention BDDs in this paper, we ac-
tually refer to ROBDDs. We also assume that the variable
ordering is the same for all the BDDs and has been opti-
mized prior to the search. BDDs have been shown to be very
effective in the verification of systems, where BDD traversal
is referred to as symbolic model checking (McMillan 1993).
Adopting terminology to state space search, we are inter-
ested in the image of a state set S with respect to a transition
relation Trans. The result is a characteristic function of all
states reachable from the states in S in one step.

For the application of the image operator we need two sets
of variables, one, x, representing the current state variables,
another, x′, representing the successor state variables. The
image Succ of the state set S is then computed as Succ(x′) =
∃x (Trans(x, x′) ∧ S(x)). The preimage Pre of the state
set S is computed as Pre(x) = ∃x′ (Trans(x, x′) ∧ S(x′))
and results in the set of predecessor states.

Using the image operator, implementing a layered sym-
bolic breadth-first search (BFS) is straight-forward. All we
need to do is to apply the image operator to the initial state
resulting in the first layer, then apply the image operator to
the first layer resulting in the second and so on. The search
ends when no successor states can be found. General games
(and in this case, Connect Four) are guaranteed to terminate
after a finite number of steps, so that the forward search will
eventually terminate as well.

For strongly solving two-player games (Kissmann and
Edelkamp 2010), we find all the reachable states by perform-
ing layered symbolic BFS, storing all layers separately. The
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Table 1: Reachable states in Connect Four Variants.
l 7 × 6 6 × 6 6 × 5 5 × 6 5 × 5
0 1 1 1 1 1
1 7 6 6 5 5
2 49 36 36 25 25
3 238 156 156 95 95
4 1,120 651 651 345 345
5 4,263 2,256 2,256 1,075 1,075
6 16,422 7,876 7,870 3,355 3,350
7 54,859 24,330 24,120 9,495 9,355
8 184,275 74,922 72,312 26,480 25,060
9 558,186 211,042 194,122 68,602 60,842

10 1,662,623 576,266 502,058 169,107 139,632
11 4,568,683 1,468,114 1,202,338 394,032 299,764
12 12,236,101 3,596,076 2,734,506 866,916 596,136
13 30,929,111 8,394,784 5,868,640 1,836,560 1,128,408
14 75,437,595 18,629,174 11,812,224 3,620,237 1,948,956
15 176,541,259 39,979,044 22,771,514 6,955,925 3,231,341
16 394,591,391 80,684,814 40,496,484 12,286,909 4,769,837
17 858,218,743 159,433,890 69,753,028 21,344,079 6,789,890
18 1,763,883,894 292,803,624 108,862,608 33,562,334 8,396,345
19 3,568,259,802 531,045,746 165,943,600 51,966,652 9,955,530
20 6,746,155,945 884,124,974 224,098,249 71,726,433 9,812,925
21 12,673,345,045 1,463,364,020 296,344,032 97,556,959 9,020,543
22 22,010,823,988 2,196,180,492 338,749,998 116,176,690 6,632,480
23 38,263,228,189 3,286,589,804 378,092,536 134,736,003 4,345,913
24 60,830,813,459 4,398,259,442 352,607,428 132,834,750 2,011,598
25 97,266,114,959 5,862,955,926 314,710,752 124,251,351 584,249
26 140,728,569,039 6,891,603,916 224,395,452 97,021,801
27 205,289,508,055 8,034,014,154 149,076,078 70,647,088
28 268,057,611,944 8,106,160,185 74,046,977 40,708,770
29 352,626,845,666 7,994,700,764 30,162,078 19,932,896
30 410,378,505,447 6,636,410,522 6,440,532 5,629,467
31 479,206,477,733 5,261,162,538
32 488,906,447,183 3,435,759,942
33 496,636,890,702 2,095,299,732
34 433,471,730,336 998,252,492
35 370,947,887,723 401,230,354
36 266,313,901,222 90,026,720
37 183,615,682,381
38 104,004,465,349
39 55,156,010,773
40 22,695,896,495
41 7,811,825,938
42 1,459,332,899
Σ 4,531,985,219,092 69,212,342,175 2,818,972,642 1,044,334,437 69,763,700

solving starts in the last reached layer and performs regres-
sion search towards the initial state, which resides in layer
0. The last reached layer contains only terminal states (oth-
erwise the forward search would have progressed farther),
which can be solved immediately by calculating the con-
junction with the BDDs representing the rewards for the two
players. Once this is done, the search continues in the pre-
ceding layer. If another layer contains terminal states as
well, these are solved in the same manner before continu-
ing with the remaining states of that layer. The rewards are
handled in a certain order: In case of a zero-sum game the
order is always according to the highest reward of the active
player, modeling the MiniMax procedure (von Neumann and
Morgenstern 1944). All the solved states of the successor
layer are loaded in this order and the preimage is calculated,
which results in those states of the current layer that will
achieve the same rewards, so that they can be stored on the
disk as well. Once the initial state is solved and stored the

strong solution resides completely on the hard disk.

Ranking and Unranking with BDDs
Ranking is a minimal perfect hash function from the set of
satisfying assignments to the position of it in the lexico-
graphical ordering of all satisfying assignments. Unranking
is the inverse operation. In other words, rank is a unique
number of a state and the inverse process of unranking re-
constructs the state given its rank. Perfect hash functions
to efficiently rank and unrank states have been shown to
be very successful in traversing single-player problems like
Rubik’s Cube or the Pancake Problem (Korf 2008) or two-
player games like Awari (Romein and Bal 2002). They are
also used for creating pattern databases (Breyer and Korf
2010). The problem of the construction of these perfect hash
functions is that they are domain dependent.

The domain-independent approach exploited in this paper
builds on top of findings by Dietzfelbinger and Edelkamp
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Table 2: Result of symbolic retrograde analysis (excl. terminal goals; l is the layer).

l nodes (won) states (won) nodes (draw) states (draw) nodes (lost) states (lost)
...

...
...

...
...

...
...

29 o.o.m. o.o.m. o.o.m. o.o.m. o.o.m. o.o.m.
30 589,818,676 199,698,237,436 442,186,667 6,071,049,190 o.o.m. o.o.m.
31 458,334,850 64,575,211,590 391,835,510 7,481,813,611 600,184,350 201,906,000,786
32 434,712,475 221,858,140,210 329,128,230 9,048,082,187 431,635,078 57,701,213,064
33 296,171,698 59,055,227,990 265,790,497 10,381,952,902 407,772,871 194,705,107,378
34 269,914,837 180,530,409,295 204,879,421 11,668,229,290 255,030,652 45,845,152,952
35 158,392,456 37,941,816,854 151,396,255 12,225,240,861 231,007,885 132,714,989,361
36 140,866,642 98,839,977,654 106,870,288 12,431,825,174 121,562,152 24,027,994,344
37 68,384,931 14,174,513,115 72,503,659 11,509,102,126 105,342,224 57,747,247,782
38 58,428,179 32,161,409,500 44,463,367 10,220,085,105 42,722,598 6,906,069,443
39 19,660,468 2,395,524,395 27,201,091 7,792,641,079 35,022,531 13,697,133,737
40 17,499,402 4,831,822,472 13,858,002 5,153,271,363 8,233,719 738,628,818
41 0 0 5,994,843 2,496,557,393 7,059,429 1,033,139,763
42 0 0 0 0 0 0

(2009), who illustrated that, after some preprocessing,
un/ranking of states in a state set represented as a BDD is
as efficient as a hash table lookup. One obvious application
was the uniform random choice of satisfying assignments.

In our case, BDD ranking aims at the symbolic equiva-
lent of constructing a perfect hash function for fully enumer-
ated state sets (Botelho, Pagh, and Ziviani 2007). For such
perfect hash functions, the underlying state set to be hashed
is generated in advance. This is plausible when computing
strong solutions to problems, where we are interested in the
game-theoretical value of all reachable states. Applications
are planning tasks where the problem to be solved is harder
than computing the reachability set.

For ranking and unranking satcount values are precom-
puted at each node of the BDD. Roughly speaking, the rank
is computed by adding all satcount values at Else-edges ad-
jacent to nodes in the path from root to sink that corre-
sponds to the assignment. While unranking, the assignment
is reconstructed from the number by subtracting these val-
ues from top to bottom and following the Then-edges in this
case. Based on the lack of node indices when chaining down
from top to bottom (due to BDD reduction rules), the actual
implementation is tricky and requires access to the binary
value of the omitted BDD node indices.

Let n be the size of the binary state vector. We now de-
scribe anO(n) ranking and unranking scheme on top of pre-
computed satcount values in more detail. With negation on
edges there are subtle problems to be resolved for storing the
satcount values that we do not dwell on.

The index(n) of a BDD node n is its unique position in the
shared representation and level(n) its position in the variable
ordering. Moreover, we assume the 1-sink to have index 1
and the 0-sink to have index 0. Let Cf = |{a ∈ {0, 1}n |
f(a) = 1}| denote the number of satisfying assignments
(satcount, here also sc for short) of f . With bin (and invbin)
we denote the conversion of the binary value of a bitvector
(and its inverse). The rank of a satisfying assignment a ∈
{0, 1}n is the position in the lexicographical ordering of all
satisfying assignments, while the unranking of a number r
in {0, . . . , Cf − 1} is its inverse.

Figure 2 shows the ranking and unranking functions in

r ank ( s )
i = l e v e l ( r o o t ) ;
d = b i n ( s [ 0 . . i −1]) ;
re turn d* sc ( r o o t ) + rankAux ( r o o t , s ) − 1 ;

rankAux ( n , s )
i f ( n <= 1) re turn n ;
i = l e v e l ( n ) ;
j = l e v e l ( E l s e ( n ) ) ;
k = l e v e l ( Then ( n ) ) ;
i f ( s [ i ] == 0)

re turn b i n ( s [ i + 1 . . j −1]) * sc ( E l s e ( n ) )
+ rankAux ( E l s e ( n ) , s ) ;

e l s e
re turn 2^ ( j−i −1) * sc ( E l s e ( n ) )

+ b i n ( s [ i + 1 . . k−1]) * sc ( Then ( n ) )
+ rankAux ( Then ( n ) , s ) ;

unrank ( r )
i = l e v e l ( r o o t ) ;
d = r / s c ( r o o t ) ;
s [ 0 . . i −1] = i n v b i n ( d ) ;
n = r o o t ;
whi le ( n > 1)

r = r mod sc ( n ) ;
j = l e v e l ( E l s e ( n ) ) ;
k = l e v e l ( Then ( n ) ) ;
i f ( r < ( 2 ^ ( j−i −1) * sc ( E l s e ( n ) ) ) )

s [ i ] = 0 ;
d = r / s c ( E l s e ( n ) ) ;
s [ i + 1 . . j −1] = i n v b i n ( d ) ;
n = E l s e ( n ) ;
i = j ;

e l s e
s [ i ] = 1 ;
r = r − ( 2 ^ ( j−i −1) * sc ( E l s e ( n ) ) ) ;
d = r / s c ( Then ( n ) ) ;
s [ i + 1 . . k−1] = i n v b i n ( d ) ;
n = Then ( n ) ;
i = k ;

re turn s ;

Figure 2: Ranking and unranking of states.

pseudo-code. The procedures determine the rank given a sat-
isfying assignment and vice versa. They access the satcount
values on the Else-successor of each node (adding for the
ranking and subtracting in the unranking). Missing nodes
(due to BDD reduction) have to be accounted for by their
binary representation, i.e., gaps of l missing nodes are ac-
counted for 2l. While the ranking procedure is recursive the
unranking procedure is not.

The satcount values of all BDD nodes are precomputed
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Figure 3: BDD for the ranking and unranking examples.
Dashed arrows denote Else-edges; solid ones Then-edges.
The numbers in the nodes correspond to the satcount. Each
vi denotes the index (i) of the corresponding node.

and stored along with the nodes. As BDDs are reduced, not
all variables on a path are present but need to be accounted
for in the satcount procedure. The time (and space) com-
plexity of it is O(|Gf |), where |Gf | is the number of nodes
of the BDD Gf representing f . With the precomputed val-
ues, rank and unrank both require linear timeO(n), where n
is the number of variables in the function represented in the
BDD. Dietzfelbinger and Edelkamp (2009) provide invari-
ances showing that the procedures work correctly.

Ranking and Unranking Examples
To illustrate the ranking and unranking procedures, take the
example BDD given in Figure 3. Assume we want to cal-
culate the rank of state s = 110011. The rank of s is then
rank(s) = 0 + rA(v13, s)− 1

= (21−0−1 · sc(v11) + 0 + rA(v16, s))− 1

= sc(v11) +

(23−1−1 · sc(v8) + bin(0) · sc(v9) + rA(v9, s))− 1

= sc(v11) + 2sc(v8) + (0 + rA(v5, s))− 1

= sc(v11) + 2sc(v8) +

(26−4−1 · sc(v0) + bin(1) · sc(v1) + rA(v1, s))− 1

= sc(v11) + 2sc(v8) + 2sc(v0) + sc(v1) + 1− 1

= 14 + 2 · 5 + 2 · 0 + 1 + 1− 1 = 25

with rA(s, vi) being the recursive call of the rankAux func-
tion for state s in node vi and sc(vi) the satcount stored in
node vi.

For unranking the state with index 19 (r = 19) from the
BDD depicted in Figure 3 we get:

• i = 0, n = v13: r = 19 mod sc(v13) = 19 mod 30 =
19 6< 21−0−1sc(v11) = 14, thus s[0] = 1; r = r −
21−0−1sc(v11) = 19− 14 = 5

• i = 1, n = v12: r = 5 mod sc(v12) = 5 mod 16 =
5 < 23−1−1sc(v8) = 2 · 5 = 10, thus s[1] = 0; s[2] =
invbin(r/sc(v8)) = invbin(5/5) = 1

• i = 3, n = v8: r = 5 mod sc(v8) = 5 mod 5 = 0 <
24−3−1sc(v4) = 1, thus s[3] = 0

• i = 4, n = v4: r = 0 mod sc(v4) = 0 mod 1 =
0 6< 26−4−1sc(v0) = 0, thus s[4] = 1; r = r −
26−4−1sc(v0) = 0− 0 = 0

• i = 5, n = v2: r = 0 mod sc(v2) = 0 mod 1 =
0 6< 27−6−1sc(v12) = 0, thus s[5] = 1; r = r −
27−6−1sc(v12) = 0− 0

• i = 6;n = v1: return s (= 101011)

Retrograde Analysis on a Bitvector
Two-bit breadth-first search has first been used to enumer-
ate so-called Cayley Graphs (Cooperman and Finkelstein
1992). As a subsequent result the authors proved an up-
per bound to solve every possible configuration of Rubik’s
Cube (Kunkle and Cooperman 2007). By performing a
breadth-first search over subsets of configurations in 63
hours together with the help of 128 processor cores and 7 TB
of disk space it was shown that 26 moves always suffice to
unscramble it. Korf (2008) has applied the two-bit breadth-
first search algorithm to generate the state spaces for hard
instances of the Pancake problem I/O-efficiently.

In the two-bit breadth-first search algorithm every state
is expanded at most once. The two bits encode values in
{0, . . . , 3} with value 3 representing an unvisited state, and
values 0, 1, or 2 denoting the current search depth mod 3.
This allows to distinguish generated and visited states from
ones expanded in the current breadth-first layer.

Adaptation to Our Setting
In our implementation (see Algorithm 4) we also use two
bits, but with a different meaning. We apply the algorithm
to solve two-player zero-sum games where the outcomes are
only won/lost/drawn from the starting player’s point of view.
This is reflected in the interpretation of the two bits: Value
0 means that the state has not yet been evaluated; value 1
means it is won by the starting player (the player with in-
dex 0); value 2 means it is won by the player with index 1;
value 3 means it is drawn. Retrograde analysis solves the en-
tire set of positions in backward direction, starting from won
and lost terminal ones. Bit-state retrograde analysis applies
backward BFS starting from the states already decided.

For the sake of simplicity, the rank and unrank functions
are both context-sensitive wrt. the layer of the search in
which the operations take place. In the implementation we
use BDDs for the different layers.

The algorithm assumes a maximal number of moves, that
terminal drawn states appear only in the last layer (as is the
case in Connect Four; extension to different settings is pos-
sible), that the game is turn-taking, and that the player can
be found in the encoding of the game. It takes as input a de-
cision procedure for determining whether a situation is won
by one of the players as well as the index of the last reached
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r e t r o g r a d e ( won , m a x l a y e r s )
f o r l a y e r i n maxlayer s , . . . , 0

m = sc ( bdd ( l a y e r ) )
f o r i i n 0 , . . . ,m − 1

B[ l a y e r ] [ i ] = 0
f o r i i n 0 , . . . ,m − 1

s t a t e = unrank ( i )
i f ( won ( s t a t e ) )

i f ( l a y e r mod 2 == 1)
B[ l a y e r ] [ i ] = 1

e l s e
B[ l a y e r ] [ i ] = 2

e l s e i f ( l a y e r == maxlaye r )
B[ l a y e r ] [ i ] = 3

e l s e
s u c c s = expand ( s t a t e )
p r o c e s s ( s u c c s )

p r o c e s s ( s u c c s )
i f ( l a y e r mod 2 == 1)

f o r a l l s i n s u c c s
i f B[ l a y e r + 1 ] [ r ank ( s ) ] == 2

B[ l a y e r ] [ r ank ( i ) ] = 2
break

e l s e i f (B[ l a y e r + 1 ] [ r ank ( s ) ] == 3)
B[ l a y e r ] [ r ank ( i ) ] = 3

i f (B[ l a y e r ] [ r ank ( i ) ] == 0)
B[ l a y e r ] [ r ank ( i ) ] = 1

e l s e
f o r a l l s i n s u c c s

i f B[ l a y e r + 1 ] [ r ank ( s ) ] == 1
B[ l a y e r ] [ r ank ( i ) ] = 1
break

e l s e i f (B[ l a y e r + 1 ] [ r ank ( s ) ] == 3)
B[ l a y e r ] [ r ank ( i ) ] = 3

i f (B[ l a y e r ] [ r ank ( i ) ] == 0)
B[ l a y e r ] [ r ank ( i ) ] = 2

Figure 4: Retrograde analysis with bits for two-player zero-
sum game (ranking is sensitive to the layer it is called in).

layer (maxlayer). Starting at the final layer, it iterates toward
the initial state residing in layer 0.

For each layer, it first of all determines the number of
states. Next it sets all values of the vector B for the states
in the current layer to 0 – not yet solved. Then it iterates
over all states in that layer.

It takes one state (by unranking it from the layer), checks
whether it is won by one of the players. If so, it can be solved
correspondingly (setting its value to either 1 or 2). Other-
wise, if it resides in the final layer, it must be a drawn state
(value 3). In case neither holds, we calculate the state’s suc-
cessors. For each successor we check whether it is won by
the currently active player, which is determined by checking
the current layer’s index. In this case the state is assigned
the same value and we continue with the next state. Other-
wise if the successor is drawn, the value of this state is set
to draw as well. In the end, if the state is still unsolved that
means that all successors are won by the opponent, so that
the corresponding value is assigned to this state as well.

Hybrid Algorithm
The hybrid algorithm combines the two precursing ap-
proaches. It generates the state space with symbolic forward
search on disk and subsequently applies explicit-state ret-
rograde analysis based on the results in form of the BDD
encoded layers read from disk.

Figure 5 illustrates the strong solution process. On the
right hand side we see the bitvector used in retrograde anal-
ysis and on the left hand side we see the BDD generated in

Figure 5: Hybrid algorithm: Visualization of data flow in
the strong solution process (top). Processing a layer in the
retrograde analysis (bottom).

forward search and used in backward search.
The process of solving one layer is depicted in Figure 5

(right). While the bitvector in the layer n (shown at the bot-
tom of the figure) is scanned and states within the layer are
unranked and expanded, existing information on the solv-
ability status of ranked successor states in the subsequent
layer n+ 1 is retrieved.

Ranking and unranking wrt. the BDD is executed to look
up the status (won/lost/drawn) of a node in the set of suc-
cessors. We observed that there is a trade-off for evaluating
immediate termination. There are two options, one is proce-
dural by evaluating the goal condition directly on the explicit
state, the other is a dictionary lookup by traversing the cor-
responding reward BDD. In Connect Four the latter was not
only more general but also faster. A third option would be
to determine if there are any successors and set the rewards
according to the current layer (as done in the pseudo-code).

To increase the exploration performance of the system we
distributed the explicit-state solving algorithms on multiple
CPU cores. We divide the bitvector for the layer to be solved
into equally-sized chunks. The bitvector for the next layer is
shared among all the threads.

For the ease of implementation, we duplicate the query
BDDs for each individual core. This is unfortunate, as we
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only use concurrent read in the BDD for evaluating the per-
fect hash function but the computation of the rank involves
setting and reading local variables and requires significant
changes in the BDD package to be organized lock-free.
There are distributed usages of BDD libraries, e.g., reported
by Christian Stangier documented in the CUDD files, but –
up to our knowledge – there is no currently available multi-
core version. Recent research work shows some steps into
that direction (van Dijk, Laarman, and van de Pol 2012), but
the status is far from being at library use.

Compared to the size of the bitvector the BDDs for the
reachability layers are considerably smaller, so that we can
afford re-reading the BDDs for each running thread.

Our prototype currently works with reachability sets from
forward symbolic search and a complete explicit-state retro-
grade analysis. In a subsequent refinement of the implemen-
tation the hybrid search algorithm can be extended to start
solving using symbolic search and then switch over to ex-
plicit search using the stored solutions if the BDD solving
cannot finish within certain amounts of RAM.

Experiments
Experiments other than in the motivating section have been
conducted on a Desktop PC with an Intel i7(R)Core(TM)-
920 CPU (with 2.66 GHz), 24 GB RAM, with four hyper-
threaded cores. RAM mainly limits the maximum number of
elements we could handle (operating system: Ubuntu Linux;
Compiler: GNU’s g++ optimized with flag -O3). For multi-
core parallelization we used pthreads. The BDDs for the
(7× 6) Connect Four have been generated on a much larger
cluster computer, running a single Java program via a native
interface to CUDD that was compiled and optimized on 64
bits with GNU’s g++. The machine used in the infeasibil-
ity argument of the 7× 6 problem was with wrt. Intel Xeon
X5690@3.47GHZ, 192GB RAM.

The results of the solving of (5 × 5) Connect Four are
shown in Table 3. We see that more cores are helpful to
reduce the running time significantly. Moreover, the perfor-
mance for the three strategies to elevate the goal conditions
varies only a little. By a small margin, the direct evaluation
that has the lowest memory requirements is best.

For the (5 × 5) case using a bitvector the total space re-
quirements are 17 MB, while the BDDs take 28 MB. How-
ever, when loading the data in RAM we also need the reach-
ability sets in form of a BDD taking 5.4 MB, and the goal
BDDs taking 4.7 MB. All in all, we obtain memory needs
in the order of 22.4 MB, which still documents a possible
saving in memory. The last 4.7 MB could be saved by not
using the goal BDDs, but rather by evaluating the condition
explicitly.

For solving (6× 5) Connect Four the results are depicted
in Table 4. Again, we see that more cores clearly reduce
runtime (with two cores by a factor of rougly two; with eight
cores by a factor of roughly four – note that our CPU uses
Hyperthreading, i.e., it has only four physical cores, so the
speedup seems to be linear in the number of used cores).
Concerning the goal evaluations, we can see that again the
direct evaluation is a bit faster. The third criterion was not

Table 3: Results for (5 × 5) Connect Four with 69,763,699
states, different termination criteria, single- and multi-core.

Algorithm Time States/Sec
1 Core Direct Goal Evaluation 283s 246,514
8 Core Direct Goal Evaluation 123s 567,184

1 Core BDD Goal 291s 239,737
8 Core BDD Goal 131s 532,547

1 Core No Succ. BDD 288s 242,235
8 Core No Succ. BDD 127s 549,320

Table 4: Results for (6 × 5) Connect Four with
2,938,430,579 states, different termination criteria, single-
and multi-core.

Algorithm Time States/Sec
1 Core Direct Goal Evaluation 14,197s 206,975
2 Core Direct Goal Evaluation 7,540s 389,712
8 Core Direct Goal Evaluation 3,510s 837,159

1 Core No Succ. BDD 14,944s 196,629
2 Core No Succ. BDD 7,665s 383,356
8 Core No Succ. BDD 3,600s 816,230

tested because it was expected to take more space without
any significant speed-up.

Table 5 gives some insight into the actual sizes required
by the BDDs and the bitvectors in the solving of (6×5) Con-
nect Four. For each forward layer we provide the number of
states in that layer, the number of BDD nodes needed to rep-
resent them, the size of the BDD representation of all states
in that layer (assuming that each node requires 20 bytes), the
size of the corresponding bitvector as well as a theoretical
estimation of the memory required to solve that layer with
the hybrid approach in case of a single-core based setting.
The required memory is simply the sum of the BDD sizes
of the current and the successor layer (both must be loaded
for the ranking and unranking in the algorithm) as well as
the sizes of the bitvectors (both must be loaded for the ac-
tual solving). Performing pure symbolic search we arrive
at a peak node count of 136,001,819. Assuming the same
node size of 20 bytes this corresponds to roughly 2.5 GB.
Seeing that the highest required size in the hybrid approach
is 254 MB the savings become apparent.

Note that the column memreq of Table 5 refers to theorti-
cal values under ideal circumstances of a static BDD pack-
age allocating only space for the BDD nodes that appear
on disk. The BDD package in use, however, has its own
memory pool implementation, and, therefore, a significant
overhead. Hence, we also computed the practical values (by
analyzing the output of the Unix command top after finaliz-
ing a layer). E.g., in layer 23 of the retrograde classification
algorithm, we observed the maximal real peak memory re-
quirements of 390 MB (VIRT) and 287 MB (RES)1.

The CPU time used to process all 2,938,430,579 states of

1By inspecting values from top in between two consecutive lay-
ers, we detected slightly higher intermediate RAM requirements of
351 MB (RES).
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Table 5: Space consumption computing (6 × 5) Connect
Four. l is the layer, s the number of states in that layer, n
the number of BDD nodes needed to represent it, sizebdd
the size of the corresponding BDD (assuming 20 Bytes per
node), sizebv the size of the corresponding bitvector, and
memreq the memory needed for solving a layer (i.e., load-
ing the current and successor layer’s bitvectors and BDDs)
in a single-core setting.

l s n sizebdd sizebv memreq

0 1 61 1.2KB 1B 3.5KB
1 6 116 2.3KB 2B 6.6KB
2 36 223 4.4KB 9B 12KB
3 156 366 7.2KB 39B 20KB
4 651 637 13KB 163B 34KB
5 2,256 1,080 21KB 564B 57KB
6 7,870 1,702 33KB 1.9KB 96KB
7 24,120 2,793 55KB 5.9KB 171KB
8 72,312 4,772 93KB 18KB 305KB
9 194,122 7,498 146KB 47KB 526KB

10 502,058 10,722 209KB 123KB 964KB
11 1,202,338 17,316 338KB 294KB 1.8MB
12 2,734,506 25,987 508KB 668KB 3.4MB
13 5,868,640 43,898 857KB 1.4MB 6.4MB
14 11,812,224 68,223 1.3MB 2.8MB 12MB
15 22,771,514 122,322 2.3MB 5.4MB 21MB
16 40,496,484 187,493 3.6MB 9.7MB 36MB
17 69,753,028 327,553 6.2MB 17MB 58MB
18 108,862,608 475,887 9.1MB 26MB 89MB
19 165,943,600 769,944 15MB 40MB 127MB
20 224,098,249 1,004,398 19MB 53MB 171MB
21 296,344,032 1,437,885 27MB 71MB 210MB
22 338,749,998 1,656,510 32MB 81MB 242MB
23 378,092,536 2,080,932 40MB 90MB 254MB
24 352,607,428 2,123,251 41MB 84MB 243MB
25 314,710,752 2,294,960 44MB 75MB 210MB
26 224,395,452 2,004,090 38MB 54MB 162MB
27 149,076,078 1,814,442 35MB 36MB 111MB
28 74,046,977 1,257,586 24MB 18MB 64MB
29 30,162,078 789,650 15MB 7.2MB 29MB
30 6,440,532 282,339 5.4MB 1.5MB 6.9MB

(6 × 5) Connect Four is about 3,500 seconds. That’s about
800,000 states per second on average.

On one core, the (6 × 6) exploration finished in 958,283
seconds, or approx. 11 days. It generated about 72,184.34
states/second. The peak of the real memory requirements
was encountered in layers 29 and 28 with 6.5 GB. At the end
of the exploration, a 14.5 GB-sized strong solution bitvector
database was computed and flushed to disk. The outcome
is that the second player wins, validating published results
(e.g., by Tromp). Table 6 shows the final classification re-
sult. On our machine we could not finalize the BDD-based
solving due to the limited amount of RAM.

Investing 2 Bits per state for (6 × 7) Connect Four re-
sults in 2 · 4,531,985,219,092 Bits or more than 1 TB of
RAM. Even for a layered retrograde analysis our computer
infrastructure is not sufficient to provide sufficient amount
of RAM to finalize the solving experiment for the (7 × 6)
Connect Four instance. In layers 32/33 the bitvectors alone
would occupy 2·(488,906,447,183+496,636,890,702) Bits
≈ 229.5GB. Therefore, we would better start with the par-
tial classification result of Table 2. Assuming the solving

Table 6: Classification of all states in won, draw and lost in
(6× 6) Connect Four.

l won(black) draw won(white)
0 1 0 0
1 6 0 0
2 6 24 6
3 98 52 6
4 131 220 300
5 1,324 534 398
6 1,752 1,580 4,544
7 13,868 3,982 6,480
8 18,640 10,280 46,002
9 118,724 25,104 67,214

10 156,360 56,710 363,196
11 815,366 129,592 523,156
12 1,050,857 267,636 2,277,583
13 4,597,758 565,760 3,231,266
14 5,831,790 1,098,276 11,699,108
15 21,523,754 2,144,618 16,310,672
16 27,021,039 3,911,893 49,751,882
17 83,960,708 7,060,426 68,412,756
18 104,937,956 12,096,840 175,768,828
19 272,162,860 20,210,438 238,672,448
20 339,135,354 32,320,349 512,669,271
21 725,182,660 50,189,136 687,992,224
22 901,278,168 75,033,304 1,219,869,020
23 1,561,655,780 108,518,894 1,616,415,130
24 1,929,105,096 150,351,002 2,318,803,344
25 2,645,054,112 202,034,082 3,015,867,732
26 3,223,332,998 259,072,600 3,409,198,318
27 3,392,753,538 322,390,736 4,318,869,880
28 4,030,760,404 384,569,265 3,690,830,516
29 3,089,884,946 435,398,174 4,469,417,644
30 3,476,328,802 471,148,650 2,688,933,070
31 1,785,392,828 468,490,136 3,007,279,574
32 1,841,291,613 450,464,011 1,144,004,318
33 554,598,782 373,041,874 1,167,659,076
34 502,035,320 276,221,222 219,995,950
35 54,244,612 149,951,066 197,034,676
36 40,044,990 49,981,730 0

speed for the remaining unclassified states goes down to
about 200,000 states per second for solving the entire layer
29 would take about 352,626,845,666/200,000/602 ≈ 488
hours, or little more than 20 days. For the remaining to-
tal of 1,265,297,048,241 states to be solved we estimate
a CPU search time of (at least) 1,752 hours or 73 days.
In layer 30, the BDD for the reachable states and the two
BDDs computed for the solution consume disk space in the
order of a few GB only but still take several hours to be
loaded. Investing two bits for each state in layer 29 requires
2 · 352,626,845,666 Bits ≈ 82.1GB. Therefore, it may be
possible for the hybrid search algorithm in this paper to fi-
nalize the entire solution process within 192 GB, while the
symbolic algorithm could not finish it.

Therefore, we looked at the memory profile of smaller
Connect Four variants. In all cases, we could show savings
in RAM in trade-off with a – still acceptable – slow-down
in the run-time behavior: e.g., the entire BDD exploration
for (6 × 5) (running on a single core of a modern PC) took
about 40m, while the hybrid exploration (running on a multi-
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core PC) lasted for about one hour. At the edge of RAM
sparse memory algorithms certainly become faster, due to
paging. Even clever I/O-efficient algorithm designs often
show a larger trade-off.

Conclusion and Discussion
We introduced a hybrid planner for two-player general
games and showed in the case study of Connect Four that
memory savings are indeed possible. We predicted the space
and time efforts needed to finalize the solution for (6 × 7)
Connect Four to give a feasibility assessment on the strong
solvability of the game on current technology. Based on the
expected significant resources in running time and RAM us-
age for the remaining solution, however, we presented ex-
perimental results only for smaller Connect Four instances.

Memory-limitation often is a more severe problem to
planning algorithms than computation time. In this paper we
have combined two promising approaches to cope with the
problem within main memory, namely the compact repre-
sentation of state sets in form of a BDD and the implicit rep-
resentation of states by main memory addresses. Depending
on the problem at hand, the one or the other can be advan-
tageous. For cases like Connect Four, it is also the case that
the memory profile for the one or the other is better in dif-
ferent parts of the search, so that we addressed the problem
of how to change from one representation to the other.

For the approach to work, we expect the state sets of the
reachability analysis (computed with BDDs) to be available,
which for finding one step-optimal plan appears to be an
overkill. For many cases of planning, however, it is more
difficult to solve the planning problem than generating the
plan space, e.g., for synthesizing an optimal controller in
form of a universal plan. With the use of ADDs, for find-
ing the optimal value function in MDPs similar problems
arise. We also expect progress in the area of automata-based
model checking, where (accepting) cycles, rather than sim-
ple paths, have to be found in the state space graph.

The bridge between the explicit-state and symbolic
memory-limited search is the design of a linear-time per-
fect hash function based on the BDD representation of the
state sets encountered. Generalizing from the studied case
of game playing and strongly solving Connect Four the ap-
proach is rather fundamental: the approach can be inter-
preted as being the symbolic equivalent to (minimum) per-
fect hashing for explicit state sets (Botelho, Pagh, and Zi-
viani 2007; Botelho and Ziviani 2007). An external-memory
model checker exploiting the exploration based on such per-
fect hash functions (Edelkamp, Sanders, and Simecek 2008)
has been shown to be effective and is able to find minimal
counter-examples (Edelkamp et al. 2011).

As the binary state encoding is found in the SAS+ encod-
ing file that is generated when grounding the problem the
generality of the approach in our implementation is mainly
affected by two aspects. The one is the so-called layered
approach, which allow to externalize the backward compu-
tation wrt. BFS layers established in forward search. For
this to work, an incremental progress measure has to be pro-
vided. Fortunately, there are many other games that include
such a progress measure. In general games this measure

is often imposed by providing a step counter. The other
domain-specific aspect are some goal test options. From the
offered choices for the goal test, the more general one has to
be based on the goal state set(s) represented as a BDD rather
than a specific test function.

The approach in its current form is not applicable to solve
the history problem (of cyclic and path-dependent behavior)
that is apparent in games like Chess and Checkers. Unfor-
tunately, our input format GDL cannot express the history
problem, so that the Checkers and Chess implementations
in the repository do not contain such drawing rules.

There are BDD model checking algorithms that can deal
with cycles, e.g., for solving Parity Games (Bakera et al.
2009; Kant and van de Pol 2014); some of them inflate the
search space (Schuppan and Biere 2006). GGP problems
do not allow cyclic game graphs and often introduce a step
counter to avoid this trouble.

Duplicate states in same depth are represented only once,
thanks to BDD reduction. Duplicates in different depths of
the retrograde analysis do not impose burden, as the forward
BFS-layers in our layered approach are handled individually.

In some domains, alternative goal tests are faster. Explicit
checks, however, are domain-dependent, so we contributed
domain-independent ones using BDDs. Our general interest
exceeds game playing: the proposed combination of explicit
and symbolic memory-limited search is applicable to many
other planning formalisms.

Dropping the BDD library and using a specialized imple-
mentation for ranking saves memory. As CUDD has ad-
vanced operations like zero-supression, which likely gain
more space, we have not followed the approach.

There is no need to know the maximum solution depth in
advance. We apply our approach in GGP, where by defini-
tion all games end after a finite number of steps – but we do
not necessarily know at which depth. We start by perform-
ing forward search to determine all reachable states – after
this we of course know the maximum solution depth (and
the depth of every reachable state).

We have not yet considered the combination of explicit-
state and symbolic memory-limited heuristic search. For ex-
ample, in cost-optimal action planning rather accurate BDD
exploration heuristics exist (Helmert et al. 2013; Edelkamp,
Kissmann, and Torralba 2012b) and have also been applied
as lookup tables for explicit-state space forward search.

Wrt. improved BDD exploration one further research av-
enue is to look at problem representations with precondi-
tions and effects, so that improved image operations based
on the concept of transition trees apply (Torralba, Edelkamp,
and Kissmann 2013). Another option is to split the BDD in
computing the image based on state set splitting into equally
sized parts (Edelkamp, Kissmann, and Torralba 2012a).
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