
Relaxation Heuristics for Multiagent Planning

Michal S̆tolba1 and Antonı́n Komenda2

stolba@agents.fel.cvut.cz, akomenda@tx.technion.ac.il
1Department of Computer Science and Engineering,

Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
2Faculty of Industrial Engineering and Management,

Technion—Israel Institute of Technology, Haifa, Israel

Abstract
Similarly to classical planning, in MA-STRIPS multia-
gent planning, heuristics significantly improve efficiency of
search-based planners. Heuristics based on solving a relax-
ation of the original planning problem are intensively stud-
ied and well understood. In particular, frequently used is the
delete relaxation, where all delete effects of actions are omit-
ted. In this paper, we present a unified view on distribution of
delete relaxation heuristics for multiagent planning.
Until recently, the most common approach to adaptation of
heuristics for multiagent planning was to compute the heuris-
tic estimate using only a projection of the problem for a single
agent. In this paper, we place such approach in the context
of techniques which allow sharing more information among
the agents and thus improve the heuristic estimates. We thor-
oughly experimentally evaluate properties of our distribution
of additive, max and Fast-Forward relaxation heuristics in
a planner based on distributed Best-First Search. The best
performing distributed relaxation heuristics favorably com-
pares to a state-of-the-art MA-STRIPS planner in terms of
benchmark problem coverage. Finally, we analyze impact of
limited agent interactions by means of recursion depth of the
heuristic estimates.

Introduction
Planning in a shared deterministic environment for and by
a team of cooperative agents with common goals is a natu-
ral extension of classical planning. To model such planning
problems, (Brafman and Domshlak 2008) proposed a multi-
agent extension of the classical STRIPS formalization, MA-
STRIPS. The model presumes a set of cooperative agents
defined by their capabilities in form of a set of actions par-
titioned from the original planning problem. In general, not
all the agents need to (or even can not) consider the com-
plete planning problem, therefore only subsets of facts and
actions are marked as public and known to the whole team.

In recent years, several multiagent planning techniques
solving MA-STRIPS problems were proposed. One focus-
ing on optimality, scalability and efficiency was proposed
by (Nissim and Brafman 2012). It adopted one of the cur-
rently most successful approaches in classical planning—
Best-First Search with highly informed automatically de-
rived heuristics. The heuristics used were LM-cut (Helmert

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Domshlak 2009) with pathmax equation and merge-and-
shrink (Helmert, Haslum, and Hoffmann 2007), both admis-
sible as is necessary for optimal planning. The heuristics
used only local information of the respective agents, effec-
tively working only with their own facts and actions and
public actions of other agents. (Crosby, Rovatsos, and Pet-
rick 2013) proposed a centralized planning approach based
on multiagent decomposition and local heuristic estimates.
The approach used delete relaxation, particularly the Fast-
Forward (FF) (Hoffmann and Nebel 2001) heuristics and fo-
cused on satisfiability. Another approach proposed by (Bor-
rajo 2013) can in principle end up as planning with a global
heuristic estimations, however requires private information
of other agents1. On the contrary, the approach by (Torreño,
Onaindia, and Sapena 2013) preserves private knowledge
and proposes distributed heuristic estimate, however it is not
based on relaxation of the original problem, but on Domain
Transition Graphs (Helmert 2006). In discussion of (Nis-
sim and Brafman 2012), the authors state that “the great-
est practical challenge [. . .] is that of computing a global
heuristic by a distributed system”. A recent work by (Štolba
and Komenda 2013) targeted this challenge for distributed
Fast-Forward heuristic with focus on obtaining the same es-
timates as by a centralized solution, rather than searching for
a general solution for wide variety of relaxation heuristics.

In this work, we focus on distribution of the general prin-
ciple of delete relaxation heuristics in MA-STRIPS planning
with state-of-the-art implementation approaches. We evalu-
ate properties of such distributed heuristics both from com-
putational and communication perspectives and analyze the
quality of the heuristics based on estimation depth in a sense
of participating agents, i.e., agent coupling relaxation.

Multiagent Planning
A MA-STRIPS (Brafman and Domshlak 2008) planning
problem is a quadruple Π = 〈L,A, s0, Sg〉, where L is
a set of propositions, A is a set of cooperative agents
α1, . . . , α|A|, s0 is an initial state and Sg is a set of goal
states. A state s ⊆ L is a set of atoms from a finite set of
propositions L = {p1, . . . , pm} which hold in s. An action

1The proposed solution used obfuscation of the private informa-
tion, which can be prohibited in cases where even the “structure”
of the information has not to be revealed.

298

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

is a tuple a = 〈pre(a), add(a), del(a)〉, where a is a unique
action label and pre(a), add(a), del(a) respectively denote
the sets of preconditions, add effects and delete effects of a
from L.

An agent α = {a1, . . . , an} is characterized precisely
by its capabilities, a finite repertoire of actions it can pre-
form in the environment. MA-STRIPS problems distinguish
between the public and internal (or private) facts and ac-
tions. Let atoms(a) = pre(a) ∪ add(a) ∪ del(a) and sim-
ilarly atoms(α) =

⋃
a∈α atoms(a). An α-internal sub-

set of all facts L of agent α will be denoted as Lα−int,
where Lα−int = atoms(α) \

⋃
β∈A\α atoms(β) and a sub-

set of all public facts as Lpub = L \
⋃
α∈A Lα−int. All

facts relevant for one particular agent α are denoted as
Lα = Lα−int ∪ Lpub and a projection of a state sα to
an agent α is a subset of a global state s containing only
public facts and α-internal facts, formally sα = s ∩ Lα.
The set of public actions of agent α is defined as αpub =
{a | a ∈ α, atoms(a) ∩ Lpub 6= ∅} and internal ac-
tions as αint = α \ αpub. The symbol aα will denote a
projection of action a ∈ β, β 6= α for agent α, i.e., ac-
tion stripped of all propositions of other agents, formally
atoms(aα) = atoms(a) ∩ Lα. Finally, αproj will denote
the set of all public actions of other agents A \ α projected
for agent α.

Note that all actions of an agent α uses only agent’s facts,
formally ∀a ∈ α : atoms(a) ⊆ Lα by definition in (Braf-
man and Domshlak 2008). The goal set SG of a multiagent
planning problem will be treated as public (Nissim and Braf-
man 2012), therefore all goal-achieving actions are public.

Multiagent Best-First Search
The planning algorithm we assume for the further analysis of
the distributed heuristics is based on a multiagent Best-First
Search (MA-BFS) derived from the work in (Nissim and
Brafman 2012) with deferred-evaluation of (lazy) heuristics.
It is outlined in Algorithm 1. The MA-BFS algorithm is
based on the standard textbook BFS. Firstly, the Open list
is initialized with the initial state si and the Closed list is
empty (line 1). In an infinite loop (lines 2–15), the Open
list is polled to obtain state s (line 4). If s was not processed
yet, it is marked as closed (lines 5, 6), next, if s is a goal
state, the search is terminated and the plan is reconstructed
(lines 7–9), otherwise, the heuristic estimate of the state is
computed (line 10).

The MA-BFS differs from the textbook BFS in several as-
pects. Because the computation of an heuristic estimate may
invoke communication among multiple agents, the heuristic
estimators are asynchronous. The estimator is called with
a callback in its parameter and the main loop immediately
continues (line 10). When the heuristic estimation is fin-
ished, the callback (lines 16–23) is invoked and it performs
the standard procedure of setting the heuristic value (line 17)
and expanding the state using applicable actions (line 22).
In addition to that, if the state was obtained by expanding a
public action, the state is sent to all other agents.

Finally at the end of each loop (lines 13 and 14) the mes-
sages related to the heuristic estimation (see next section)

Algorithm 1 Multiagent Best-First Search
Input: Initial state si, goal SG ⊆ L, set of agent’s actions

α, heuristic estimatorH.

1: Open ← {si},Closed ← ∅
2: while true do
3: if Open 6= ∅ then
4: s← poll(Open)
5: if s /∈ Closed then
6: Closed ← Closed ∪ {s}
7: if s unifies with SG then
8: reconstruct the plan
9: end if

10: H(s, heuristicComputedCallback(s, h))
11: end if
12: end if
13: process heuristic messages
14: process search messages
15: end while

16: heuristicComputedCallback(s, h):
17: set the heuristic estimate of s to h
18: if h 6=∞ then
19: if s obtained by a s.t. a ∈ αpub then
20: send state s
21: end if
22: Open← Open ∪ expand(s, α)
23: end if

and the messages containing states sent by other agents (sent
at line 20) are processed. The received states are added to the
Open list. Note, that in MA-STRIPS a global state s ⊆ L is
seen by sending agent α as a projection sα and by receiving
agent β as a projection sβ .

Distribution of Relaxation Heuristics

One general approach to compute heuristic estimates is to
compute a solution of a relaxed planning problem. Such
problems have some constraints removed (relaxed) in or-
der to make it easier to solve them. One of well-known
and thoroughly studied relaxations is obtained by removing
the delete effects of all actions. Our motivation in this pa-
per is to extend this concept to multiagent planning, there-
fore we will focus on classical delete relaxation heuristics:
(i) inadmissible hadd , (ii) admissible hmax both (Bonet and
Geffner 1999) and (iii) inadmissible hFF , which was pub-
lished in (Hoffmann and Nebel 2001). In the following sub-
sections, we will present efficient multiagent distributions of
those three heuristics.

Distribution of hadd and hmax

Both additive and max heuristics follow a very similar prin-
ciple and are typically formalized as a set of recursive equa-
tions, such the following for hadd:

299

hadd(P, s) =
∑

p∈P hadd(p, s) (1)

hadd(p, s) =


0 if p ∈ s
hadd(argmina∈O(p) [hadd(a, s)] , s)

otherwise
(2)

hadd(a, s) = cost(a) + hadd(pre(a), s), (3)

where P is a set of propositions (i.e., goal or action precon-
ditions), s is a state, a is an action andO(p) is a set of actions
which achieve p, formally O(p) = {a ∈ α|p ∈ add(a)}.
The equations for hmax are the same except for Equation 1
where is a max function instead of sum, therefore every-
thing we state about hadd applies similarly to hmax.

In the multiagent setting, some of the actions in the
argmin clause in Equation 2, where we are choosing the
minimal cost action among actions achieving the proposi-
tion p, may be projections of other agent’s public actions
(a ∈ α ∪ αproj). Let α be the agent currently computing
the heuristic estimate of the state s and β be some other
agent. Let for some proposition p exist an action a ∈ β
s.t. aα ∈ O(p). In such a case, there are two options how to
handle the situation.

One option is to ignore the fact that the action is a projec-
tion and continue as if it was an ordinary action. This way,
we may leave out some preconditions of the action (private
to the owning agent), but we still get lower or equal estimate
of the action cost (by including the private preconditions we
can only increase the cost). We will denote the approach as
a projected heuristic. Projected heuristics require no com-
munication at all.

The other option is to always compute the true estimate.
In order to do so, the agent α sends request r = 〈aα, s〉 to
agent β to obtain true estimate of the cost of the action aα.
Upon receiving the request, agent β calls hadd(pre(a), s)
and returns the result in a reply. It is obvious that in or-
der to compute the heuristic estimate, agent β may need to
send similar requests to other agents, or even back to agent
α. This way, we end up with a distributed recursive func-
tion, which returns exactly the same results as a centralized
hadd on a global problem ΠG = 〈L,

⋃
α∈A α, s0, Sg〉, since

for every projection aα of action a ∈ β, the true cost of a is
obtained from the agent β.

A middle ground between the presented two extremes is
to limit the recursion depth δ. If the maximum recursion
depth δmax is reached, all projected actions are evaluated
without sending any further requests. This limit introduces
another relaxation of the original problem where the inter-
action between agents is limited—the agent coupling relax-
ation. Such heuristic estimation is always lower or equal
than would be the heuristic estimation in the global prob-
lem ΠG using a centralized heuristic estimator, because ig-
noring preconditions of an action in its projection can never
increase the cost of the action . By limiting the recursion
depth to δmax = 0, we return back to the projected heuris-
tic, where all interactions between agents are relaxed away.

Relaxed exploration. Although the definition of hadd by
a set of recursive equations is intuitively clear and provides

Algorithm 2 Distributed Relaxed Exploration
Input: Boolean flag r (true when first called), global explo-

ration queue Q
relaxedExploration(r):

1: while Q 6= ∅ do
2: p← poll(Q)
3: if p ∈ goal and achieved(p′) : ∀p′ ∈goal then
4: return
5: end if
6: Op ← {a ∈ α ∪ αproj |p ∈ pre(a)}
7: for all a ∈ Op do
8: increment cost(p) by cost(a)
9: if achieved(p′) : ∀p′ ∈ pre(a) then

10: enqueueProposition(a, eff(a), r)
11: end if
12: end for
13: end while

Input: Action a, proposition p, Boolean flag r

enqueueProposition(a, p, r):

14: if cost(p) = ⊥ or cost(p) > cost(a) then
15: cost(p)← cost(a)
16: if r and a ∈ αproj then
17: send request message Mreq = 〈s, a, 0〉

to owner(a),
process the reply by

receiveReplyEnqueueCallback(p,)
18: else
19: Q ← Q∪ {p}
20: end if
21: end if

Input: Heuristic estimate h, proposition p (set from en-
queueProposition)

receiveReplyEnqueueCallback(p, h):

22: if cost(p) > h then
23: cost(p)← h
24: Q ← Q∪ {p}
25: end if
26: relaxedExploration(false)
27: if no unresolved requests then
28: return compute the total cost
29: end if

good theoretical background, in practice, the recursive func-
tions are typically not used. Recursive calls are limited by
the call stack. Converting such recursion, where the recur-
sive call is within a complex function argmin, into iteration
is possible, but rather cumbersome. Instead, the idea of re-
laxed exploration is typically utilized.

The relaxed exploration is in fact a reachability analy-
sis of the relaxed planning problem, which can be conve-
niently seen as building a relaxed planing graph (RPG). A
relaxed planning graph is a layered (alternating fact and ac-

300

Algorithm 3 Request Processing
Input: Request message Mreq = 〈s, a, δ〉, where s is state,

a action, δ recursion depth, β the sender

processRequest(Mreq = 〈s, a, δ〉, β):

1: Q ← {s}
2: relaxedExploration(false)
3: h←compute the total cost
4: P ←mark public actions
5: send reply message Mre = 〈h, P, δ〉 to β

tion layers) directed graph. In its first layer it contains all
facts which hold in the initial state, the next layer contains
all actions of which preconditions are satisfied in the pre-
vious layer (and noop actions), the next layer contains all
(add) effects of the actions from previous layer and so forth.
In practice, a RPG is not built explicitly, but the exploration
is achieved via effective representation we will refer to as an
exploration queue (based on the Fast-Downward planning
system (Helmert 2006)).

The exploration queue considers only unary actions—
actions which have a single proposition as an add effect (any
relaxed problem can be converted so it contains only unary
actions). The exploration queue is supported by a data struc-
ture representing the precondition-of and achieved-by rela-
tions. The queue is initialized with the propositions which
are true in the state s. Until the queue is empty, a proposition
p is polled, it is checked whether p is a goal proposition and
if so, whether all goals are satisfied. If not, for each action
that depends on p (p ∈ pre(a) where a ∈ α ∪ αproj), the
action cost is incremented by the cost of proposition p (that
is either added for hadd, or maxed for hmax) and if there are
no more unsatisfied preconditions of the action, the action is
applied. The process is detailed in Algorithm 2, lines 1–13.
Thanks to the sole use of unary operators, the application
of an action a can be interpreted as adding the (only one)
proposition p = eff(a) to the exploration queue, thus the
procedure is named enqueueProposition (line 10).

The effectiveness of this approach lays in fact that during
the relaxed exploration, cost estimates of facts and actions
can be conveniently computed and once all goal facts are
reached, the heuristic can be computed by simple sum or
max of costs of all goal facts respectively.

Distributed relaxed exploration. An algorithm capable
of building RPGs in a distributed manner was presented
in (Štolba and Komenda 2013). The major drawback of the
used approach was the necessity to build the RPG for each
state by all agents at once, thus preventing the search to run
independently in parallel. It was shown, that the resulting
heuristic estimate is equal to the centralized estimate. In this
paper, we will not place the requirement of obtaining the
same value as in the centralized variant, which will allow
us to build a much more efficient algorithm. The algorithm
is based on building the exploration queue and requesting
other agents when projections of their actions are encoun-
tered. Moreover the presented algorithm allows for precise

Algorithm 4 Reply Processing
Input: Reply message Mre = 〈h, P, δ〉, where h is heuris-

tic estimate, P set of actions, δ recursion depth

processReply(Mre = 〈h, P, δ〉):
1: if δ < δmax then
2: hsum ← h
3: for all a ∈ P do
4: send request message Mreq = 〈s, a, δ + 1〉

to owner(a),
process the reply by

receiveReplyCallback(h)
5: end for
6: end if
7: receiveReplyEnqueueCallback(,h)

Input: Heuristic estimate h

receiveReplyCallback(h):

8: hsum ← hsum + h
9: if all replies received then

10: receiveReplyEnqueueCallback(,hsum)
11: end if

control of the recursion depth and thus enables us to trade-
off the estimation precision with the computation and com-
munication complexity.

The basic process of building the exploration queue Q is
similar to the centralized version as described in the previ-
ous section. The main principle of the distributed process
is that whenever a projection of some other agent’s action
should be applied (and its effect added to the queue), a re-
quest is send to the owner of the action to obtain its true
cost. The effect of the action is added to the queue only after
the reply is received. Note, that when computing the reply,
the agent may need to send requests as well, thus ending up
with a distributed recursion. In order to effectively handle
the recursion it is flattened so that all requests are sent by
the initiator agent and the replies are augmented with the
parameters of the next recursive call.

The exploration part of the algorithm is shown in Algo-
rithm 2, whereas Algorithms 3 and 4 details the inter-agent
communication. The entry point of the algorithm is the re-
laxedExploration procedure. First, it is invoked with the r
parameter set to true, indicating, that whenever a projected
action is encountered, a request is sent to its owner.

The main difference between the centralized and dis-
tributed approaches lays in the enqueueProposition proce-
dure. If the cost of the action improves the current cost of
the proposition, the cost of the proposition is set equal to the
cost of the action, as usual, but if the the action a ∈ αproj is a
projection and sending of requests is enabled, i.e. r = true,
a request message Mreq = 〈s, a, δ〉, where s is the current
state, a is the action and initial recursion depth δ = 0, is
sent to the owner of the action a, i.e. agent β. Otherwise,
the proposition is added to the exploration queue.

301

Processing the messages. When the request message is
received by the agent β (see Algorithm 3, processRequest),
the relaxed exploration is run with the goal being the pre-
conditions of the requested action a and without sending any
requests, i.e., r = false. After finishing the exploration, pub-
lic actions which have contributed to the resulting heuristic
estimate are determined (line 4). In principle, the procedure
is similar to extracting a relaxed plan in the FF heuristic.
A reply Mre = 〈h, P, δ〉 is sent, where h is the computed
heuristic value, P is the set of the contributing public ac-
tions and δ is the current recursion depth.

Receiving the reply from agent β is managed by pro-
cedure processReply in Algorithm 4. If the recursion
depth has already reached the limit δ > δmax, the orig-
inal receiveReplyEnqueueCallback(p, h) from Algorithm 3
for action a is called, the cost estimate of proposition p is
finalized and p is added to the exploration queue. Since the
messaging process is asynchronous, the original relaxed ex-
ploration has already terminated, therefore it is started again
(line 26), with the original data structures and with the newly
evaluated proposition added to the queue. When the explo-
ration is finished and there are no pending requests, the fi-
nal heuristic estimate is computed depending on the actual
heuristic (sum or max) and is returned via a callback to the
search, so that the evaluated state can be expanded.

Otherwise, if δ ≤ δmax, agent α iterates through all ac-
tions a′ ∈ P and sends requests to their respective own-
ers. The heuristic estimate received in each reply is added to
the shared hsum. When all replies are received (the replies
undergo the same procedure, if there are any other pub-
lic actions involved) and all costs are added together, again
the receiveReplyEnqueueCallback(p, h) from Algorithm 2 is
called with h = hsum.

The processReply procedure stands for the distributed re-
cursion, but the deeper recursive call is not called by the
agent β, but the parameters of the recursion (the set of ac-
tions P which should be resolved next) are sent back to the
initiator agent. This is rather an optimization to avoid having
multiple heuristic evaluation contexts needed to handle mul-
tiple interwoven request/reply traces. Each context would
need to have separate instance of the exploration queue data
structure, which would present major inefficiency. Instead,
the initiator agent is responsible for tracking the recursion
and the replying agent only processes one reply at a time,
locally, without sending any requests. Therefore, each agent
needs to have only two instances of the exploration queue,
one used to compute their own heuristic estimates (and pos-
sibly send requests and await replies), and one used to com-
pute the local estimates for the replies.

Distribution of hFF
The Fast-Forward hFF heuristic is not directly based on es-
timation of the cost of actions in the relaxed problem, but
on actually finding a plan solving the relaxed problem (a re-
laxed plan or RP). The heuristic is not typically described
using recursive equations, but the implementation based on
relaxed exploration can be easily reused. The difference is,
that the evaluation does not end when the exploration is fin-
ished (all goal propositions have been reached), but contin-

ues with the relaxed plan extraction. The extraction of RP
starts with the goal propositions and traverses the data struc-
ture towards the initial state, while marking the relaxed plan.

Since the algorithm is implementation-wise very similar
to the hadd heuristic, one of the possible approaches to dis-
tribution of hFF is to perform the distributed relaxed ex-
ploration exactly as in hadd and simply add RP extraction
routine at the end of the heuristic evaluation (as part of the
total cost computation). Another approach was introduced
in (Štolba and Komenda 2013) as lazy multiagent FF heuris-
tic hlazyFF , which we have adopted and compared with the
previously described approach and both additive and max
heuristics.

Our version of the lazy FF algorithm starts by build-
ing a local exploration queue. When all goal propositions
are reached, a relaxed plan π′ is extracted. For all actions
a ∈ π′, which are projections a ∈ αproj , request message
Mreq = 〈s, a, δ〉 is sent to the owning agent β = owner(a)
of the action a. When agent β receives the request, he con-
structs a local relaxed plan from state s (by local relaxed
exploration and local RP extraction without sending any re-
quests), satisfying the preconditions (both public and pri-
vate) of the action a. Then, agent β sends a reply Mre =
〈h, P, δ〉, where h is the length of the relaxed plan and P is
a set of projected actions contained in the plan. When the re-
ply is received by agent α, the algorithm iterates through all
actions a′ ∈ P and sends requests to their respective own-
ers. Each of the requests undergo the same procedure as the
original request, adding the returned heuristic estimates to
the resulting hsum . When all requests are processed, hsum
is added to the length of the local relaxed plan of agent α
and returned via callback as the heuristic estimate of state s.

The recursion depth of the heuristic estimate can be lim-
ited in a similar manner as in the add/max heuristics. When-
ever a request should be sent and the maximum recursion
limit δmax has been reached, the request is not sent and the
possible relaxed sub-plan is ignored.

Experiments
To analyze properties of the proposed distributed heuristics
and their implementations, we have prepared a set of exper-
iments covering various efficiency aspects of the heuristics.

All experiments were performed on FX-8150 8-core pro-
cessor at 3.6GHz, each run limited to 8GB of RAM and 10
minutes. Each measurement is a mean from 5 runs. We
have used the translation to SAS+ formalism and prepro-
cessing from the Fast-Downward planning system (Helmert
2006) and new implementation of the search and heuristic
estimators.

Initial comparison
The first batch of experiments focused on two classical
planning metrics used in comparison of heuristic efficiency:
planning time t and number of explored states e. Those met-
rics were supplied by a multiagent metric of communicated
bytes b among the agents during the planning process. Used
planning problems stem from IPC domains modified for
multiagent planning as presented, e.g., in (Nissim and Braf-

302

hFF hadd hmax hlazyFF

prob. (|A|) δmax t[s] e[k-] b[MB] t[s] e[k-] b[MB] t[s] e[k-] b[MB] t[s] e[k-] b[MB]
Rov8 (4) 1 1.2 0.4 0.5 1.2 0.5 0.7 1.1 0.4 0.5 – – –
Rov8 (4) ∞ 1.1 0.5 0.7 1.2 0.6 0.8 1.1 0.5 0.6 – – –

Rov12 (4) 0 70.9 4617.3 35.7 40.7 3939.5 31.2 – – – 57 4583.5 35.6
Rov12 (4) 1 1.2 0.8 0.7 1.3 0.3 0.2 1.1 0.3 0.3 – – –
Rov12 (4) ∞ 1.1 0.4 0.4 1.2 0.7 0.6 1.2 0.3 0.3 – – –
Rov14 (4) 1 21 112.1 157.4 18.7 101.9 136.6 21.9 127.2 170.6 – – –
Rov14 (4) ∞ 23 124.7 175.1 19.2 98.5 138.7 16.1 90.6 127.6 – – –
Sat9 (5) 1 3.2 6.2 14.7 3.2 7.8 17.7 3.1 6.9 15.6 3.1 9.8 10.3
Sat9 (5) ∞ 3.7 10.6 25 3.5 7.4 17.4 3.3 6.2 14.6 3 7.4 8.4

Sat10 (5) 1 3.7 4.1 9.6 3.4 3.2 7.1 3.4 2.4 5.3 4.1 13.5 6.6
Sat10 (5) ∞ 3.7 4.3 9.9 4 8.2 19 3.3 2.3 5.3 3.9 7.8 6
Sat* (14) 1 69.2 9.3 36.9 68 8.7 33.4 69 9 34.8 60.6 9 17.5
Sat* (14) ∞ 69 9.3 36.7 68.5 9.3 37 68.5 9 35.7 61.3 9.7 18.4
Sat* (16) 1 133.8 11.1 57.5 136.6 11.7 59.4 133.6 10.7 54.1 126.4 12.8 31
Sat* (16) ∞ 132.7 11.1 57.8 137.3 12.4 64.6 133.5 11.1 57.8 124.5 12.3 28.8
Log* (6) 0 0.7 6.8 0 0.7 5.7 0 0.7 7 0 0.7 7.2 0
Log* (6) 1 1.2 0.5 0.3 1.6 1.3 0.6 1.2 0.7 0.3 1.6 5.4 0.6
Log* (6) ∞ 1.1 0.4 0.2 1.3 0.8 0.5 1.2 0.5 0.3 1.4 0.6 0.8
CP* (6) 0 1.8 136.1 2.2 1.6 99.5 1.7 2.6 351.5 5.5 1.8 137.7 2.2
CP* (6) 1 1.7 127.5 2.1 7.3 72.1 51.6 10 100.2 71.8 5.6 43.8 66.1
CP* (6) ∞ 1.7 122.5 2 1.4 76.2 1.3 2.6 352.6 5.4 44.3 91.8 973.5
CP* (7) 0 2.2 183.2 2.4 2.2 223.1 3.2 6.3 1252.5 15.7 2.3 205 2.7
CP* (7) 1 1.9 162.1 2.2 18.3 248.1 150.8 35.5 451.4 274.5 50.4 371.2 738.6
CP* (7) ∞ 2 188.9 2.5 2.1 225.2 3.2 6.3 1255.6 15.5 160.9 249.5 249.5
Sok* (2) 0 1.6 8.5 0.5 1.5 7.7 0.5 1.7 11.7 0.7 1.6 8.8 0.6
Sok* (2) 1 1.5 7.6 0.5 17.1 22 66.8 3.9 4.3 12.1 4.3 12.9 24.1
Sok* (2) ∞ 1.5 8.3 0.5 1.4 7.8 0.5 1.6 11.7 0.7 – – –

Table 1: Comparison of all presented heuristics for selected problems and metrics. The planning time metrics t is in seconds,
the explored states e in thousands of states and the communicated information b in megabytes. Abbreviations: Rov = rovers,
Sat = satellites, Log = logistics, CP = cooperative path-finding, Sok = sokoban.

man 2012). The problems with * in their names were either
based on IPC domains, but simplified, or other state-of-the-
art multiagent benchmarks, e.g., from (Komenda, Novák,
and Pěchouček 2013). The recursion depth was limited to
three values δmax = {0, 1,∞} as other settings of δmax
showed similar results. Missing rows were not successfully
planned with any of the tested heuristics.

The results are summarized in Table 1. No single heuristic
and δmax dominates the other ones. In Rovers, the most suc-
cessful seems to be hmax. In Satellites, hlazyFF performs
well, but in other domains it does not solve some problems at
all. The Logistics is dominated by hFF and in Cooperative
Path-Finding and Sokoban, the best are hFF and hadd.

Problem coverage
In this experiment, we have evaluated the coverage of all the
described heuristics (hadd,hmax,hFF and hlazyFF) with the
maximum recursion depth δmax set to 0, 1, 2, 4 and∞. The
coverage has been evaluated over two sets of benchmarks.
First set consists of 40 specifically multiagent problems,
which are typically not that combinatorially hard, but con-
tain more agents (taken from (Štolba and Komenda 2013)
and (Komenda, Novák, and Pěchouček 2013)). Second set
consists of 21 problems converted directly form IPC bench-

marks (as in (Nissim and Brafman 2012)), which are typi-
cally much combinatorially harder, but with less agents. The
results are summarized in Table 2.

The results show clear dominance of hFF , but interest-
ingly the other distribution approach of the Fast-Forward
heuristic, hlazyFF , is on the other side of the spectrum. This
is most probably because one of the biggest strengths of the
FF heuristic, compared to other delete relaxation heuristics
used here, is that it does not suffer from over-counting (one
action is included in the estimate several times) thanks to the
explicit relaxed plan extraction. In the hlazyFF , we partially
lose this advantage, because when sending reply, only the
length of the plan is sent. Therefore, single action can be
included several times in multiple replies from single agent,
or even multiple agents.

Another observation is that the setting of δmax = 0 is
dominated by other values. This may be due to the choice
of the domains, the effect of various δmax settings is thor-
oughly analyzed in the next set of experiments. Also, vari-
ous settings of δmax for δmax > 0 affect the coverage only
marginally.

We can also state, that in the terms of coverage, the use
of distributed heuristics compares favorably to the state of
the art, as in (Nissim and Brafman 2012), the planner using

303

δmax 0 1 2 4 ∞

hFF 35 /7 38/15.4 38 /15 38 /14.4 38 /15

hadd 35 /7 38 /14 38 /14 38 /14 38 /14

hmax 35 /3.2 38 /14 38 /14 38 /14 38 /14

hlazyFF 35.2 /6.8 38 /8 36.2 /8 36.5 /8 36.8 /8

Table 2: Coverage for various heuristics and recursions
depth δmax. The results are in the form of multiagent do-
mains / IPC domains.

●

● ●
● ● ● ● ● ● ●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o

rm
a

liz
e

d
 p

la
n

n
in

g
 t

im
e

 [
−

]

Figure 1: Planning time normalized to result for of δmax =
∞ for hlazyFF heuristics.

projected heuristics LM-cut and Merge&Shrink has a cov-
erage of 11 resp. 12 problems, which was exceeded by all
distributed heuristic with δmax > 0, except for hlazyFF .
But it is important to emphasize, that the comparison is not
completely fair, as the approach used in (Nissim and Braf-
man 2012) is optimal and although we use the admissible
hmax heuristic, our approach is not optimal. To do so re-
quires special handling of the search termination, as detailed
in (Nissim and Brafman 2012).

Effect of the recursion depth
In the following set of experiments, we have evaluated the
effect of changing the maximal recursion depth δmax on the
speed and communication requirements of the planning pro-
cess. The data set was measured on four selected domains
with varied couplings (rovers, satellites, cooperative path-
finding and logistics), each represented by a single problem.
The maximal recursion depth ranged from 0 (a projected
heuristic) to 9, for comparison, the results were normalized
against the result of run with δmax =∞.

By coupling, we understand the concept formalized in
(Brafman and Domshlak 2008), which can be rephrased as
“the more interactions must take place among the agents in
order to solve the problem, the more coupled the problem
is”—at one extreme there are problems, where all actions
interact with other agents (containing only public actions)
meaning full coupling. In problems of the other extreme,
the agents can solve their individual problems without any

interaction. Because of our decision to treat all goals as
public, we cannot achieve full decoupling—at least goal-
achieving actions are public and thus causing some level of
coupling. The experimental domains were chosen such that
rovers and satellites are loosely coupled. In satellites, only
the assumption that all goal-achieving actions are public in-
troduces some coupling, in rovers, there are also interact-
ing preconditions among the goal-achieving actions. Logis-
tics is moderately coupled (private movement of agents and
public handling of packages) and cooperative path-finding is
fully coupled.

The experimental results for the hlazyFF heuristic are
plotted in Figures 1 and 2. In the fully coupled coopera-
tive path-finding, the results are best for δmax = 0 and are
converging to the results for δmax =∞ as δmax grows. This
is because in a fully coupled problem, all actions are public
and in cooperative path-finding all their preconditions and
effects are also public (which does not have to be always the
case). Therefore each agent has complete information about
the problem in form of the action projections (aα = a for
all actions and agents) and the projected heuristic gives per-
fect estimate (the same as would global heuristic give). For
δmax > 0, requests are sent for every projected action, caus-
ing more communication and computation without bringing
any improvement to the heuristic estimate.

Completely different picture give the results for the
loosely coupled problems. The results are significantly
worse for δmax = 0, from δmax = 1 they are practically
equal to δmax = ∞. The solution of those problems typ-
ically consist of long private parts finished by a singe pub-
lic action (the goal achieving action). When estimated by
a projected heuristic, the private parts of other agents get
ignored and the estimates are thus much less informative.
Even the fact, that when a state is expanded by a public ac-
tion, it is sent with the original agent’s heuristic estimate,
does not help, because estimation of states expanded fur-
ther from such state ignore the information again. But even
δmax = 1 is enough to resolve this issue.

Lastly, in the logistics problem, the δmax = 0 estimates
are rather good (but not as good as in the cooperative path-
finding) and with growing δmax, the results converge to-
wards δmax = ∞, but for 0 < δmax < ∞ the results are
slightly worse. This may suggest, that as the coupling is
moderate, it is best either to fully exploit the coupled part of
the problem and use projected heuristics, or to rely on the
decoupled part of the problem and employ the full recursion
approach, depending on the exact balance.

The results for communication are in Figure 2. The left
chart compares the total bytes communicated and shows the
same tendencies as the planning time in Figure 1. In fact,
limiting the interactions may lead to increased communica-
tion. The right table shows the data for heuristic requests,
there we see the expected result for δmax = 0, where no
requests are sent, otherwise the tendencies are surprisingly
similar. This indicates, that the communication complexity
is dominated by the search communication complexity (the
longer the search takes, the more messages are passed).

Presented results suggest, that for tightly coupled prob-
lems, sharing of the information is not only less important,

304

●

●
●

●

● ● ●

●

●

●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o

rm
a

liz
e

d
 c

o
m

m
u

n
ic

a
te

d
 b

y
te

s
 [

−
]

●

●
●

●

● ● ●

●

●

●

● Rov5 (2)

Sat5 (3)

CP* (6)

Log* (6)

0 2 4 6 8

0

1

2

3

4

5

recursion depth [−]

n
o

rm
a

liz
e

d
 h

e
u

ri
s
ti
c
 r

e
q

.
 m

e
s
s
a

g
e

s
 c

o
u

n
t

[−
]

Figure 2: Communicated bytes and heuristic message requests normalized to δmax =∞ for hlazyFF heuristics.

because the agents have most of the information in their
problem projections, but may even lower the effectiveness
by redundant communication. For loosely coupled prob-
lems, the communication is vital, even if the communication
is very limited. For moderately coupled problems, both ex-
tremes are equally good. In general, it is hard to determine,
which approach will yield the best results, but it is sensi-
ble to choose from either no communication δmax = 0, full
communication δmax = ∞, or even communication lim-
ited to very low recursion depth limits, i.e., δmax = 1. If
we can expect some properties of the problems at hand, we
can suggest preferred approach much easier—if we are not
expecting loosely coupled problems, δmax = 0 is the best
choice, for no tightly coupled problems δmax = ∞ and for
no moderately coupled problems, δmax = 1 seems to be the
best choices.

The results in the presented figures are for hlazyFF
mainly because they are the most illustrative, other heuris-
tics follow the same patterns as described here.

Final Remarks
We have proposed an efficient distribution approach for
three classical delete-relaxation heuristics hadd, hmax and
hFF . The heuristics were experimentally compared in a
planner utilizing a mutliagent Best-First Search on vari-
ous multiagent planning problems stemming from classical
IPC domains. The comparison comprised metrics of plan-
ning time and communication and expanded states, cover-
age comparison and comparison of the effect of changing
maximum recursion depth.

The results did not show any single heuristic to be dom-
inating others, but brought to light interesting and rather
unintuitive conclusion. For tightly coupled problems, it
is more efficient to limit the information sharing, whereas
loosely coupled problems strongly benefit form the dis-
tributed heuristic estimation.

Acknowledgments This research was supported by the
Czech Science Foundation (13-22125S), A. Komenda was
supported in part by USAF EOARD (FA8655-12-1-2096), in
part by a Technion fellowship.

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds., ECP,
volume 1809 of Lecture Notes in Computer Science, 360–
372. Springer.
Borrajo, D. 2013. Plan sharing for multi-agent planning. In
Proc. of DMAP Workshop of ICAPS’13, 57–65.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of ICAPS’08, 28–35.
Crosby, M.; Rovatsos, M.; and Petrick, R. 2013. Automated
agent decomposition for classical planning. In Proceedings
of ICAPS’13.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of ICAPS’09.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of ICAPS’07, 176–183.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. 14:253–302.
Komenda, A.; Novák, P.; and Pěchouček, M. 2013. Domain-
independent multi-agent plan repair. Journal of Network and
Computer Applications.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for par-
allel and distributed systems. In Proceedings of AAMAS’12,
1265–1266.
Štolba, M., and Komenda, A. 2013. Fast-forward heuristic
for multiagent planning. In Proc. of DMAP Workshop of
ICAPS’13, 75–83.

305

Torreño, A.; Onaindia, E.; and Sapena, O. 2013. Fmap: a
heuristic approach to cooperative multi-agent planning. In
Proc. of DMAP Workshop of ICAPS’13, 84–92.

306

