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Abstract

We present a scalable fully-automated forward-chaining plan-
ner capable of reasoning with PDDL+ events and linear pro-
cesses. Processes and events model (respectively) continuous
and discrete exogenous activity in the environment, occurring
when certain conditions hold. We discuss the significant chal-
lenges posed in creating a planner that can reason with these,
and present novel state-progression and consistency enforc-
ing techniques that allow us to meet these challenges. We
present results showing that our new planner, using PDDL+
models, is able to solve realistic expressive problems more
efficiently than the state-of-the-art alternative: a compiled
PDDL2.1 representation with continuous numeric effects.

1 Introduction
Classical planning has traditionally been concerned with
reasoning about a static world in which the effects of actions
occur instantaneously. The reality of the world in which
plans must be executed is, however, often different to this:
numeric quantities change over time and exogenous happen-
ings occur, both in response to, and independently of, the
actions carried out in the plan. For example, at sunrise the
battery charge of a space vehicle begins to increase contin-
uously over time, this increase does not depend upon the
vehicle taking any specific action, it happens automatically.
Reasoning with these problems was identified and strongly
motivated as a key challenge to real-world deployment of
planners in 2006 (Fox and Long), our evaluation adds to this
by including two real application domains in which reason-
ing with such exogeny is crucial in solving problems.

Despite their importance, the difficulty of solving such
problems means that developing scalable fully-automated
planners capable of reasoning with them remains a signif-
icant challenge. Even in the absence of exogeny, scalable
automated planning in the presence of continuous numeric
change has only recently become possible, due to advances
in classical and temporal planning. While there was some
early work on planning with such models, notably the plan-
ners Zeno (Penberthy and Weld 1994) and OPTOP (McDer-
mott 2003b), the challenge of efficiently computing effec-
tive heuristics severely restricted scalability. Following the
introduction of continuous numeric change into version 2.1
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of the planning domain definition language, PDDL, (Fox and
Long 2003) a number of modern planners began to address
the challenge of reasoning with continuous numeric change.

COLIN (Coles et al. 2012) performs forward-chaining
search, using a mixed integer program (MIP) to ensure that
the constraints arising due to the interaction of continuous
numeric variables are met. POPF (Coles et al. 2010) extends
COLIN to reason with partially ordered plans, and forms the
basis for this work. Kongming (Li and Williams 2011) uses
a planning graph based structure to build plans, making use
of a proprietary language to specify continuous dynamics.
It also uses a MIP to manage temporal/numeric constraints,
but is less expressive than COLIN in the sense that it does
not allow two actions to simultaneously change a variable.

To date there are only two planners capable of reasoning
with discrete and continuous change and exogenous happen-
ings, as in PDDL+ (Fox and Long 2006). TM-LPSAT (Shin
and Davis 2005) was designed to solve PDDL+ problems
with linear continuous change. It uses a SAT-based com-
pilation, giving a discrete set of time points; and also uses
an LP to manage numeric constraints. Its approach shows
promise but empirically suffers scalability issues. UPMur-
phi (Penna et al. 2009) takes a model-checking approach but
relies on a hand-crafted discretisation of time to reason with
continuous change. The discretisation allows it to handle
non-linear continuous change, the only planner to do so, but
of course requires human expertise. The main challenge for
UPMurphi is scalability: it has no heuristic for guidance.

In this paper we present a scalable forward-chaining plan-
ner capable of reasoning with linear continuous change and
exogenous happenings. By building on state-of-the-art ap-
proaches to planning with continuous numeric change, we
avoid the need to discretise time, with the consequence
of improved scalability. Avoiding discretisation introduces
new challenges in ensuring that exogenous happenings oc-
cur immediately when their conditions hold and that their
conditions are avoided if they are not desired.

Following background and a running example, the paper
first considers whether native handling of our PDDL+ subset
could be avoided via a novel compilation to PDDL2.1. This
motivates the need for native PDDL+ planning, provides a
benchmark against which to evaluate, and introduces some
important concepts and properties of PDDL+ that are key to
native handling. We go on to describe our new planner de-
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tailing how we overcome the identified challenges and em-
pirically demonstrate its scalability on PDDL+ problems.

2 Problem Definition
The logical basis for temporal planning, as modelled in
PDDL2.1 (Fox and Long 2003), is a collection of propo-
sitions P , and a vector of numeric variables v. These are
manipulated and referred to by actions. The executability of
actions is determined by their preconditions. A single con-
dition is either a single proposition p ∈ P , ¬p, or a numeric
constraint over v. We assume all such constraints are linear,
and hence can be represented in the form:

w.v{>,≥, <,≤,=}c
(w is a vector of constants and c is a constant). A precondi-
tion is a conjunction of zero or more conditions.

Each durative action A has three sets of preconditions:
pre`A, pre↔A, preaA. These represent the conditions that
must hold at its start, throughout its execution (invariants),
and at the end, respectively. Instantaneous effects can occur
at the start or end of A: eff+`A (eff−`A) denote propositions
added (resp. deleted) at the start; effnum

` A denotes any nu-
meric effects. Similarly, eff+aA, eff−a and effnum

a record ef-
fects at the end. We assume all such effects are of the form:

v{+=, -=,=}w.v + c where v ∈ v

Semantically, the values of these instantaneous effects be-
come available small amount of time, ε, after they occur.

Each action also has a conjunction of continuous numeric
effects eff↔, of the form dv/dt=c, c ∈ <, that occur while it
is executing1. Finally, the action has a duration constraint: a
conjunction of numeric constraints applied to a special vari-
able durA denoting its duration. As a special case, instan-
taneous actions have duration ε, and only one set of precon-
ditions preA and effects eff+A, eff−A, and effnumA. A
durative action A can be split into two instantaneous snap-
actions, A` and Aa, representing the start and end of the
action respectively, and a set of constraints (invariant and
duration constraints and continuous numeric effects). Ac-
tion A` has precondition pre`A and effects eff+`A, eff−`A,
effnum
` A. Aa is the analogous action for the end of A.
PDDL+ augments PDDL problems with processes and

events. Like actions, these have preconditions, and effects.
Events are akin to instantaneous actions: if an event’s pre-
conditions are satisfied, it occurs, yielding the event’s in-
stantaneous effects. Processes are akin to durative actions,
with pre↔A corresponding to the process’ precondition, and
eff↔ as its continuous numeric effects. Then, while pre↔A
is satisfied, eff↔ occurs. The critical distinction between
processes and events, and actions, is that a process/event will
automatically occur as soon as its precondition is satisfied,
modelling exogenous activity in the environment; whereas
an action will only happen if chosen to execute in the plan.

PDDL+ has a number of problematic features that make
the plan validation problem intractable, even when restricted
to linear continuous change. In particular, in theory, events
can infinitely cascade, repeatedly firing and self-supporting.
Also, having reached the goals, it is challenging to determine

1c may be derived from operations on constant-valued variables

whether they persist indefinitely, given future processes and
events that may occur. To address the former of these, we
make the restriction proposed by Fox and Long (2006) that
events must delete one of their own preconditions. For the
latter, we require that, if persistence is desired, the goal spec-
ified is sufficient to ensure the desired goals persist. Note
that a goal required to be true beyond a specified fixed time
t r, but not necessarily persist, can be modelled by using a
process to count time and adding time > t r to the goal.

2.1 Running Example
We introduce a simple illustrative example problem based
on the use of a mobile phone. The scenario is as follows: a
person initially in the countryside with his phone switched
off must go to the city and make a call from there (i.e. the
goal is called2). The domain has three durative actions:
• travel: dur = 15; pre` = {at country}; eff−` = {at coun-

try}; eff+a = {at city}; eff↔ = {d(signal)/dt = 0.5};
• turn on: dur > 0; pre` = {¬on}; pre↔ = {battery>0};

eff+` = {on}; eff−a = {on}; eff↔ = d(battery)/dt = -1
• call: dur=1; pre`={at city ∧ battery> 1}; eff+a={called};

There is also a process, which models the transfer of data
over the network at a fixed rate, if certain conditions are met:
• transfer: pre↔ = {on ∧ battery > 10 ∧ signal > 5};

eff↔ = d(data)/dt = 1.
Finally, an event models a low-battery warning:

• warning: pre={¬warned∧battery< 8}; eff+={warned}.

3 PDDL+ versus PDDL 2.1
We now explore the relationship between PDDL+ pro-
cesses and events and their PDDL2.1 counterparts, durative-
actions. First, we observe that, at any time, each process
pi (with precondition Ci and effects eff↔pi) is either exe-
cuting, or not; i.e. either Ci or ¬Ci. We might therefore
consider two durative-actions for pi, rather than one:
• run pi, with pre↔run pi=Ci, and eff↔run pi=eff↔pi;
• not-run pi, with pre↔not-run pi=¬Ci, and no effects;
• in both cases, the duration of the action is in [ε,∞].

If we could ensure that we only ever apply run pia (the
end of run pi) if we simultaneously apply not-run pi` – and
vice-versa – then the behaviour of the process has been sim-
ulated with actions. In other words, the start of one ac-
tion must be always synchronised with the end of the other.
Whenever the truth value of Ci changes (which may be
many times) we simply switch which of these actions is exe-
cuting. Ensuring this switch happens simultaneously is cru-
cial: if time passed between e.g. not-run pia and run pi`
then there would be time when Ci might be true, but the
effect of pi is not being captured by any executing action.

We also observe, that at any point each event ej with pre-
condition Cj and effects eff ej , it is either happening at that
time, instantaneously; or its conditions are false. Precisely:
• When the event occurs, Cj is true – and, as noted earlier,

events must delete one of their own preconditions;
2Persistence is guaranteed: no action or event deletes this fact.
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Figure 1: Representing Processes (left) and Events (right). Dotted lines denote clipping constraints (ε and 2ε, resp.)

• A period then begins in which ¬Cj holds;
• If the event re-occurs, then beforehand there is an ε-long

period in which neither ¬Cj nor Cj : the conditions are
mutually exclusive with any discrete effects that led toCj .
We can capture this using a durative action do-ej , that

must restart immediately after it ends, i.e. meet with itself.
pre`do-ej=pre ej and eff`do-ej=eff ej reflect that ej occurs
at its start. Then, pre↔do-ej=¬Cj enforces the subsequent
period in which ej does not fire. Finally, the absence of
effects/conditions at the end gives an ε gap in which a snap-
action can change the facts/variables in Cj . Defined thus,
do-ej must be restarted at exactly the times ej would occur.

As a note for the astute, there is a subtle difference
between the way in which process and event actions are
clipped together: process actions are synchronised; event
actions must meet each other. This is due to the treatment
of closed and open intervals in which conditions must hold,
in PDDL2.1. For a detailed treatment of these, see (Cushing
2012); to briefly review the relevant semantics here:
• When a fact is added (deleted) by an action in PDDL it

becomes true (false) immediately, but only available to
meet actions’ start/end preconditions after time ε.
• When a durative action A is applied at time t and ended

at time u pre`A must be true at time t. pre↔A, however,
need only to hold in the open interval (t, u), that is after t
(recall that eff`A can achieve pre↔A).
Strictly, in PDDL+, the ε-gap is needed for the conditions

of actions, but not events. We can only approximate this in
PDDL2.1, treating the event as an action, and hence needing
an ε gap. This leads to an unconstrained region, of duration
ε, in which the condition on the event is not being inspected,
so that its truth value can be changed, before the event fires.

Processes can start and end either due to instantaneous
(propositional or discrete numeric) or continuous numeric
change. In the former case the following actions occur in
parallel: run pia (not-run pia); an action A (or several such
actions) whose discrete effects change the truth value of Ci;
and not-run pi` (run pi`) – the invariant condition will be
satisfied ε later as required. The sequence for events is sim-
ilar, except that do eja occurs in parallel with A and then
do ej` occurs ε after these, as its start precondition (which is
satisfied by A) is only available at this time. If the condition
is satisfied by continuous numeric change then the action(s)
A are not required: the ongoing continuous numeric change
will cause the change in the truth value of Ci/Cj .

Returning to our running example, the left of Figure 1
shows how synchronised actions capture ‘transfer’ transi-
tioning from not-running to running. To be not running, one
of its preconditions must be false; to be running, all must
be true. Clipping constraints (dotted lines) ensure this tran-
sition occurs at the right time. The right of Figure 1 shows

the ‘warning’ event. (The fact ‘warned’ ensures it does not
repeatedly fire.) The key detail is where the two instances of
do warning meet: clipping constraints ensure this period is
only 2ε long, comprising the ε-long ‘unconstrained’ region;
and the start of the next action, i.e. the event.

3.1 Clipping Constraints in PDDL 2.1
Reasoning with processes and events using PDDL2.1 re-
quires a compilation that enforces three conditions:

1. Clipping together of process/event actions (as Figure 1);
2. Ensuring that not-run pi (or run pi), and a variant of

do ej , start immediately, at the start of the plan;
3. Allowing processes/event actions to end in goal states.

We can achieve clipping (1), through the use of clip ac-
tions (Fox, Long, and Halsey 2004):

Definition 3.1 — clip f(d)
A (tight) clip for fact f , and auxiliary facts {r0, . . . , rn}, is

a durative action B, with duration d+ ε, where:
• pre`B = ¬f , eff+`B = {f};
• preaB = {r0, . . . , rn}; eff−aB = {f} ∪ {r0, . . . , rn}.

f is thus only available ε after starting clip f ; before be-
ing deleted at the end. Snap-actions with a condition on f
must then be placed inside the clip, and d bounds them to
occur within the desired length of time. The other aspect
of a clip is its auxiliary facts, which must be true before it
ends. If there are n+1 snap-actions that must occur during
the clip, then each of these is given a distinct ri fact as an ef-
fect. Thus, not only must the snap-actions occur in the clip;
but also, no necessary snap-action can be omitted.

To constrain the actions from Section 3 in PDDL2.1, we
use a clip for each process or event. For each process pi:
• Create clip fi(ε), with auxiliary facts ri`, ria;
• Add fi to pre` and prea of run pi and not-run pi;
• Add ria to eff +

a of run pi and not-run pi.
• Add ri` to eff +

` of run pi and not-run pi;
Similarly, for event ej :

• Create clip fj(2ε), with auxiliary facts rj`, rja;
• Add fj to preado ej and pre`do ej ;
• Add rja to eff +

a do ej ; add rj` to eff +
` do ej .

In both of these cases, the clip meets the objectives of Fig-
ure 1: by the use of auxiliary facts representing the action
having started and ended, the action must end and the next
one must start within the clip; and due to the tight availabil-
ity of fi (fj), the actions cannot start or end outwith clips.
Note that search using this compilation can be made slightly
more efficient through the use of two clip actions for each
process: one forcing a change from run-pi to not-run-pi and
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the other vice-versa. (The presented clip permits clipping
run-pi to run-pi and not-run-pi to not-run-pi).

The compilation as it stands ensures that a clip cannot end,
unless an already-executing ‘run’, ‘not-run’ or ‘do-’ action
ends inside it: these add r∗a, an end-condition of of the clip.
This is desirable in the general case, but in the initial state no
such actions are executing. Further, to start the ‘do-’ actions
for an event, its conditions must be true – which in the initial
state is necessarily not the case (c.f. PDDL+ semantics (Fox
and Long 2006)). This brings us to our second requirement,
starting the actions immediately (2). For this, we use:
• Facts go and init do (not added by any action, event or

Timed Initial Literal (TIL)), which are true initially and
deleted at time ε and 2ε respectively by TILs (Hoffmann
and Edelkamp 2005). This creates a small window at the
start of the plan in which they are available.

• A fact exec, added by a TIL at time ε, and added to pre`
of every non-clip action in the plan.

• Special ‘initial-do-’ actions, the same as the regular do-
actions for events, modulo the start preconditions and ef-
fects are replaced with init do and ∅, respectively.
We create a single ‘go’ clip allowing all process/initial

event tracking actions to begin at the start of the plan (with-
out needing to end first). We collate all clip facts (all fi and
fj) into a set F . We define the set R` as the set of all r∗`
auxiliary facts, and Ra analogously contains all r∗a facts.

Definition 3.2 — go-clip
A ‘go’ clip for clip facts F , and auxiliary fact set R`, is a

durative action B, with duration 2ε where:
• pre`B = go ∧ {∀f ∈ F ¬f}; eff+`B = F ;
• preaB = R`; eff−aB = F .

The condition go ensures the go-clip can only occur once,
at time zero; and exec ensures it precedes all other actions.

Next we must allow the run/not-run/do actions to termi-
nate once the goals have been met (3) – the PDDL2.1
semantics require there to be no executing actions in goal
states. We use a final modified clip action – a ‘goal-clip’,
and replace the goal G with a single fact goal . Note the
addition of Ra to prea ensures the required run/not-run/do
actions continue running until G is achieved.

Definition 3.3 — goal-clip
A ‘goal’ clip for clip facts F , and auxiliary fact set Ra, is a

durative action B, with duration 2ε, where:
• pre`B = {∀f ∈ F ¬f}; eff+`B = F ; eff−`B = exec;
• preaB = G ∧ Ra; eff+aB = goal ; eff−aB = F .

Finally we note that negation of conjunctive conditions
on processes/events yields disjunctive invariants on the not-
run/do actions. In the absence of a planner supporting these,
it is possible to create several not-run actions, each with an
invariant comprising a single condition from the disjunction.
Clips can then be used to switch between not-run actions
to change which condition in the disjunct is satisfied. This
has implications when using the efficient clip model (distinct
clips for switching from run to not-run, and vice versa) – we
must also allow different not-run actions to be clipped to
each other. It does not, however, negate its benefits.

While this compilation to PDDL2.1 is possible, it is
clearly a very unnatural model, and still requires a highly
expressive planner. Indeed several authors have argued that
the model adopted in PDDL+ is much more natural than the
previous model (McDermott 2003a; Boddy 2003). The com-
pilation is also likely to make search computationally inef-
ficient: not only is the planner forced to reason about the
exogenous actions within the environment as if they were
real planning actions, many extra ‘book-keeping’ actions are
added to the domain. If there are n processes and m events
then 3n + 3m + 2 actions are added to the planning prob-
lem, of which (m + n) are applicable in each state. This
massively increases the branching factor and solution plan
length. Permutations of such actions can also cause signifi-
cant problems in temporal planning (Tierney et al. 2012). It
therefore seems that native handling of processes and events
is likely to be far more efficient – this forms the focus of the
rest of the paper. We will, of course, return to this point in
our evaluation.

4 Forward Chaining Partial-Order Planning
Our new planner builds upon the planner POPF (Coles et
al. 2010). POPF uses an adaptation of a forward-chaining
planning approach where, rather than placing a total-order
on plan steps, the plan steps are partially ordered: ordering
constraints are inserted on an as-needed basis. For a com-
prehensive explanation of the workings of POPF please refer
to (Coles et al. 2010), we summarise the key details here.

State Representation: To support partial-ordering, addi-
tional information is stored in states. Each plan step is given
a unique index to facilitate this. For each fact p ∈ P :
• F+(p) (F -(p)) the index of the last step to add (delete) p;
• FP+(p), a set of pairs 〈i, d〉, steps with a precondition p:
i is the step index, and d ∈ {0, ε}. If d=0, p can be deleted
at or after step i; if d=ε, p can be deleted from ε after i.
• FP−(p), similarly, records negative preconditions on p.

For the vector of state variables v, the state records lower-
and upper-bound vectors, V min and V max . These reflect
the fact that in the presence of continuous numeric change, a
variable’s value depends on the time; so having applied some
actions, a range of values are possible. For each v ∈ v:
• V eff (v) is the index of the most recent step to affect v;
• VP(v) is a set indices of steps that have referred to v since
V eff (v). A step refers to v if either: it has a precondition
on v; an effect whose outcome depends on v; or is the
start of an action whose duration depends on v.

• VI (v) is a set of indices of the start of actions that are
currently executing (have not yet ended); and have an in-
variant condition on v.
Temporal Constraints: Actions applied during search

are snap-actions, corresponding to either instantaneous ac-
tions; the start of a durative action; or ending a (currently
executing) durative action. When a snap-actionA is applied,
as step j, temporal constraints are added to enforce causal
links and to prevent threats to earlier causal links. To satisfy
each p ∈ preA, t(j) > t(F+(p)); and for each p ∈ eff+A:

t(j) > t(F−(p)); t(j) > t(F+(p));
∀〈i, d〉 ∈ (FP−(p)) : t(j) ≥ t(i) + d
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Analogous constraints order negative preconditions and
delete effects after F -(p), F+(p), and FP+(p). To ensure
consistency in numeric variable updates we totally order
all effects on each variable and protect existing precondi-
tions/invariants. For each v modified by effnumA or eff↔A:
(t(j) > t(V eff (v))) ∧ (∀i ∈ VP(v)∪VI (v) : t(j) > t(i))

To ensure correct input values for all effect computations:
for each variable v referred to by effnum A, eff↔A or durA:

t(j) > t(V eff (v))

Finally constraints are added between action start/end points
to represent duration constraints (e.g. t(j) = t(i) + 10).

In the absence of continuous (or duration-dependent) nu-
meric effects, the temporal-constraint consistency in POPF
can be checked with a simple temporal network.

Temporal-Numeric Constraints: In the presence of lin-
ear continuous numeric effects, a MIP solver is required for
the resulting temporal–numeric constraints. To represent nu-
meric constraints for each step i, the variables vi ∈ Vi record
the values of each of v immediately prior to i for variables
referred to in the preconditions/effects/duration constraints
of step i. Likewise, v′i ∈ V ′i record the variable values im-
mediately following i. The numeric preconditions and ef-
fects of actions are then added as constraints on these:

• Preconditions at i form constraints over Vi. We use the
notation (Vi � p) to denote a constraint added to ensure
the numeric precondition p is satisfied by the values of Vi.
• The invariants of i form constraints over V ′i if i is a start

snap-action; or over Vi if it is an end snap-action.
• Instantaneous numeric effects form constraints relating Vi

to V ′i ; for instance, v′i = vi+xi records that at step i, v is
increased by the value of variable x.

Maintaining Invariants: In addition to the constraints
for i itself, if i has an effect on v, it will be ordered after
each VI (v): the steps that have active invariants on v. These
invariants need to be enforced at step i: although they do not
belong to i, they belong to currently executing actions, and i
must not adversely interfere with these. Thus, vi and v′i are
constrained to obey these invariants. This may necessitate
additional ordering constraints: if an invariant referring to v
also refers to variables not otherwise relevant to i, i must be
ordered after the last modifiers of these, too. Hereon, if we
state that an invariant p is enforced at step i, we mean Vi and
V ′i are constrained to obey the invariant (i.e. Vi, V ′i � p), and
any extra ordering constraints are added. For conjunctive
invariants this approach exploits the monotonicity of linear
continuous numeric change: for intervals in which an invari-
ant on v must hold, it suffices to check the condition at the
start and end of consecutive intervals, bounded by either the
action to which the invariant belongs, or successive effects
on v. If, for example, v ≥ 5 at the start and end of an inter-
val, under monotonic change it must have been throughout.

Continuous Numeric Change: The final consideration is
the continuous numeric change. During MIP construction,
at each point referring to variable v, the sum of the gradient
effects δv acting on v are noted. As the continuous numeric
change is linear, and any changes to δv are totally ordered,
at each point this is a constant value, known at the time the

step variables constraint
t0 ≥ 0

turn on` battery0 = 30
battery ′0 = battery0 ∧ > 0

t1 ≥ 0
travel` signal1 = 0

signal ′1 = signal1
t2 = t0 + 15

travela signal2 = signal ′1 + 0.5 ∗ (t2 − t1)
signal ′2 = signal2

batterynow = battery ′0 − 1.(tbattery−now − t0)∧ > 0
now tbattery−now > t0

signalnow = signal ′2
tsignal−now > t2

Table 1: Example POPF MIP

MIP is built. With δv′i denoting the gradient active after step
i (assuming i refers to v), the value of v at a future step j is:

vj = v′i + δv′i(t(j)− t(i)) (1)
Example: To illustrate the MIP built we return to our run-
ning example; since POPF does not handle processes/events
we remove transfer and warning to demonstrate POPF’s MIP.
Table 1 shows the MIP that would be built in the state fol-
lowing the addition of travel`, turn on` and travela to the
plan. Notice that each step only has MIP variables represent-
ing variables in its conditions/effects, or if an invariant is en-
forced; and it is only ordered w.r.t. other steps that affect or
condition on the same variables/propositions. We can com-
pute δ′vi at each ti with an effect on v, by working through
the plan: δsignal ′0=0.5, δbattery ′1=-1 and δsignal ′2=0.

The now steps are added for computing upper and lower
bounds on state variables: for each state variable we solve
the MIP, maximising then minimising the corresponding
MIP variable, and use these as the bounds (for brevity, we
omit these from future MIPs in the paper). A solution to
the MIP represents a valid setting of the timestamps of plan
actions t0...tn that respects all of the temporal and numeric
constraints. If no such solution exists the plan to reach that
state cannot be scheduled and the state can be pruned.

5 Search with Processes and Events
In this section we describe how a forward-chaining planning
approach can be modified to handle processes and events na-
tively, eliminating many of the artificial planning decisions
entailed by the Section 3.1 compilation. Two key modifica-
tions are made to POPF to achieve this: first we define how
processes and events are started and ended at the appropri-
ate times during search. Second we consider the major chal-
lenge that emerges from this of managing their invariants,
which may be disjunctive or multi-variate.

5.1 Process/Event Steps in Plans
Here we show how actions representing process/event exe-
cution can be added to the plan, and how MIP constraints
can be added to allow direct enforcement of correctness.

Definition 5.1 — Starting a process
A process pi can be started as step k of a plan iff it is not

currently executing. If so:
• k is ordered after the necessary existing plan steps and the

invariants of existing plan steps are checked, in exactly
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the same way as if k was the start of a durative action
with over all condition pre↔pi and effects eff↔pi.
• In addition: ¬(Vk � pre↔pi) ∧ (V ′k � pre↔pi)

With reference to the compilation, we no longer need to
explicitly stop the non-execution of the process: it instead
suffices to ensure that this process marks a point where Vk
does not satisfy the conditions of the process; but V ′k , in-
finitesimally later, does. In other words, run pi` and not-
run pia are one step. Stopping processes is similar:

Definition 5.2 — Stopping a process
A process pi can be stopped as step k of a plan iff it is

currently executing. If so:
• k is ordered after the necessary existing plan steps and the

invariants of existing plan steps are checked, in exactly
the same way as if k was the start of a durative action
with over all condition ¬pre↔pi and zero-gradient effects
on the variables in eff↔pi.
• In addition: (Vk � pre↔pi) ∧ ¬(V ′k � pre↔pi)

In many cases, rather than using extra plan steps for pro-
cesses, we can make them implicit. Suppose a process pi
is executing (with condition Ci), and after applying an ac-
tion A at step k, Ci cannot be satisfied3. In this situation,
we can insist that at step k, A is applied and pi stops (by
adding directly to step k the constraints above). The proof is
by contradiction: if k comprised A alone, we would then be
in a state where pi was executing but Ci was false.

Definition 5.3 — Implied process steps
A snap-action A, applied as step k of a plan, and leading to

state S′, entails also applying within step k of the plan:
• Stopping all processes pi where S′ cannot satisfy Ci;
• Starting all processes pi where S′ cannot unsatisfy Ci.

Contrast this with the compilation in which, to apply A,
the planner must anticipate pi ending by starting a clip; then
apply not-run pia; A; run pi`; and finally end the clip – five
search steps. Here, instead, the choice of explicitly start-
ing/stopping a process remains only if S′ could satisfy both
Ci and ¬Ci: with the precise truth value depending on the
values of numeric variables, and hence timestamps of ac-
tions. Only in this case is an explicit plan step required.

As events have discrete – not continuous – effects we can
use a similar but slightly different approach:

Definition 5.4 — An Event occurring
An event ej can occur as a pair of steps (k, k + 1), where:

• k is ordered after the necessary existing plan steps, and
invariants of existing steps are checked, as if it were the
end of a durative action with over all condition ¬(pre ej);
• k + 1 is an instantaneous action, with the preconditions

and effects of ej plus,
• In addition: ¬(V ′k+1 � pre ej); and t(k + 1) = t(k) + 0.

Note the importance of the last of these constraints.
Whereas the compilation to PDDL 2.1 introduced an ε-gap

3e.g. in the running example transfer is executing, with condi-
tion battery ≥ 10, and some action A assigns battery=0.

between the preconditions of an event becoming true, and
the event occurring, there is no such gap here: the precondi-
tions become true at step k; and the event’s effects occur at
step k + 1, zero time later.

As with processes, we can eliminate faux planning deci-
sions in the case where an event ej is implied by an actions.
The choice only remains in states where the event’s precon-
dition could be either satisfied or unsatisfied:

Definition 5.5 — Implied event steps
A snap-action A, applied as step k of a plan, and leading to

state S′, entails also applying as steps (k, k+1) of the plan,
all events ej where S′ cannot unsatisfy pre ej .

One final remark with reference to the compilation (Sec-
tion 3.1): we can eliminate the need for go/goal clips:

• In the initial state I , for each process pi, if Ci is satisfied,
start pi at t=0;
• in the initial state I , for each event ej , Cj is unsatisfied

(c.f. PDDL semantics);
• A state is a goal state for the goals G iff a dummy action

with preconditionG can be applied. Notice that in PDDL+
we need not insist that no processes are running.

Note the initial state checks do not require recourse to
the MIP, as variables (hence the truth values of conditions)
hold definite values: there is no active continuous numeric
change. The goal state check does, however, require a MIP
evaluation, where the final values of the variables are con-
strained to meet G.

5.2 Managing Invariants of Processes/Events
The subset of invariants chosen by POPF to be enforced at a
given step is sound if all invariants are conjuncts of single-
variable constraints, e.g. (battery > 10) ∧ (signal > 5). In
other words, there is a direct relationship between the vari-
ables an action affects, and the constraints that need to be
enforced. However, there are two cases where POPF, as it
stands, cannot handle numeric invariants. These limitations
only arise if variables referred to in the invariant have been
subject to continuous numeric change, but in the context of
processes, this happens frequently. POPF cannot handle:

• Invariants that are multi-variate e.g. signal + wifi > 12;
• Disjunctive invariants e.g. (signal ≤ 5)∨(battery ≤ 10).

The latter of these is particularly prevalent when consid-
ering processes and events: even if a process/event’s con-
dition is a conjunct of terms, taking the negation of this, to
enforce intervals during which it is not executing, yields a
disjunction. In this section we introduce new invariant han-
dling techniques that correctly identify all the necessary in-
variants to check at each plan step, discuss the extra implied
ordering constraints and finally exploit these constraints in
developing a mechanism for handling disjunctive invariants.

5.2.1 Identifying Necessary Invariants to Enforce
To identify all invariants that must be enforced when a snap-
action is added to the plan, we require a more general solu-
tion to numeric invariants in POPF. Fundamental to our ap-
proach is a condition–variable dependency graph, built from
the invariants of currently executing actions.
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Figure 2: Condition–Variable Dependency Graph

Definition 5.6 — Condition–Variable Dependencies
A condition–variable dependency graph (CVDG) has:

• One variable vertex vj for each numeric variable vj ;
• For each invariant C = (c1 ∧ . . . ∧ cn): one constraint

vertex ci for each ci ∈ C; edges from each ci to each
variable vertex vj where vj affects the truth value of ci.
• For each invariant C ′ = (c′1 ∨ . . . ∨ c′n): one constraint

vertex C ′; and for each c′i, an edge from C ′ to each vj
where vj affects the truth value of c′i.

This graph gives us a straightforward way to ascertain
the indirect relationships between variables, that arise due to
disjunctive and multi-variate invariants. Simply: if a snap-
action has an effect on a variable v, then any constraint (in-
variant) that can be reached in the graph from v needs to be
enforced at the point when the snap-action is applied. Fig-
ure 2 shows an example based on our running example, with
an additional action with invariant signal + wifi > 12 (the
variable names are abbreviated to b, s, and w).

We return to our running example to illustrate why this
mechanism is necessary. Suppose in a state S the cur-
rently executing actions are turn on, travel, not-run transfer
and do warning. The condition–variable dependency graph
comprises the dark (black) portion on the left of Figure 2. As
turn on and travel both have continuous numeric effects, the
values of battery and signal are not fixed: they depend on
the timestamps given to actions, so their ranges (as evaluated
by the MIP) are battery ∈ [0, 30] and signal ∈ [0, 7.5]. Sup-
pose the action travela is then to be applied – which refers
to signal in its effects. With the prior mechanism of POPF:

• the condition that would be enforced is (battery ≤ 10) ∨
(signal ≤ 5) – as it refers to signal (we omit ‘. . .∨¬on’
from this discussion since on is known to be true);
• as the constraint is disjunctive, it could be satisfied by as-

suming e.g. battery=5: a value within its range in S.

However, from the graph we see that if restrictions are
made on the value of b, this may impact other conditions; in
fact, assuming b=5 is incompatible with the invariant b ≥ 8.
This would, however, be captured by the new mechanism:
upon referring to s , all reachable conditions are enforced,
including those on b, due to the disjunctive constraint.

To illustrate why the new mechanism is also needed for
multi-variate conditions we have the additional invariant
shown on the right of Figure 2. Suppose an action is applied
that assigns w=5. This necessitates enforcing the invariant
s+w > 12. With the prior mechanism of POPF, we could as-
sume s > 7.1, which is within its range in the current state.
But, from the graph we can see that other constraints on s
also need to be enforced. Notably, s ≤ 5 can no longer be
true if s > 7.1; and hence b ≤ 10 has to be true; which,

in turn, may impact whether b ≥ 8 can be true (indeed had
the condition on warning been b ≥ 12 search would need to
backtrack at this point). Thus, even though the action only
affected w, the multi-variate and disjunctive invariants lead
to indirect relationships with s and b.

5.2.2 Ordering Implications
A side effect of enforcing extra invariants is the addition of
extra ordering constraints when adding actions to the plan.
In our running example, when the turn on` has been ap-
plied, and we consider applying travel`, the disjunctive in-
variant ¬on ∨ battery ≤ 10∨ signal ≤ 5 must be enforced.
This leads to additional ordering constraints: the standard
POPF state-update rules now require travel` to be ordered
after turn on`, as the value of battery must known for the
purposes of enforcing this additional invariant. This would
not have been the case had the invariant not been enforced,
as travel` does not otherwise refer to battery . Note that
completeness is not compromised as the state arising from
applying these actions in the opposite order still appears as
a distinct state in the search space. The practical effect of
the ordering constraints is to impose a total order on actions
affecting any variable in a set of connected variables in the
condition-variable dependency graph. In the running exam-
ple, any action affecting b, s or w will be ordered with re-
spect to any other action affecting b, s or w.

This has useful implications on our obligations to enforce
disjunctive invariants. As a result of these added orderings,
we guarantee that we only need to maintain an invariant
C=(c1∨ ...∨ cn) between plan steps at which C is enforced,
and between which no step exists that could affect of the set
of variables VC (those referred to by any cf ∈ C).

Proof sketch:, suppose the invariant C became active
at step i. Any action ak with an effect on any v ∈
VC is totally ordered after the previous such action (c.f
constraints introduced from condition-variable dependency
graph). Let us name this totally ordered collection of ac-
tions AC=[a0, . . . , am], where t(ak) < t(ak+1), and t(i) <
t(a0). At each ak, C is enforced (when ak is added to the
plan). Therefore, when adding a new action a to the plan
(following am), we need only record the obligation to en-
force the invariant at t(am) (if AC is not empty), and at
t(a): where am and a are adjacently ordered steps. Further,
we know that no other action affecting any v ∈ VC occurs
between t(am) and t(a): if such an action was added to the
plan before am it would be ordered in AC before am; and if
added later, after a, it will be ordered in AC after a.

5.2.3 Maintaining Disjunctive Invariants
In Section 4 we noted that conjunctive invariants can be
checked at a plan step by ensuring the variable values at
that point satisfy the invariant; and further, if the invariants
are checked at two successive plan steps, they will hold at
all points in between. The latter of these statements is not,
however, true for disjunctive invariants.

Consider, for example, meeting the invariant (battery ≤
10)∨(signal ≤ 5) (the condition of not-run transfer) during
the interval between the actions travel` and travela, hereon
step i and step j. This scenario is shown in Table 2. At
this point in the plan, battery is decreasing and signal is
increasing. If we simply insist that the disjunction is true
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at each end, we can rely on (signal ≤ 5) at the start and
(battery ≤ 10) at the end but in fact both constraints could
be false at some time during the interval: signal could be-
come too large before battery becomes sufficiently small.
Conversely, if we were to insist that either one of the con-
ditions hold at both i and at j, we would preclude the pos-
sibility that for the first part of the interval we can rely on
(signal ≤ 5); and then later, but before step j, rely on
(battery ≤ 10). That is, we must allow changing of which
condition we rely on part way through the interval.

Allowing for a potentially infinite number of such changes
would be infeasible. Fortunately, for a disjunction C of |C|
numeric terms c1...c|C| we need only include |C|-1 possible
changing points. This result arises from the monotonicity of
continuous linear change: if we rely on a condition ci un-
til it becomes false, we will never be able to later rely on
ci as it cannot become true again. In our example, when
(signal ≤ 5) becomes false, it cannot become true until a
later action affects signal or the gradient on signal . As we
saw in the previous section, there is a guarantee that between
two adjacently ordered steps at which a disjunctive invariant
is enforced, no actions affecting the variables referred to in
that invariant are applied. Therefore, if we select a true con-
dition to rely on, and maintain that for as long as possible
before switching to another condition, we need only |C|-1
changing points for each adjacently ordered pair of steps.

Definition 5.7 — Disjunctive invariant constraints
A disjunctive invariant C=c1 ∨ . . .∨ c|C| can be maintained
in the interval between two adjacently ordered plan steps i,j
through intermediate points, each ψm s.t:

t(i) ≤ t(ψ1) . . . ≤ t(ψ|C|-1) ≤ t(j)
...where for each adjacent pair [y, z] in this total order:

∃ci ∈ C s.t. (V ′y � ci) ∧ (Vz � ci)

Thus, the interval (t(i), t(j)] is broken down into
piecewise-adjacent intervals, in each at least one c ∈ C
is true. The rules for when invariants need to be checked
are unchanged – but these constraints give us the mecha-
nism for doing so. These ψ points are introduced into the
MIP as if they were plan steps, but not into search. Table 2
shows the intermediate point ψ1−transfer and its associated
constraints that enforce the satisfaction of the disjunction
(battery ≤ 10)∨ (signal ≤ 5) between travel` and travela.
Notice it is possible to either rely on one condition for the
whole interval; or to switch conditions at ψ1−transfer .

6 Evaluation
In this section we empirically demonstrate the performance
of our implemented planner on PDDL+ domains. In do-
mains without processes and events our planner will per-
form exactly as POPF, runner up in the IPC2011 temporal
track. Thus, we refer the reader to the published results for
POPF (Coles et al. 2010) and IPC2011 (Jimenez and Linares-
Lopez 2011) for details of its performance on such domains,
and comparison to other planners. Unfortunately we are un-
able to compare the performance of our planner on PDDL+
domains with that of any other planner. TM-LPSAT, the only
other fully-automated PDDL planner to support these fea-
tures, is not available in a runnable form. As a guide to the

step variable constraints
t0 ≥ 0

turn on` battery0 = 30
battery′0 = battery0 ∧ ≥ 8

t1 > t0
signal1 = 0

travel` signal′1 = signal1
battery1 = battery′0 − 1 ∗ (t1 − t0)∧ ≥ 8
battery′1 = battery1∧ ≥ 8

battery1 ≤ 10 ∨ signal1 ≤ 5
battery′1 ≤ 10 ∨ signal′1 ≤ 5

t2 = t1 + 15
signal2 = signal′1 + 0.5*(t2-t1)

travela signal′2 = signal2
battery2 = battery′0 − 1 ∗ (t2 − t0)∧ ≥ 8
battery′2 = battery2 ∧ ≥ 8

battery2 ≤ 10 ∨ signal2 ≤ 5
battery′2 ≤ 10 ∨ signal′2 ≤ 5

tψ1 ≥ t1∧ ≤ t2
batteryψ1 = battery′0 - 1*(tψ1 − t0) ∧ ≥ 8
signalψ1 = signal′1 + 0.5*(tψ1-t1)

ψ1−transfer (battery′1 ≤ 10 ∧ batteryψ1 ≤ 10 ∨
signal′1 ≤ 5 ∧ signalψ1 ≤ 5)

∧ (batteryψ1 ≤ 10 ∧ battery2 ≤ 10 ∨
signalψ1 ≤ 5 ∧ signal2 ≤ 5)

Table 2: Example MIP featuring a Disjunctive Invariant

reader, however, the limited published results for TM-LPSAT
on available benchmarks (Shin 2004) report that the best
configuration solves IPC2000 Driverlog Numeric Problems
2,3 and 4 in 149.82, 29.28 and 139.97 seconds respectively;
whereas our planner solves these instances in 0.16, 0.01 and
0.05 seconds (albeit on slightly different hardware).

As a baseline for comparison we therefore use POPF, rea-
soning with the ‘efficient’ version of the clip compilation
(Section 3.1). POPF (and its siblings) are the only currently
available systems for solving even the compiled problems.
As no standard PDDL+ problem sets exist we created three
of our own based on those in the existing literature4. Ex-
ogenous continuous numeric change is fundamental to all of
these domains, and is the key to industrial interest in the ap-
plication problems: demand in the transformer domain and
shipping costs in the LSFRP. Table 3 shows performance on
these problems handling processes and events natively (P/E)
and using the Section 3 compilation (comp).

The first domain is a variant of the cooled satellite
domain described in (Coles et al. 2012). An extension
of the IPC2000 satellite domain, this allows active cool-
ing of imaging sensors to reduce the required exposure
time at the expense of increased power demands. Sun-
rise/sunset are processes, conditioned on elapsed time, that
increase/decrease the (solar) power available to satellites.
The #S/#G row in Table 3 shows the number of satellites and
goals in each problem. The compilation scales very poorly
in this domain, indeed the planner solves only 1 problem;
the P/E configuration scales much better.

Our second domain is the transformer domain originally
described in (Bell et al. 2009). This models a real problem in
power networks where customer demand, changing exoge-
nously across the day, causes the voltage at a substation to
change. The goal in this problem is to reach a specified time

4PDDL descriptions of our domains and problems are available from:
http://www.inf.kcl.ac.uk/staff/amanda/ProcessesAndEvents/
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Domain Ver 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#S/#G 1/3 1/5 2/5 2/8 3/8 3/7 4/9 4/11 4/12 4/13 4/14 4/15 4/16 4/17 5/3 5/6 5/9 6/4 7/4 8/4

Satellite P/E 0.30 1.42 1.39 2.89 8.54 3.40 247.58 62.85 34.91 34.66 37.00 41.82 42.89 74.83 36.71 471.23 42.93 25.64 27.27 364.96
Satellite comp - 9.33 - - - - - - - - - - - - - - - - - -

Transformer P/E 0.01 0.02 0.29 0.30 1.19 0.29 4.67 0.27 13.27 1.5 43.30 5.91 598.96 17.91 - 61.68 - 395.59 - 1465.89
Transformer comp - - - - - - - - - - - - - - - - - - - -

LSFRP P/E 0.03 0.04 2.33 5.32 5.58 2.88 5.58 5.58 5.25 5.74 5.52 x x x x x x x x x
LSFRP comp 0.29 0.34 - - - - - - - - - x x x x x x x x x

Table 3: Time (in seconds) taken to solve problems in PDDL+ Domains, with native process and event handling (P/E) versus
the compilation (comp). ‘-’ indicates that the problem was unsolved, ‘x’ marks problems that do not exist.

and maintain the voltage within a specified range, by switch-
ing transformers and capacitors. The original encoding of
the problem discretised the change over half-hour periods,
using timed-initial literals and a compilation similar to the
one above (but simpler, as it sacrifices accuracy to discre-
tise change) to enforce the exogenous change. Our encod-
ing has a more accurate continuous piecewise-linear model
of this crucial feature: using processes to update the volt-
age linearly, one for each half-hour period. We model the
voltage going too high (or low) using events, with the pre-
condition voltage > max (resp. < min), that delete a fact
required by the goal. From the table we see that no problems
are solved using the continuous compilation; while the P/E
configuration scales well. Even-numbered problems model
winter demand and odd problems summer demand. Problem
n+2 has one additional half-hour period of demand change
than problem n. Performance on the winter configuration
does not scale quite as far as summer, as more switching
actions are needed in winter to keep the voltage in range.

Finally, we consider the LSFRP domain (Tierney et al.
2012), based on the movement of ocean liners from one
shipping service to another, around the world. The key as-
pect of industrial interest in this domain is to minimise cost.
Hotel cost is paid for each vessel from when it leaves one
service until it reaches another. There may be several actions
between these two points and the ship might have to wait
to join its destination service at an appropriate point in the
timetable. Further, ‘sail-on-service’ actions are available on
certain routes at certain times, and hotel cost is not payable
for the duration of these actions. The most natural model of
this cost is as a process, which starts when the ship leaves
its initial service; and stops when it either joins its desti-
nation service, or while sailing-on-service. This domain is
interesting in that a simpler TIL compilation could not be
used here because processes depend not on elapsed time,
but actually on the activity the ship is performing. Whilst
the compilation successfully solves the 2 smallest problems
in this domain it quickly becomes unable to scale. The P/E
configuration solves all 11 of the suite of real-world-sized
problems developed in conjunction with industry, in under 6
seconds, although it is not attempting to optimise quality.

In conclusion, we have shown that direct handling of pro-
cesses and events gives significant scalability improvements.
As the compilation solved so few problems it is difficult to
make conclusions about solution quality: on the 3 problems
that were mutually solved, 2 had solutions of equal quality
and in the other the P/E configuration found the better solu-
tion. In the future we plan to consider plan quality and ex-
tend our approach to a wider class of continuous functions.
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