
Heuristic Evaluation Based on
Lifted Relaxed Planning Graphs

Bram Ridder and Maria Fox
King’s College London

Department of Informatics

Abstract

In previous work we have shown that grounding, while used
by most (if not all) modern state-of-the-art planners, is not
necessary and is sometimes even undesirable. In this paper
we extend this work and present a novel forward-chaining
planner that does not require grounding and can solve prob-
lem instances that are too large for current planners to han-
dle. We achieve this by exploiting equivalence relationships
between objects whist constructing a lifted version of the re-
laxed planning graph (RPG) and extracting a relaxed plan.
We compare our planner to FF and show that our approach
consumes far less memory whist still being competitive. In
addition we show that by not having to ground the domain
we can solve much larger problem instances.

Introduction
In this work we present a new planning system that incor-
porates a novel heuristic and novel pruning techniques. The
heuristic presented in this paper is lifted, this means that we
do not need to enumerate all possible actions in order to find
a solution to a planning problem. The heuristic presented in
this paper is calculated by extracting a relaxed plan from a
lifted version of the RPG. Whereas an RPG is constructed
by instantiating operators on the object level, a lifted RPG is
constructed using operators that are instantiated on the type
level. We construct these types by introducing equivalence
relationships between objects. This eliminates a limitation
that is shared by many – if not all – state-of-the-art planners,
grounding. Grounding involves the explicit enumeration of
all possible ways to bind variables to objects.

Despite the benefits of grounding there is a serious draw-
back to this enumeration – the amount of memory required
to store all the grounded actions. This drawback is not no-
ticeable when we try to find plans for the benchmark do-
mains of the international planning competitions because
the sizes of these domains are relatively small compared
to real-life problems. Real-life problems are not necessarily
more difficult than the problems presented in the benchmark
domains but the size of the domains can be much bigger
(e.g. (Flórez et al. 2011)). This means that, despite their
strengths, state-of-the-art planners cannot even start solving

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these problems. In addition, grounding large domains can
take a considerable amount of time.

By eliminating this limitation we are able to solve larger
problem instances that cannot be solved by planners that rely
on grounding due to memory constraints. In addition we also
present novel pruning techniques that further enhance the
scalability of our planning system. We compare our planning
system with FF (Hoffmann 2001).

The rest of the paper is structured as follows:
In section 2 we present the motivation for our work by

analysing the FF heuristic and the construction of the RPG.
In section 3 we present our lifted variant of the RPG, the
lifted RPG, and describe how we extract a heuristic from this
structure. In section 4 we present the empirical evaluation of
our planning system compared to FF and demonstrate that
is uses significantly less memory whilst still being compet-
itive. In addition we show that our planning system scales
much better than FF and can solve larger problem instances.
In section 5 we present an overview of the literature that is
related to our work. Finally, we present our conclusions in
section 6.

Motivation
In this work we focus on classical planning problems.

Definition 1 — Typed planning task
A typed planning task is a tuple Π = 〈T,O, P,A, s0, sg〉,

where O is a set of objects, each object o ∈ O is associ-
ated with a type t ∈ T , written Type(o). An atom is a tuple
〈p, V 〉, where p ∈ P is a predicate and V is a sequence of
variables. A variable v is a pair 〈t,Dv〉, where t ∈ T and
Dv ⊆ O is the domain. We refer to the ith variable with the
notation Vi. A is a set of operators, where an operator a ∈ A
is a tuple 〈name, parameters, precs, effects〉, parameters
is a sequence of variables. precs and effects are sets of
atoms, whose variables are elements of parameters . We use
the notation effects+ for the subset of atoms in effects that
are positive.

A solution to a typed planning task is a sequence of
grounded actions that is applicable in the initial state, s0 and
the resulting state satisfies the goal state sg .

The only domain independent planning system – to our
knowledge – that tries to solve large problem instances is
RealPLAN (Srivastava 2000). This planner was written to

244

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Figure 1: A simple Driverlog problem. The dashed lines can
be traversed by drivers and the solid lines can be traversed
by trucks.

solve the paradox that problem instances are harder to solve
when more resources are added to the planning domain. E.g.
they found that solving a planning problem to deliver a set
of packages with one truck was easier than the same plan-
ning problem with a fleet of ten trucks. They decoupled the
reasoning about resources from the planning task and found
that they could solve larger problem instances when far more
resources are supplied than are needed. Our approach, on the
other hand, is more general and can solve large problem in-
stances even if the resources are not over-supplied.

In this work we generalise the construction of the RPG
such that it does not require every action to be grounded. The
process of constructing an RPG involves a lot of redundancy.

Example 1 Consider the trucks t2 and t3 in the Driverlog
problem depicted in Figure 1. These trucks start at the same
location, are empty, and are not being driven by a driver.
It is clear that the same set of actions will be applied to
all these trucks and that any fact that is reachable for one
truck (e.g. (at t2 s3)) will also be reachable for any of the
other trucks (e.g. (at t3 s3)). These trucks are equivalent, so
we can substitute these instances with a new object T. This
reduces the size of the RPG considerably because instead of
dealing with these two trucks separately we now only need
to consider one.

Just as the trucks in Example 1 can be made equivalent, it
is clear that although the instances of type driver – d1, d2,
d3, and d4 – are not at the same location in the initial state
they can become equivalent too. This is because all these
drivers can reach the same locations and board the same
trucks, any fact that is reachable for one driver is also reach-
able for the other drivers. In the next section we will for-
malise how we find the equivalence relationships between
objects and how we subsequently exploit these relationships
during the construction of the lifted RPG and the extraction
of the heuristic.

In this work we find and exploit these equivalence re-
lationships between objects and show the reduction in the
number of actions we need to consider in order to construct
the lifted version of the RPG. The concept of equivalence is
tightly related to symmetry breaking, we refer to section 5
for an overview of the literature and the relation to this work.

The Lifted Relaxed Planning Graph Heuristic
As we have demonstrated in Example 1, we can significantly
reduce the size and number of actions in an RPG if we com-
bine objects into equivalence classes.

Definition 2 — Object Equivalent Classes
Given a typed planning problem 〈T,O, P,A, s0, sg〉 and a

state s that contains all facts that are reachable from s0 using
the set of relaxed actions {a ∈ A | aeffects = aeffects+}, two
objects o ∈ O and o′ ∈ O are part of the same equivalent
class iff Type(o) = Type(o′) and κo,o′(s) = s, where

ko,o′ : state → state,

such that ko,o′ transposes all occurrences of o and o′.
If we apply Definition 2 to Example 1 then we can con-

struct two object equivalent classes, one for all the drivers
and one for all the trucks.

Definition 3 — Equivalent Objects
Given a typed planning problem 〈T,O, P,A, s0, sg〉 and a

state s, two objects o ∈ O and o′ ∈ O are equivalent iff they
are part of the same equivalent class and κo,o′(s

′) ⊆ s0,
where s′ is the set of all facts in s that contain o or o′.

In Example 1 the trucks t2 and t3 are equivalent because
they are at the same location and empty; Both can reach the
same locations and can be driven by the same set of drivers
by applying a similar sequence of actions. For example, con-
sider any sequence of actions from the initial state – for ex-
ample: { (board d1 t2 s1), (driver d1 t2 s1 s2) } – if we alter
the sequence of actions by replacing all instances of t2 with
t3 then the sequence of actions is still valid and the resulting
state is equivalent except that driver d1 is driving the truck
t3 and t3 is at location s2.

The drivers d1 and d2, on the other hand, are not equiva-
lent because they are both at different locations. However, if
we execute the sequence of actions ((walk d1 s1 p1), (walk
d2 p1 s1)) then both drivers become equivalent as well.

Object equivalence classes can be constructed by con-
structing an RPG till the level-off point and comparing the
facts in the last fact layer using Definition 3. However, in
order to construct the RPG we need to ground the domain.

In order to infer equivalence classes without having to
ground the entire domain, we use TIM (Fox and Long 1998).
TIM performs domain analysis on a typed planning task
without having to ground the domain and infers a new type
structure. Objects that are part of the same set of precondi-
tions and effects and are part of the same variable domains
are assigned the same type. In Example 1, the objects t1, t2,
t3 and t4 are assigned the same type because given the op-
erator drive they appear in the first variable domain of the
precondition and effect (at { t1, t2, t3, t4} { s1, s2, p1 }) and
they appear in the same indexes of all the other preconditions
and effects of the other operators.

For each inferred type and the set of objects that are part
of that type, TIM performs a reachability analysis from the
initial state to determine the set of indices of predicates the
type can be part of. An index i of a predicate, with the name
n, is called a property and is denoted as ni. For example,
consider the inferred type t that contains the set of objects

245

{ t1, t2, t3, t4 }, from the initial state we can extract the
properties at1, empty1 and driving2. Next TIM performs a
reachability analysis by checking which operators can add or
remove properties that are part of t. In this case the operators
board, disembark, and drive affect the properties of t.

Given the sets of objects, properties, and operators that
affect those properties for an inferred type t, TIM creates
transitions rules that map the exchange of one set of proper-
ties for another given an operator. We use the following no-
tation: 〈 set of properties that are deleted by o〉 oname⇒ 〈 set of
properties that are added by o〉, where o is an operator. The
transitions rules that are constructed for our example are:
〈empty1〉

board⇒ 〈driving2〉, 〈driving2〉
disembark⇒ 〈empty1〉,

and 〈at1〉
drive⇒ 〈at1〉.

The sets of deleted properties and added properties from
the previous example were never empty, but this is not al-
ways the case. Consider, for example, the following transi-
tion rules from the type that has been inferred for the set of
objects { s1, s2, p1 }: 〈at2〉

drive⇒ 〈〉 and 〈〉 drive⇒ 〈at2〉. The
former loses properties while the latter gains properties.

Using the analysis performed by TIM we construct the
object equivalence classes as follows. Given an initial state
s0, an inferred type t, two objects o ∈ t and o′ ∈ t are part
of the same equivalence class if the set of properties that are
true for o in s0 can be exchanged for the set of properties
that are true for o′ in s0 using the transition rules of t and
visa versa.

Example 2 We refer back to the example depicted in Fig-
ure 1. Using TIM we can prove that the drivers d2 and d4
are part of the same equivalence class. Both drivers are part
of the inferred type that contain the objects { d1, d2, d3,
d4 }. The set of properties that are true for d2 in the ini-
tial state is {at1} and the set of properties that are true for
d4 in the initial state is {driving1}. We can use the tran-

sition rule 〈at1〉
board⇒ 〈driving1〉 to exchange the set of

properties of d2 for the set of properties {driving1}. Like-
wise we can reach the set of properties that are true for
d2 in the initial state from the set of properties that are
true for d4 in the initial state by using the transition rule
〈driving1〉

disembark⇒ 〈at1〉. Therefore we can conclude that
d2 and d4 are part of the same equivalence class.

Following TIM’s analysis we would conclude that all the
drivers, trucks, packages, and locations are part of the same
equivalent class for any possible Driverlog problem. How-
ever, this analysis only holds if the road network is con-
nected, if the road network is disconnected then this analysis
does not hold up. To demonstrate this we revisit example 1
but we make a small change to the road layout; imagine that
there is no connection between s1 and s2. In that case the
two sets of trucks, { t1, t2, t3 } and { t4 } cannot become
equivalent and are not part of the same equivalent class.

In order to differentiate objects that are part of the same
type, as detected by TIM, but are not part of the same equiv-
alent class we subdivide the detected types into subtypes.
Using the TIM analysis we split up any type that contains
a transition rule that gains or loses properties. In the above

Zeno Satellite Storage
Lifted Transitions 5500 4562 170
Grounded Transitions 959530 43290 348660

Driverlog Gripper Depots
Lifted Transitions 528 8 112
Grounded Transition 218300 6204 55936

Blocksworld Rovers
Lifted Transitions 4 7364
Grounded Transitions 612 423064

Table 1: Number of transitions per planning domain.

example we split up the inferred type that contains the ob-
jects { s1, s2, p1 }, such that every object becomes part of
a separate type. Now we can differentiate between objects
that are part of different road networks. We further refine the
types detected by TIM by comparing facts in the initial state
that cannot be affected by any action, these are static facts.
Let s be the set of static facts that are part of the initial state
and contain the object o or o′, o and o′ cannot be part of the
same type if s 6= κo,o′(s).

Image that the Driverlog problem depicted in Figure 1 has
the static fact (is-small t1) that allows the truck t1 to ac-
cess the location p1. In that case t1 is no longer part of the
same equivalence class as the other trucks, because the other
trucks cannot access p1.

Construction of the Lifted Relaxed Planning
Graph
Using the above method we will now describe how we con-
struct the lifted RPG. In order to construct the lifted RPG
we partially ground the actions using the types derived us-
ing TIM as we have described in the previous section. The
number of actions we need to consider is significantly fewer
than if we were to ground the entire problem. The number of
actions we consider using our approach and the total number
of grounded actions are depicted in Table 1 for the largest
problems of domains from past international planning com-
petitions.

The method we use to construct a lifted RPG shares some
similarity with the way FF constructs the RPG, but there are
some significant differences. We construct the lifted RPG by
applying actions to the current fact layer in order to construct
the next fact layer. However, whereas the action layers in an
RPG contain grounded actions we use partially grounded ac-
tions and whereas the fact layers in RPGs contain grounded
atoms we use lifted atoms. This makes the construction of
the lifted RPG harder than the grounded variation. Given a
set of facts and a partially grounded action, we need to find
all sets of facts that satisfy all the preconditions. If there are
n facts that satisfy each precondition then we need to check
nm combinations, where m is the number of preconditions.
This problem does not exist for the grounded case, because
in the grounded case n = 1.

In order to reduce the number of combinations we need
to check, we split the preconditions into a number of sets.
The sets are constructed in such a way such that if we find a
satisfying set of facts for each set of preconditions and take
the union of these sets of facts then this union satisfies all the

246

preconditions of the action. If we split the preconditions in
l sets such that each set contains m preconditions and there
are n facts that satisfy each precondition then the number of
combinations we need to check is lnm, so the smaller the
sets the less overhead we incur whilst checking for sets of
facts that satisfy the preconditions of an action.

We must put constraints on how the preconditions are split
in order to guarantee that any union of the sets of facts that
satisfy the preconditions satisfies all the preconditions. This
can only be guaranteed if every pair of preconditions that
shares a variable is either in the same set or if the shared
variable is grounded. Returning to Example 1, consider the
partially grounded action (board { d1, d2, d3, d4 } { t1, t2,
t3, t4 } s1) the sets of preconditions are: { (at { t1, t2, t3, t4
} s1) } and { (at { d1, d2, d3, d4 } s1) }. Note that because
the location s1 is grounded we are guaranteed that the union
of any facts that satisfy the sets of preconditions satisfies all
the preconditions of the action.

Given a typed planning problem and the set of partially
grounded actions we constructed the lifted RPG as follows:

1. Initialise the first fact layer with s0.

2. Given the current fact layer, create a mapping from every
object to the set of equivalent objects using Definition 3
and update the variable domains of all the facts using this
mapping.

3. Remove all facts that are identical.

4. Create a new fact layer by copying all the facts from the
previous layer by applying a NOOP.

5. Apply any partially grounded actions as described above
and add the resulting facts to the new fact layer.

6. If we are not at the level-off point then repeat (2).

In the worst case scenario the lifted RPG will be identi-
cal to the RPG, this is the case when no objects can become
equivalent. However, in most cases we find that the lifted
RPG contains far fewer action layers, fact layers, and the
number of actions in the fact layers is also reduced. The time
it takes to construct the lifted RPG depends on the number
of objects that can be proven to be equivalent, but for most
domains we have tried this method on we are able to con-
struct the lifted RPG quicker than the RPG (Ridder and Fox
2011). In the same work we also prove that the facts in the
final fact layer when we constructed the lifted RPG till the
level-off point is identical to the set of facts in the last fact
layer when we construct the RPG till the level-off point. So
if a goal is not present in the final fact layer then we know
that we have reached a dead end.

Example 3 The lifted RPG that is constructed for the prob-
lem depicted in Figure 1 is depicted in Figure 2. As we can
see, this lifted RPG has two action layers, three fact layers,
and contains 14 actions. Compare this to the RPG for the
same problem that contains four action layers, five fact lay-
ers and 104 actions. In larger planning problems this differ-
ence in the number of action layers, fact layer, and number
of actions is even larger.

Calculating the heuristic
Given a lifted RPG that is constructed to the level-off point
we will now describe how we extract a relaxed plan. The
method we use is closely related to the method FF uses. We
initialise an open list G with the facts in the last fact layer
that correspond with the facts in sg . While G is not empty,
we select a fact f ∈ G such that there is no other fact in G
that is part of a fact layer with an higher index. Subsequently
we select an action that achieves f , if multiple actions are
available we choose the action with the lowest action cost,
and add the preconditions to G. The length of the relaxed
plan is the heuristic estimate.

Because the size of the lifted RPG is at most as large as
the RPG we can extract the heuristic estimate quicker. How-
ever, the heuristic extracted is not as informative as the FF
heuristic.

Example 4 Consider the lifted RPG depicted in Figure 1. If
the goal to be achieved is (at d1 s2), then the relaxed plan
extracted from the lifted RPG is: ((disembark { d1,d2,d3,d4
} { t1,t2,t3,t4 } s2)) so the heuristic estimate is 1.

The reason why the heuristic estimate is poor compared
to the FF heuristic (which would return the optimal heuristic
estimate of 4) is because we introduce shortcuts in the lifted
RPG due to the object equivalences. In the example above
d1 becomes equivalent with the driver d2 once it reaches
location s1, because d2 can reach the location p1. At the
same time the drivers d2 and d4 become equivalent because
p4 can reach the location s1 and d2 can board the truck t1,
this means that all these three drivers become equivalent in
the second fact layer. In the third fact layer the drivers d2
and d3 become equivalent, because d2 can board t4 and d3
can reach the location s1, this now means that all drivers are
equivalent in the third fact layer. This is why the action that
is selected to achieve the goal (at d1 s2) is a NOOP with
the precondition (at d3 s2) and the action that is achieved
to achieve this precondition is (disembark { d1,d2,d3,d4 } {
t1,t2,t3,t4 } s2).

This is clearly undesirable, in order to partially remedy
this situation we augment the heuristic estimate with the cost
of making substitutions. In the previous example we effec-
tively substituted (at d1 s2) with (at d3 s2) which resulted
in heuristic estimate that is too low. In the next section we
present two methods to calculate the cost of making a sub-
stitution. Neither method will produce the same heuristic es-
timate as FF because of the shortcuts that have been intro-
duced in the construction of the lifted RPG.

Substitutions
In order to account for the discrepancies between the identity
of the objects in the relaxed plan we augment the heuristic
whenever a substitution needs to be made. In order to de-
tect whenever a substitution needs to be made we change
the algorithm we use to extract a relaxed plan; Instead of
adding the preconditions of an achiever to G we instantiate
the action using the preconditions and the fact we want to
achieve and we add the instantiated preconditions to G. A
substitution needs to be made whenever a variable domain

247

Figure 2: The lifted RPG for the Driverlog example, NOOPs have been omitted. T = { t1, t2, t3, t4 }; D = { d1, d2, d3, d4 }.

of the achiever becomes empty, in that case we use the vari-
able domain of the fact we want to be achieved to instantiate
the action.

In Example 4 the achiever (disembark { d1,d2,d3,d4 } {
t1,t2,t3,t4 } s2) is selected as the achiever of the goal (at
d1 s2). Instead of adding the preconditions of the achiever
to the open list G we instantiate the action using the goal
(at d1 s2) and the preconditions in the previous fact layer.
This yields the action: (disembark {} t4 s2) this action con-
tains an empty variable domain so it necessary to make a
substitution. Using variable domains of the goal to fill in the
empty variable domain gives us the action (disembark d1 t4
s2) which yields the preconditions: (at t4 s2) and (driving d1
t4) that are added to G.

In order to account for any substitutions that need to be
made, we present the following two methods:

• ObjectSub: Given a fact f = 〈p, V 〉 that is achieved by
the effect f ′ = 〈p′, V ′〉 of an instantiated action, for every
i ∈ {1, . . . , | V |} where D ∩D′ = ∅ | D ∈ Vi, D′ ∈ V ′i
we find the first fact layer where o ∈ D and o′ ∈ D′

become equivalent and add the layer number to the total
of the heuristic.

• GoalSub: Given a fact f = 〈p, V 〉 that is achieved by the
effect f ′ = 〈p′, V ′〉 of an instantiated action a, we update
the variable domains of every action parameter 〈t′, D′〉 ∈
V ′i as 〈t′, D′〉 = 〈t′, D′∩D〉 | D ∈ Vi, i ∈ {1, . . . , | V |}
if D′ ∩ D 6= ∅, otherwise D′ = D. The preconditions
p ∈ apreces with the updated variable domains are added
to G.

The pseudocode of extracting a relaxed plan using substi-
tutions is shown in Algorithm 1.

We will now show how these two approaches improve the
heuristic estimate we calculated in Example 4.

The relaxed plan contains a single action, (disembark {
d1,d2,d3,d4 } { t1,t2,t3,t4 } s2). When we instantiate this
action as we have done above we end up with an empty vari-
able domain. This is because the intersection of the variable
domain of the precondition – { d3 } – with the correspond-
ing variable domain of the effect – { d1 } – is empty. Us-
ing the ObjectSub substitution method we need to make a
substitution between the objects d3 and d1. From the lifted
RPG depicted in Figure 2 we can see that d3 and d1 become
equivalent in the third fact layer so we add 2 to the total of
the heuristic so the heuristic evaluation becomes 3 (note that
the first fact layer counts as 0).

If the GoalSub substitution method is used, then the algo-
rithm used to extract relaxed plans uses a different method to
select an achiever for a goal. Instead of selecting the achiever

Algorithm 1: Extract a Relaxed Plan
Data: The set of fact layers fl , the set of action layers

al , the initial state s0, the goal state sg , and the
substitution method M (if any).

Result: The relaxed plan T .
begin

G←− {〈f, | fl |〉 | f ∈ sg };
while G 6= ∅ do
〈f, i〉 ∈ G | ¬∃〈f ′,j〉∈Gj > i;
G←− G \ 〈f, i〉;
a ∈ ali−1 | a is the cheapest achiever for f ;
if M ∈ {ObjectSub,GoalSub} then

Augment the heuristic estimate and add
facts to G according to M ;

if a 6∈ T then
T ←− T ∪ a;

if i− 1 6= 0 then
G←− G ∪ 〈p, i− 1〉 | p ∈ aprecs ;

with the lowest action cost we prefer achievers that do not
necessitate any substitutions and only select NOOPs if there
is no other option. This changes the extracted relaxed plan,
because instead of choosing the NOOP to achieve the fact
(at d1 s2) we select the achiever (disembark { d1, d2, d3, d4
} { t1, t2, t3, t4 } s2). When we instantiate this action we get
(disembark { d1 } { t1, t2, t3 } s2) which yields the precon-
ditions (driving d1 { t1, t2, t3 }) and (at { t1, t2, t3 } s2) that
are added to G. The next goal that we process is (at { t1, t2,
t3 } s2), this goal is achieved by the achiever (drive d4 t1
s1 s2) that does not necessitates any substitutions and all the
preconditions are part of the first fact layer. The next goal
that we process is (driving d1 { t1, t2, t3 }) that is achieved
by the achiever (board { d1, d2, d3, d4 } { t1, t2, t3, t4 } s1).
Instantiating this achiever yields (board { } { t2, t3 } s1)
which yields the preconditions (at { t2, t3 } s1) – which is
part of the initial state – and the newly created precondition
(at d1 s1) that is added to G. This last fact is achieved by the
achiever (walk { d1, d2, d3, d4 } p1 s1) and this completes
the construction of the relaxed plan. The length of the final
relaxed plan is 4, which is identical to the heuristic estimate
extracted from the RPG.

While the second substitution method produces better
heuristic estimates in most cases, we cannot use it if we need
to make a substitution when the achiever is a NOOP. Con-
sider for example the case where we have a NOOP with the

248

precondition (at d1 s1) and (at d2 s1) is the fact that we want
to achieve, if we use the second method then the new goal
that is added is identical to the original goal, (at d2 s1), and
we end up in an infinite loop. Whenever we need to add a
goal that is identical to the fact we want to achieve, we fall
back to the first substitution method to calculate the cost of
the substitution.

Implementation of the Planning System
We will now discuss the implementation of the planning sys-
tem that utilises the lifted RPG heuristic. We will first dis-
cuss how helpful actions are extracted from the lifted RPG,
we will then introduce a novel pruning technique and finally
we present a number of different configurations of this plan-
ner that we have tested against FF.

Helpful actions

There is no difference in the way we extract helpful actions
from a lifted RPG compared to how FF extracts helpful ac-
tions from an RPG. Given a relaxed RPG and an extracted
relaxed plan, we call an action helpful if it is applicable in
the initial state and achieves a fact that is part of the second
fact layer of the lifted RPG and is a precondition for any ac-
tion in the relaxed plan. Unfortunately we have found that
while this pruning technique does reduce the search space
it might misdirect the search effort. For example, the set of
helpful actions for the relaxed plan { board { d1,d2,d3 } {
t1,t2,t3,t4 } s2, (drive { d1,d2,d3 } { t1,t2,t3,t4 } s2 s1), (dis-
embark { d1,d2,d3 } { t1,t2,t3,t4 } s1), (walk { d1,d2,d3 }
s1 p1), (walk { d1,d2,d3 } p1 p2) }, that has been extracted
to achieve the fact (at d3 p2) using the second substitution
approach, is { (walk d1 s1 p1), (walk d2 p1 p2), (board d3
t4 s2) }. Of this list only the last action is actually helpful,
the other helpful actions will not reduce the heuristic value
nor bring us closer to a solution to the planning problem. We
expect that using helpful actions might have adverse effect
for this reason.

Preserve goals

The lifted RPG heuristic relaxes the plan by ignoring the
delete effects. This means that the relaxed plan will some-
times destroy goals that have been achieved or utilise re-
sources that are no longer available. In order to calculate
better heuristic estimates we restrict the way in which lifted
RPGs are constructed. Given the set of goals sg we do not al-
low any actions that delete any of these goals. We found that
using this technique has a good synergy with helpful actions
and partially alleviates the problem that helpful actions can
misdirect the planner.

We found that restricting the construction of the lifted
RPG such that no goals can be deleted generates better
heuristic estimates. However, it is possible that imposing
these restrictions on the construction of the lifted RPG might
make it impossible to find a relaxed plan. If that is the case
then we reconstruct the lifted RPG without these constraints
in order to find a relaxed plan.

prune
Configuration unhelpful preserve substitution
Name actions goals method
NoSub No No None
ObjectSub No No ObjectSub
ObjectSub (h) Yes No ObjectSub
ObjectSub (h+p) Yes Yes ObjectSub
GoalSub No No GoalSub
GoalSub (h) Yes No GoalSub
GoalSub (h+p) Yes Yes GoalSub

Table 2: The different configurations of our planning system.

Results
In order to test the strengths and weaknesses of this plan-
ning system we introduce seven configurations that we have
tested against FF. The configurations are listed in Table 2
and we will describe each configuration below.

NoSub
The first configuration does not use any substitutions nor any
pruning techniques. This configuration serves as the base-
line to test the benefits of the two substitution methods in
combination with helpful actions and preserve goals. We ex-
pect that this configuration is able to explore a larger part of
the search space because it is able to calculate heuristic es-
timates faster, but due to the poor quality of these heuristics
(see Example 4) we do not expect this configuration to be as
good as the other configurations.

ObjectSub
The second configuration uses the ObjectSub substitution
method. The heuristic estimates it calculates, as we have
seen in Example 4, is a massive improvement over the base-
line and the overhead of resolving substitutions is very small
so we expect that this configuration will solve many more
problems. We also ran experiments where we used helpful
actions to prune the search space. However, as we have ex-
plained in the previous section, helpful actions do not always
help the planner and can misdirect it. We have included this
configuration to test this hypothesis. The final configuration
uses helpful actions to prune the search space and it con-
strains the construction of the lifted RPG by trying to pre-
serve goals. We hope that the helpful actions extracted from
the constrained lifted RPG will better guide the planner to a
goal state.

GoalSub
The third and last configuration uses the GoalSub substitu-
tion method. This configuration calculates the best heuristic
estimates. However, the overhead to calculate these heuris-
tic estimates is the highest of all configurations because it is
possible that many new goals are added to the lifted RPG be-
fore we find a heuristic estimate. Like the ObjectSub config-
uration we test the effectiveness of pruning the search space
with helpful actions and test if constraining the lifted RPG
by preserving goals helps the quality of the heuristic esti-
mate and the helpful actions. An additional benefit of con-
straining the lifted RPG by preserving goals is that it limits
the number of substitutions we need to make which will im-
prove the speed of calculating heuristic estimates.

249

Experiments
In this section we will compare the seven configuration of
our planner depicted in Table 2 against FF. We compare the
number of problems solved and the memory used to solve
these problem instances. We will also present results that
demonstrates that our planner can solve significantly larger
problem instances compared to FF.

We ran all our experiments on an Intel Core i7-2600 run-
ning at 2.4GHz and allowed 2GB of RAM and 30 minutes
of computation time. We have taken seven problem domains
from various planning competitions, and we now discuss the
results obtained in these domains.

The number of planning problems solved for each con-
figuration are listed in Table 3. We can see that the baseline
– NoSub configuration of our planner – solves the fewest
problems. We have highlighted the problem with this ap-
proach in Example 4 so this does not come as a surprise.
We see that the number of problems solved almost doubles
when we account for substitutions. Interestingly we solve
fewer problems with the GoalSub configuration, that makes
substitutions by adding new goals to the lifted RPG, than
the ObjectSub configuration, even though we find that the
former provides better heuristic estimates on average. This
is because calculating the heuristic estimate using GoalSub
takes longer compared to ObjectSub, thus even though we
get better heuristic estimates on average it does not make up
for the longer time it takes to compute it.

However, when we prune the search space using helpful
actions – which means we need to evaluative fewer states
– and constrain the construction of the lifted RPG – which
speeds up the calculating of the heuristic – we see that the
better heuristic estimates pays off.

NoSub ObjectSub GoalSub FF
Domain h h+p h h+p
Driverlog 9 14 13 15 14 15 18 15
Zeno 6 13 13 15 12 14 14 20
Blocksworld 3 20 20 20 20 20 20 14
Storage 17 17 17 17 18 17 16 18
Depots 4 8 8 13 6 9 12 20
Satellite 7 18 17 17 7 18 18 20
Rovers 11 18 18 18 13 18 19 20
Total 57 108 106 115 90 110 117 127

Table 3: Number of problems solved. h means helpful ac-
tions enabled. p means that goals are preserved.

Memory results To verify that our approach uses less
memory than FF we have recorded the memory usage for
each problem that has been solved for each configuration.
The memory results for NoSub are depicted in Figure 3. We
can see that we use significantly less memory compared to
FF to solve the planning problems. For certain domains we
seem to scale worse than FF, most notably Rovers and Stor-
age. The reason is that in these domains very few objects can
become equivalent.

The results for the ObjectSub configuration are depicted
in Figure 4. We see that a few of the Blocksworld plan-
ning problems seem to scale badly. On these problems we

Figure 3: Results for the NoSub configuration.

reached plateaus and had to store a great number of states be-
fore we could escape the plateaus or discover that we could
not find a solution by pruning actions which are not helpful.

Figure 4: Results for the ObjectSub (h+p) configuration.
The results for the GoalSub configuration are depicted in

Figure 5. We see that we do not have many outliers in the
Blocksworld domain. This is because the heuristic estimate
is more accurate so we do not get stuck on as many plateaus
as with the ObjectSub configuration.

Larger domains To test our hypothesis that our planner
can solve larger problem instances we generated new prob-
lem instances of the IPC domains. These problem instances
have vastly more resources (e.g. trucks, satellites, rovers,
etc), whilst keeping number of other objects the same as the
benchmarks domains of the IPC. The number of goals to
achieve has been reduced to one. In previous work we have
already demonstrated that our planner can work on bigger
problem instances (Ridder and Fox 2011). In this section we
will show problem instances we can solve but FF, due to
memory constraints, cannot. The results are depicted in Fig-
ure 6. With the exception of three satellite instances we solve
more problem instances and consume less memory than FF
that can only solve some of the smallest problem instances
before running out of memory.

250

Figure 5: Results for the GoalSub (h+p) configuration.

Figure 6: Results for the GoalSub (h+p) configuration on
larger domains.

Related literature
In this section we will give an overview of work that is
closely related to the work presented in this paper.

Lifted heuristics
Most of the heuristics that are used in state-of-the-art plan-
ners (Haslum and Geffner 2000; Bonet and Geffner 2001;
Helmert 2006) require the domain to be grounded. Some
heuristics, like merge & shrink (Helmert et al. 2007) and
pattern databases (Edelkamp 2002), bound the memory al-
lowed. However, the construction of the data structures for
these heuristics still requires grounding. Least-commitment
planners, like UCPOP (Penberthy and Weld 1992), do use
a lifted heuristic. For example, UCPOP uses the num-
ber of flaws in a plan as the heuristic estimate. A better
heuristic estimated is counting the number of open condi-
tions (Gerevini and Schubert 1996). However, these heuris-
tic estimates proved to be very poor. VHPOP (Younes and
Simmons 2003) adapted the additive heuristic (Bonet, Loer-
incs, and Geffner 1997) that can be calculated by binding the
variable domains of the actions as needed. However, in order
to calculate the heuristic most actions will be grounded so it

is not clear how this method provides any benefit. Indeed the
configuration used in IPC 3 (Long and Fox 2003) grounded
the entire domain.

Symmetry breaking
The definition of object equivalence in this paper is closely
related to symmetry breaking. In this section we present pre-
vious methods that have been developed to detect and ex-
ploit symmetry relationships.

Methods to detect symmetry have initially been developed
in the context of model checking (Emerson, Sistla, and Weyl
1994) and later been extended to break symmetry in con-
straint satisfaction problems (Puget 1993) mostly to reduce
the search space to a more manageable size. These meth-
ods have been adopted and integrated in planning systems to
make planning systems more scalable in large domains that
exhibit a lot of symmetry. One of the first papers to explore
the use of symmetry in planning systems (Fox and Long
1999; 2002) searches for groups of symmetrical objects, de-
fined in the paper as objects that are indistinguishable from
one another in terms of their initial and final configurations.
These symmetric groups are used in the planner STAN (Fox
and Long 2001), based on the GraphPlan (Blum and Furst
1995) architecture for pruning search trees.

Subsequent work focused on breaking symmetry in the
context of forward-chaining planners. This work focused on
exploiting symmetry groups by : (1) proving that any two
states s and s′ are symmetrical (Pochter, Zohar, and Rosen-
schein 2011); and (2) given a state and two actions, if both
actions are symmetrical then we only have to consider one
of the actions and we can ignore the other (Rintanen 2003).

The method most relevant to our work is the latter. If two
objects, o and o′, are equivalent in a state s and we have a
sequence of actions that achieves a fact f then we can reach
the fact f ′ – that is the same as f except all occurrences of
o and o′ are transposed – by executing the same sequence of
actions with all occurrences of o and o′ transposed.

Conclusions
In this paper we have demonstrated a new planning sys-
tem that utilises a lifted heuristic and compared it to FF. We
have shown how we derive object equivalence classes of ob-
ject which significantly reduces the amount of grounding we
have to do. By exploiting object equivalence relationships
we can construct a lifted RPG and extract a heuristic esti-
mate faster compared to FF using an RPG. We have identi-
fied a weakness with the relaxed plan that is extracted from a
lifted RPG and provided two methods to augment the heuris-
tic estimate by making substitutions. We presented empirical
results that shows the efficiency of both methods.

We have shown that we are able to solve larger problem
instances compared to FF because we use significant less
memory. In addition we have shown that we do not suffer
from the weaknesses of previous lifted heuristics that have
proven to be very uninformative. In addition we have shown
that our novel pruning technique allows our planning system
to solve significantly more problem instances.

251

References
Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:1636–1642.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In AAAI,
714–719. MIT Press.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In AIPS, 274–283.
Emerson, E.; Sistla, A.; and Weyl, H. 1994. Symmetry and
model checking. In CAV, volume 5, 463–478.
Flórez, J. E.; de Reyna, Á. T. A.; Garcı́a, J.; López, C. L.;
Olaya, A. G.; and Borrajo, D. 2011. Planning multi-modal
transportation problems. In ICAPS. AAAI Press.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, 956–961.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. In IJCAI, 445–452. Morgan Kaufmann.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS, 83–91.
Gerevini, A., and Schubert, L. 1996. Accelerating partial-
order planners: Some techniques for effective search con-
trol and pruning. Journal of Artificial Intelligence Research
5:95–137.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS, 140–149. AAAI Press.
Helmert, M.; Freiburg, A.-L.-U.; Haslum, P.; and Hoffmann,
J. 2007. Flexible abstraction heuristics for optimal sequen-
tial planning. In ICAPS, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22:57–62.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In KR, 103–114.
Morgan Kaufmann.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In AAAI.
Puget, J. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In Proceedings of the 7th
International Symposium on Methodologies for Intelligent
Systems, ISMIS ’93, 350–361. London, UK: Springer-
Verlag.
Ridder, B., and Fox, M. 2011. Performing a lifted reach-
ability analysis as a first step towards lifted partial ordered
planning. In PlanSIG.

Rintanen, J. 2003. Symmetry reduction for SAT representa-
tions of transition systems. In ICAPS, 32–41. AAAI Press.
Srivastava, B. 2000. Realplan: Decoupling causal and
resource reasoning in planning. In AAAI/IAAI, 812–818.
AAAI/MIT Press.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research 20:405–430.

252

