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Abstract

In the field of domestic service robots, recovery from faults
is crucial to promote user acceptance. In this context we fo-
cus in particular on some specific faults, which arise from the
interaction of a robot with its real world environment.
Even a well-modelled robot may fail to perform its tasks suc-
cessfully due to unexpected situations, which occur while in-
teracting. These situations occur as deviations of properties
of the objects (manipulated by the robot) from their expected
values. Hence, they are experienced by the robot as external
faults.
In this paper we present two approaches to handle external
faults which result from inadequate descriptions of a plan-
ner operator. In both approaches we assume that the robot is
able to detect the occurrence of the fault at the planning level
by monitoring the effects of an executed action. In our work
we limit the scope of the sources of external faults to nat-
ural physical phenomena. Hence, we do not consider cases
in which an external agent (e.g. another robot, a human be-
ing) is the cause of a detected fault. We apply the proposed
approaches to scenarios in which the robot performs a manip-
ulation task (pick and place).

Introduction
This paper is an extended abstract of the journal article To-
wards Robust Task Execution for Domestic Service Robots
published in Journal of Intelligent and Robotic Systems
2013 (Kuestenmacher et al. 2013).

Fault diagnosis and tolerance is considered a major chal-
lenge in the robotics community. Many contributions have
been made in the detection and diagnosis of the faults which
occur due to failure or malfunctioning of robot’s internal
components (e.g. sensors and actuators etc.). However, to
achieve true robustness in robotics, it is not sufficient to
just successfully diagnose the faults that occur within a
robot’s internal components. A robot can only achieve true
robustness if it also has the ability to handle unforeseen
situations which may result in a failure to complete its
actions. For instance, consider the following scenarios.
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Scenario1: A robot is required to place a die on a planar
surface above the ground (i.e. a table). We assume all in-
ternal components of the robot function perfectly. However,
after the completion of the robot’s action, the die falls on
the floor instead of remaining on the table. The reason for
this unsuccessful completion of the robot’s action is simple:
After its release, the die lands on the table on its edge. This
makes the die roll and fall on the floor.

Scenario 2: The robot is picking up a bottle from the
table and the surface of this bottle is slippery. When the
robot picks up the bottle, the bottle slips from the robot’s
gripper and falls on the table. Once again the robot does not
detect any fault in its internal components. Still it is not able
to complete its action successfully.

In our work we group the scenarios described above into
a class called inadequate description of planner operator.
For example, in scenario 1 the main reason for unsuccess-
ful completion of the releasing action is the gripper holding
the die in the wrong way. The wrong grip (just before the re-
lease) is not rectified by the robot before executing the action
because the current state of the die fulfils the inadequately
defined preconditions of the release action.

Even humans cannot always guarantee to perform their
actions in the desired manner. The reason is the lack of
knowledge about possible outcomes of unknown conditions.
For humans it is easy to learn how to avoid these exter-
nal faults in the future, by updating our knowledge through
learning from the current unexpected situation by experi-
mentation. In the next sections we will describe two ap-
proaches which are applicable to deal with unexpected situ-
ations due to inadequate description of planner operators.

Our first approach illustrates how naı̈ve physics knowl-
edge can be formalized such that reasoning about external
faults can benefit from it. The second approach uses simula-
tion as an oracle to avoid external faults that occur during a
releasing action.

Naı̈ve Physics Approach
The situations mentioned above are only two among count-
less possibilities which can result in external faults for the
actions of picking and placing an object. It is not possible to
model all such situations in advance. Furthermore, the use of
such models for diagnosis purposes can be computationally
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very expensive.
On the other hand, we can see that human beings also face

such situations in their daily life. Normally, we do not use
any computational model or even any quantitative informa-
tion to handle these situations. Humans use commonsense to
avoid such faults in the future. Therefore, we propose to use
naive physics knowledge for reasoning about external faults
in robotics.
In his work (Hayes 1979) Hayes proposes to formalize ev-
eryday knowledge of the physical world in a declarative
symbolic theory. In principle, such a theory represents the
naive physics knowledge which can be used for common-
sense reasoning about everyday physical phenomena. This
proposal of Hayes is one of the widely acclaimed ideas
in AI, but it has never been truly followed (Davis 1998).
For commonsense reasoning, the literature in AI is mostly
concerned with what is more appropriately called quali-
tative physics (de Kleer and Brown 1990). In contrast to
Hayes’ proposal of naive physics, qualitative physics con-
centrates on reasoning programs rather than knowledge rep-
resentation. Furthermore, qualitative physics emphasizes on
restricted systems rather than daily life physical phenomena.

One approach of representing commonsense physical
knowledge, which is based on Hayes’ notion of naive
physics, is the methodology of microworlds (Davis 1998).
Davis proposes to structure the knowledge in microworlds,
where ”a microworld is an abstraction of a small part
of physical interactions, sufficient to support some inter-
esting collection of inferences”. Some examples of mi-
croworlds are component-based electronics (de Kleer and
Brown 1990), rigid object kinematics and rigid objects dy-
namics. Structuring the knowledge in chunks makes its for-
malization easier. Compared to Hayes’ proposal, any knowl-
edge formalized using the microworlds approach is more in-
ferencing oriented. This also implies that by keeping in view
the collection of inferences to be supported by a microworld,
we can limit the scope of the knowledge to be formalized
for that microworld. In our opinion, this aspect of the mi-
croworlds approach makes it more practical in comparison
to the original proposal of Hayes.

Reasoning about the unknown external faults in robotics
requires the ability to reason about physical phenomena en-
countered in our daily life. Approaches in qualitative physics
(QSIM (Kuipers 2001) and qualitative process theory (For-
bus 1984) etc.) are inadequate for such reasoning in general
(Davis 1988).

On the other hand it is also true that in current AI
literature there does not exist any large scale formalization
of daily life physical phenomenon (formalized in a naive
physics theory or structured in microworlds) which can
be used directly for unknown external faults in robotics.
Therefore, in the work proposed here, we use insights from
the works referenced above to formalize a small body of
naive physics knowledge for reasoning about unknown
external faults in robotics. Our approach illustrates how
naive physics knowledge can be formalized that reasoning
about unknown external faults can benefit from it.

We will therefore use naı̈ve physics concepts to find infor-

mation about the cause of the fault. This information is pro-
duced in the form of hypotheses. The naı̈ve physics concepts
which are represented by the physical properties of objects,
are formalised in a logical framework. To reason about the
fault, we apply a qualitative version of physical laws to these
properties. Since effective reasoning about any external fault
requires information about relevant properties and physical
laws, we associate different properties and laws to different
types of faults. The underlying ontology of this association
is based on studies conducted (by other researchers) on rea-
soning of physics novices about everyday physical phenom-
ena. By interpreting the results of the reasoning process, the
robot deduces the hypotheses about the situations that could
have caused the detected faults. The details of the described
approach is presented in our original article (Kuestenmacher
et al. 2013)

We apply our scheme to the aforementioned scenario in
which the die falls on the floor instead of staying on
the table. As the result the approach generates two sepa-
rate lists of hypotheses for the phenomena of gravity and
air. The hypotheses shown bellow are stated in Prolog
syntax.
For gravity following hypotheses are generated for the
given scenario.

1. State(die):-
place(table),stability(unstable),
translation(moving).

2. State(die):-
place(floor),stability(unstable),
translation(moving).

3. State(die):-
place(floor),stability(stable),
translation(stationary).

For air, the naı̈ve physic approach generates following hy-
potheses.

1. State(die):-
translation(moving),place(floor).

2. State(die):-
translation(stationary),place(floor).

As stated earlier, each of the generated hypotheses repre-
sents a situation that can be the cause of the detected fault.
As human beings, we can immediately see that hypothesis 1
for gravity, is the one with the highest probability for the
considered scenario. Interpretation of this hypothesis gives
the reason of the detected fault.

We also apply our approach to the other scenario in which
a robot is simply picking up a bottle. When the robot
picks it up, the bottle slips from the gripper of the
robot and falls on the table. Again, the detected fault is
categorized under the type location. Therefore, the ap-
proach also generates two lists of hypotheses for gravity
and air phenomena.

Simulation-Based Approach
In our running example, the naı̈ve physics approach was able
to produce the information that the die has fallen on the
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floor because its center of gravity had left the top of the
table (because of any intrinsic property of the die) after
its release. This information can be used in modifying the
preconditions of the relevant planning operator of the robot
such that they also incorporate the observed anomalous be-
havior of the object.

This is done in order to show that meaningful informa-
tion about the occurred situation can be extracted from naive
physics knowledge using the proposed methodology.

Despite of successful application results, the pure
symbolic, abstract approach is not informative enough
to reason about physical properties of the object. How
can we conclude from the faulty symbolic predicate
on(table, die) that the die was released with incor-
rect orientation which is probably the true cause of the fault?

On the other hand simulation-based approaches provide
us with more accurate low-level details about the behaviour
of an object which is required to reason about external faults.

In our second approach we present a technique which
utilizes a physics-based simulator in order to suggest an
optimal solution for external faults in an action during the
release. The idea of using a physical simulator as a tool
which represents a realistic execution of an action in real
world environment is not new. The current researches in
robotics (which are detailed in the original article (Kuesten-
macher et al. 2013)) use simulation for navigation, motion
planning and reasoning about task execution.

Therefore we call our second technique simulation-based
approach (SBA).

SBA is presented as a four-step scheme that requires
the following inputs: a simulated example of the expected
behaviour of the object and a definition of the planning
operator for the action that results in a detected fault. The
approach first finds a symbolic description of the simulated
behaviour of the object. This description is presented as
logical expressions, which consist of conjunctions of basic
atomic facts. Each atomic fact represents a different aspect
of a given state of the objects in the simulation. We refer to
the atomic facts collectively as the description vocabulary.
The description vocabulary is derived from the concepts in
the area of qualitative spatial representation. SBA creates
different examples of object behaviour (in simulation) and
uses the symbolic description to autonomously label these
examples as desired or undesired. These labelled examples
are then utilised by a learning algorithm to find the best
initial state of the object. Performing the action in this
initial state avoids the occurrence of external faults. Once
the learning algorithm is exposed to the labelled examples,
it can also be used for predicting the desirability of an
initial state of the object. We use these results to modify
the preconditions of the action of the robot. More detail
information is given in our journal article (Kuestenmacher
et al. 2013)

We performed different experiments of the action of drop-
ping objects on various surfaces using SBA in a simulation
environment. For example in one experiment the example

simulation (expected by the approach as an input) shows that
a die is dropped on a table. During the other experiment the
example simulation shows that a carton is dropped over the
centre of an empty table such that it stands tall on the table.
However, before generating the training instances we update
this model by placing different solid objects on the table. In
this experiment the approach was able to find the correct re-
sults despite outdated models of the objects in the example
simulation because it was able to correctly label the training
instances. The correct labeling of the training instances, in
turn, is made possible by the fact that the approach uses only
qualitative information in the simulation description of the
example simulation. This information remains unaffected by
the quantitative changes caused by the updates in the models
of the objects. Hence, SBA is able to find the correct results.
In the last experiment the example simulation shows that a
ball is thrown towards an empty basket, such that it falls and
stay inside the basket. Similar to the case of previous exper-
iment, we update the model of the basket in this experiment.
The approach generates the instances of throwing the ball,
using this updated model which contains different solid ob-
jects inside the basket.

Results of these experiments clearly showed that with its
help a robot can not only avoid external faults by selecting a
safe releasing state for the object but can also predict desir-
ability of a given releasing state of the object with consider-
able accuracy.

Broadly speaking, the main idea behind the proposed ap-
proach for avoiding external faults can be summarised as
give a robot an example of the action to be executed and let
it find the safest way to do it.

Discussion
The implementation of the naive physics approach is limited
to a particular (type of) robot. That is, the developed theo-
ries, ontologies and physical laws are developed for a par-
ticular robot and can be exported (with minimum changes)
only to the robots with similar capabilities. Therefore, to use
this approach for external fault reasoning in a real robot,
we first need to understand the capabilities (i.e. performable
tasks) of the robot. To this end, one needs to understand the
knowledge of planning operators and methods used in the
robot. Based on this understanding, the types of faults must
be categorised and extended.

Then the ontology of the properties has to be developed.
It should be noted that there is no correct or wrong ontology
for properties. The ontology used in this work is derived
form the substance schema. It is expected that this ontology
can vary greatly if the types of faults are different. For each
type of fault, a pool of definitions (i.e. framework) is to
be developed. The development of definitions can follow
the approach outlined in this work. However, it may be
possible to utilize definitions more effectively by letting a
knowledge base know objects and their intrinsic properties.
For example, if the knowledge base already stores the
names of fixed objects in its environment then there is
no need to define movable, fixed etc.. Limitations of this
approach are like the other qualitative reasoning techniques
(Mösenlechner and Beetz 2011). They are too abstract to
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represent geometric and physic properties of an object in its
environment for realistic reasoning.

In our future research we will implement the simulation-
based mechanism to our service robot Jenny. Jenny is a Care-
O-botIII system equipped with a 7 DOF light-weight KUKA
arm and a 7-DOF Schunk Dexterous-Hand, an omnidirec-
tional platform and many high end sensors (Reiser et al.
2009). Jenny will have to perform everyday manipulation
activities such as pick-and-place tasks in a dynamic domes-
tic environment. For the successful implementation we have
to make sure that the following assumptions about the robot
and the situations hold true:

• The robot is equipped with planning capabilities repre-
senting the state of the world as a conjunction of logical
predicates. In order to handle external faults their occur-
rence has to be detected. Therefore, the robot has to be
able to monitor its behaviour continuously while execut-
ing the generated plan. During the monitoring phase the
symbolic state of the system (robot and its environment) is
compared to the current observable state of the world. In
case of inconsistencies the last executed action is marked
as faulty. This action will then be used as an input to our
approach. The other input parameter is an example simu-
lation of the marked action. The example simulation also
includes a domestic environment that has to be updated
accordingly to the changes in the robot’s current environ-
ment (for example a table which was previously known
to be empty may have some objects on it at the time of
execution).

• There is no involvement of external agents in the occur-
rence of faults (i.e. all faults are caused by the robot itself).

The SBA is too time consuming and may work only offline.
To overcome this problem we propose to run many simu-
lated experiments in parallel on a PC with 48 cores. There-
fore we suggest to set up the approach on the external mul-
tiprocessor PC outside the robot. The robot may then send
necessary input data to this external PC, which will start the
simulation-based approach and then send the solution back
to the robot.

Our first results using the simulation based approach were
successful. They encourage further exploration and exten-
sion of this work to other robotic actions (e.g. picking ob-
jects) and environments. Another important future direction
for us is to use labelled instances of simulated behaviour of
a given action to learn a general solution for it. These so-
lutions may suggest an optimal way to perform particular
actions successfully not only with the current object but also
with any scaled objects of similar geometrical shape.
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