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Abstract

Simple Temporal Networks (STNs) allow minimum and
maximum distance constraints between time-points to
be represented. They are often used when tackling plan-
ning and scheduling problems that involve temporal as-
pects. This paper is a summary of the journal article
Time-dependent Simple Temporal Networks: Properties
and Algorithms published in RAIRO - Operations Re-
search. This journal article introduces an extension of
STN called Time-dependent STN (TSTN), which cov-
ers temporal constraints for which the temporal dis-
tance required between two time-points is not necessar-
ily constant. Such constraints are useful to model time-
dependent scheduling problems, in which the duration
of an activity may depend on its starting time. The paper
introduces the TSTN framework, its properties, resolu-
tion techniques, as well as examples of applications.

Motivation
Managing temporal aspects is crucial when tackling plan-
ning and scheduling problems. Indeed, such problems of-
ten involve constraints on the earliest start times and latest
end times of activities, precedence constraints between ac-
tivities, or no-overlapping constraints over sets of activities
which use the same resource. More generally, they often in-
volve constraints over the minimum and maximum temporal
distance between time-points, the latter corresponding to the
start or the end of activities.

A commonly used framework for handling such con-
straints is the framework of Simple Temporal Networks
(STNs (Dechter, Meiri, and Pearl 1991)). This frame-
work considers conjunctions of simple temporal constraints,
which are constraints of the form x−y ∈ [a, b] with x, y two
time-points and a, b two constants. STNs are appealing in
practice due to the polynomial complexity of important op-
erations such as computing the earliest/latest possible times
associated with each time-point. STNs are also often used as
a basic element when solving more complex temporal prob-
lems such as Disjunctive Temporal Networks (Stergiou and
Koubarakis 2000).

In this work, we introduce an extension of STN called
Time-dependent STN (TSTN (Pralet and Verfaillie 2013b)),
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which covers temporal constraints for which the minimum
and maximum distances required between two time-points
x and y are not necessarily constant. More precisely, con-
straints manipulated in the TSTN framework take the form
y − x ∈ [f(x, y), g(x, y)]. Such constraints are useful to
model time-dependent scheduling problems (Cheng, Ding,
and Lin 2004; Gawiejnowicz 2008), in which the duration
of an activity may depend on its starting time, or problems
in which the transition time required between two activities
may depend on the time at which the transition is triggered.
Such aspects are present in several domains:

1. in logistics, where the estimated time to go from location
A to locationB depends on the traffic congestion and thus
on the starting time: constraint y−x ≥ f(x) where x and
y are the time-points associated with the start and the end
of the move, and where f is a function such that f(t) gives
the duration required to move from A to B by starting the
move at time t;

2. in production planning, where the duration required to
perform a task at a given time depends on the resources
available at that time (manpower, machines...); for in-
stance, let x and y be the start and end times of a task,
let E be the total amount of energy required for achiev-
ing this task, and let p(t) denote the manpower available
at time t; then, a task starting at time x needs duration
f(t) = min{δ |

∫ t+δ
t

p(u) du ≥ E} for being achieved,
which means that constraint y − x ≥ f(x) must hold;

3. in the space domain, where e.g. the duration required by
a satellite for moving from a pointing to Earth area A to a
pointing to Earth area B depends on the time at which the
transition from A to B occurs: constraint y−x ≥ f(x, y)
with x and y the start and the end of the move activity
respectively, and with f a function such that f(t, t′) gives
the duration required to move from the pointing direction
the satellite must have to point to A at time t to the point-
ing direction the satellite must have to point to B at time
t′, taking into account the movement of the satellite on its
orbit and the rotation of Earth on itself.
Constraints y − x ∈ [f(x, y), g(x, y)] manipulated in

TSTN can always be rewritten as sets of inequality con-
straints y − x ≥ dmin(x, y). Informally, dmin(x, y) spec-
ifies a minimum temporal distance between the events as-
sociated with time-points x and y. Constraints y − x ≥
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dmin(x, y) are called time-dependent simple temporal con-
straints, or more simply t-simple temporal constraints.

Similarly to STN, a solution to a TSTN is an assignment
of all time-points which satisfies all t-simple temporal con-
straints, and a TSTN is said to be consistent iff it has at least
one solution. Similarly to STN again, a TSTN can be rep-
resented graphically by its distance graph, which contains
one arc y → x labeled by −dmin(x, y) for each temporal
constraint y−x ≥ dmin(x, y). The only difference with the
standard distance graph associated with an STN is that arc
labels are not necessarily constant in the case of TSTN.

A relevant notion associated with a t-simple temporal con-
straint y − x ≥ dmin(x, y) is its delay function, defined by
delay(x, y) = x+ dmin(x, y)− y. Informally, delay(x, y)
is the delay obtained in y if a transition in minimum time
from x to y is triggered at time x. This delay corresponds
to the difference between the minimum arrival time associ-
ated with the transition (x + dmin(x, y)) and the required
arrival time (y). A strictly negative delay corresponds to a
transition ending before deadline y. A strictly positive delay
corresponds to a violation of the temporal constraint. A null
delay corresponds to an arrival right on time.

Properties of TSTNs
One fundamental question is whether standard properties
that hold for STN can be generalized to TSTN. The answer
is that some of the STN results can be extended to TSTN,
whereas others cannot.

Local Consistency of a T-simple Temporal Constraint
The first step is to define how to handle each t-simple tem-
poral constraint, and more precisely to define how each con-
straint can be used to prune the earliest and latest times as-
sociated with each time-point.

In STN, a simple temporal constraint y − x ≥ c is propa-
gated following the domain reduction rules given below:

d(y)← d(y)∩ [min(d(x)) + c,+∞[ (1)
d(x)← d(x)∩ ]−∞,max(d(y))− c] (2)

In TSTN, a t-simple temporal constraint y − x ≥
dmin(x, y) is propagated using more general rules, which
are written as follows:

d(y)← d(y)∩ [earr(min(d(x))),+∞[ (3)
d(x)← d(x)∩ ]−∞, ldep(max(d(y)))] (4)

with earr and ldep two functions defined by earr(a) =
min{+∞}∪{b ∈ d(y) | b−a ≥ dmin(a, b)} and ldep(b) =
max{−∞} ∪ {a ∈ d(x) | b − a ≥ dmin(a, b)} respec-
tively. Rule 3 updates the earliest time associated with y,
while Rule 4 updates the latest time associated with x. In-
formally, if x and y are seen as the start and end times of
a transition, then Rule 3 prunes the domain of y by com-
puting the earliest arrival time in y such that the temporal
constraint is satisfied when starting the transition as soon as
possible (at time min(d(x))). Rule 4 prunes the domain of
x by computing the latest departure time from x such that
the temporal constraint is satisfied when arriving in y as late
as possible (at time max(d(y))).

Two main results concerning the propagation rules can be
established:

1. Rules 3 and 4 establish bound arc-consistency, which
means that after the application of the rules, the time
bounds associated with x and y participate to an assign-
ment which satisfies the temporal constraint.

2. For t-simple temporal constraints which have a specific
monotonicity property called delay-monotonicity (which
holds for STN), any value remaining in the domain of x
(resp. y) after the application of the pruning rules has
a support in the domain of y (resp. x). When delay-
monotonicity is violated, the latter property does not nec-
essarily hold. However, delay-monotonicity is a very nat-
ural property, which expresses that the sooner an activity
starts, the sooner it ends.
Concerning the way earr and ldep are computed in prac-

tice, several approaches can be considered. For simple tem-
poral constraints y − x ≥ c, an analytic formulation is pos-
sible (see Rules 1 and 2). Analytic formulations can also
be derived for several standard temporal constraints used
in time-dependent scheduling. In the general case, an it-
erative approximated method based on linear interpolation
techniques can be used.

Global Consistency of a TSTN When considering
TSTNs, which involve sets of t-simple temporal constraints,
three main results can be established:

1. Similarly to STN, if all constraints of a TSTN are made
bound arc-consistent using Rules 3-4, then the schedule
which assigns to each time-point its earliest (resp. latest)
possible time is a solution of the TSTN.

2. Contrarily to STN, even if all constraints of a TSTN are
made bound arc-consistent using Rules 3-4, non-extremal
values in the variable domains are not necessarily glob-
ally consistent, which means that these values may not
participate to any solution of the TSTN. This result holds
even if the delay function has the monotonicity property
mentioned before.

3. Assume that the delay-monotonicity property holds and
that cycles of the distance graph involve only simple tem-
poral constraints. Then, every value remaining in the vari-
able domains is globally consistent (sufficient condition
for making the STN result applicable again).

Solving TSTN
Algorithms can be introduced to determine the consistency
of a TSTN and to compute the earliest and latest possible
times associated with each time-point. We consider a con-
text in which temporal constraints may be added or removed
from the problem, which happens when activities are added
or removed during the search for good plans or schedules.

Constraint Propagation Similarly to existing work on
STN (Cesta and Oddi 1996; Gerevini, Perini, and Ricci
1996; Shu, Effinger, and Williams 2005), we use constraint
propagation techniques for computing min and max bounds
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of time-points. These techniques apply Rules 3 and 4 for
revising constraints until a fixed point is reached. We use
a constraint propagation scheme in which we maintain two
lists containing constraints to be revised: one list for prop-
agating constraints modifying min bounds (application of
Rule 3), and one list for propagating constraints modifying
max bounds (application of Rule 4).

Negative Cycle Detection In STN, inconsistency is equiv-
alent to the existence of a negative cycle in the distance
graph. Efficient approaches have been proposed on STN
for detecting such negative cycles (Cervoni, Cesta, and Oddi
1994; Cesta and Oddi 1996). These approaches are able to
detect negative cycles quite fast by maintaining so-called
propagation chains. The latter can be seen as explana-
tions for the current min and max bounds of the different
time-points. The intuition is that if a propagation cycle
x1 → x2 → . . . → xn → x1 is detected for min bounds,
then this means that the min value of x1 modified the min
value of x2... which modified the min value of xn which
modified the min value of x1. By traversing this propagation
cycle a sufficient number of times, the domain of x1 can be
entirely pruned. A similar result holds for max bounds.

In TSTN, the relationship between TSTN inconsistency
and the existence of a negative cycle is a bit more complex:

1. For TSTN in general, the existence of a propagation cycle
does not necessarily imply inconsistency. One reason is
that in TSTN, domain reductions obtained by traversing
cycles again and again may become smaller and smaller
due to the time-dependent aspect, and consequently do-
main reductions obtained may not necessarily prune all
values in the domains.

2. Strict monotonicity of the delay function does not suffice
for establishing the equivalence again.

3. If all constraints y−x ≥ dmin(x, y) involved in a propa-
gation cycle for min bounds (resp. max bounds) are delay-
monotonic and if they all have a non-decreasing duration
dmin(x, y) (resp. a non-increasing duration) with regard
to their two arguments x and y, then the TSTN is inconsis-
tent. Such a condition guarantees that a propagation cycle
does not become “less negative” when traversed again and
again.

4. For a TSTN such that all cycles of the distance graph in-
volve only simple temporal constraints (and not t-simple
ones), the existence of a propagation cycle implies incon-
sistency.

In all applications which we have treated so far with
TSTN, one of the sufficient conditions mentioned above
held. If the sufficient conditions are not satisfied, several
options can be considered, leading to different trade-offs
between exact inconsistency detection and number of con-
straint revisions performed.

Complexity Let V be the set of time-points in the prob-
lem and let C be the set of temporal constraints. If the ex-
istence of a propagation cycle implies inconsistency, then it

is possible to establish bound arc-consistency in O(|V ||C|)
constraint revisions, with an algorithm which uses Rules 3-4
for revising constraints, a FIFO ordering of the propagation
queue, and a propagation cycle detection technique. As in
STNs, the bound obtained does not depend on the size of
the variable domains. Note however that in TSTN, even if
the number of constraint revisions is polynomial, the time
required to revise one constraint is not necessarily O(1).

Constraint Depropagation Constraint propagation tech-
niques are directly able to handle constraint addition or con-
straint strengthening. As for constraint removal or con-
straint weakening, constraint depropagation strategies de-
fined in (Shu, Effinger, and Williams 2005) for STN can be
directly reused for TSTN. These strategies allow min and
max bounds of temporal variables to be recomputed at mini-
mum cost. They avoid reinitializing all variable domains and
repropagating all constraints from scratch when a constraint
is removed or weakened. The basic idea is to use propa-
gation chains to determine which variable domains must be
reinitialized and which constraints need to be revised.

Constraint Revision Ordering A last technique is used
for minimizing the number of constraint revisions. This
can be particularly useful for TSTN, for which revising
one constraint can be significantly more costly than in
STN. The proposed approach extends a technique devel-
oped for STN−(Gerevini, Perini, and Ricci 1996), a sub-
class of STN in which every constraint must be rewritable
as y − x ≥ c with c ≥ 0. The idea consists in build-
ing the strongly connected components (SCCs) of the dis-
tance graph, and in propagating constraints following a
topological order of SCCs. Such a topological order can
be maintained upon additions and removals of constraints
based on dynamic graph algorithms (Haeupler et al. 2012;
Roditty and Zwick 2008).

Management of Unary Constraints In the constraint
propagation scheme used, unary constraints x ≤ a and
x ≥ b are actually revised first because their revision is easy.
Another argument is that if such constraints were handled as
distance constraints with regard to a reference temporal po-
sition x0 (constraints x− x0 ≤ a and x− x0 ≥ b), then the
distance graph would contain several additional arcs which
could interfere with the definition of SCCs and degrade the
efficiency of constraint propagation.

Experiments
All techniques previously introduced (constraint propaga-
tion, propagation cycle detection, constraint depropagation,
SCCs ordering, specific management of unary constraints)
are integrated in the InCELL solver (Pralet and Verfaillie
2013a), which allows TSTN to be represented and manipu-
lated. Experiments were realized on TSTNs modeling tem-
poral problems associated with the management of so-called
agile satellites, which have the capacity to move around their
center of gravity to point to a particular direction. Results
showed that using TSTN for managing temporal constraints
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is feasible in terms of computation times. They also showed
that modeling time-dependent constraints can lead to bet-
ter schedules (better in terms of both temporal flexibility
and number of achievable tasks) than an approach which
transforms TSTN to STN by modeling t-simple temporal
constraints y − x ≥ dmin(x, y) as simple temporal con-
straints y − x ≥ c with c the maximum of all possible min-
imal distances to be respected between x and y, defined by
c = maxa∈d(x),b∈d(y) dmin(a, b).

Perspectives
Two main perspectives can be provided. First, it would be
interesting to combine TSTN with optimization, in order to
handle problems in which a different reward is obtained de-
pending on the time at which an activity is performed. On
this point, it would be interesting to try and reuse works
combining STN and linear objective functions (Morris et
al. 2004). Second, TSTN could be extended to problems
in which there is an uncertainty about the duration of tasks.
On this point, existing work on STN with uncertainties
(STNU (Vidal and Fargier 1999)) should be considered.
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