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Abstract
The evolution in precision manufacturing has resulted in the
requirement to produce and maintain more accurate machine
tools. This new requirement coupled with desire to reduce
machine tool downtime places emphasis on the calibration
procedure during which the machine’s capabilities are as-
sessed. Machine tool downtime is significant for manufactur-
ers because the machine will be unavailable for manufactur-
ing use, therefore wasting the manufacturer’s time and poten-
tially increasing lead-times for clients. In addition to machine
tool downtime, the uncertainty of measurement, due to the
schedule of the calibration plan, has significant implications
on tolerance conformance, resulting in an increased possibil-
ity of false acceptance and rejection of machined parts.
The work presented in this paper is focussed on expanding a
developed temporal optimisation model to reduce the uncer-
tainty of measurement. Encoding the knowledge in regular
PDDL requires the discretization of non-linear, continuous
temperature change and implementing the square root func-
tion. The implementation shows that not only can domain-
independent automated planning reduce machine downtime
by 10.6% and the uncertainty of measurement by 59%, it is
also possible to optimise both metrics reaching a compromise
that is on average 9% worse that the best-known solution for
each individual metric.

Introduction
Machine tools are mechanically powered devices used dur-
ing subtractive manufacturing to cut material. The design
and configuration of a machine tool is chosen for a particu-
lar role and is different depending on the volume and com-
plexity range of work-pieces. A common factor through-
out all configurations of machine tools is that they provide
the mechanism to support and manoeuvre their axes around
the work-piece. The physical manner by which the machine
moves is determined by the machine’s kinematic chain. The
kinematic chain will typically constitute a combination of
linear and rotary axes. For example, Figure 1 illustrates a
three-axis machine tool consisting of three linear axes.

In a perfect world, a machine tool would be able to move
to predictable points in three-dimensional space, resulting in
a machined artefact that is geometrically identical to the de-
signed part. However, due to tolerances in the production of
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Figure 1: Example three-axis machine tool

machine tools, this is very difficult to achieve. For exam-
ple, Figure 2 shows the pseudo-static errors (those resulting
from the movement of the machine tool’s axes) of an axis of
linear motion.

Machine tool calibration is the process of assessing a ma-
chine tool’s manufacturing capabilities that includes error
classification, measurement and analysis (Schwenke et al.
2008). Performing a machine tool calibration contributes to
the machine’s accuracy by providing detailed analysis of the
machine’s geometric capabilities which can subsequently be
used to determine corrective action, and provide confidence
that a given asset is capable of machining a part within a
predefined tolerance. At present, there is no standard way
to plan a machine tool calibration and plans can be created
ad hoc or in the order they were done previously. Plan-
ning is required because there are multiple different ways
of measuring the same error, and the most suitable selection
is not known in advance. This is problematic because ma-
chine tool manufacturers and users require that machine tool
downtime is minimised due to the associated financial im-
plications (Shagluf, Longstaff, & Fletcher 2013). However,
currently there is little consideration taken by those planning
machine tool calibrations to reduce machine tool downtime.

In addition to costs associated with downtime, it is also
important for companies to produce and maintain more ac-
curate machine tools. Each measurement taken during cali-
bration has an associated uncertainty of measurement. The
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Figure 2: Linear motion errors

uncertainty of measurement can be regarded as the doubt
that exists about the result of any measurement and confi-
dence in this assessment (Bell 2001; Birch 2003).

For example, measuring length using a ruler might result
in an uncertainty of ±1 mm. Therefore, it can be stated that
when the result of a measurement is 20 mm, it is actually
20 mm ±1 mm with a confidence level of 95%. Quantify-
ing and reducing measurement uncertainty is an important
task in that it is required to be reported on the calibration
certificate.

In this work, we describe a multi-objective planning
model in which both the makespan and measurement un-
certainty are taken into consideration. We consider both
the uncertainty due to individual measurements and also the
uncertainty due to interacting measurements. This requires
reasoning about the environmental temperature in which the
machine operates. Further, we show that there is a com-
promise between optimising measurement uncertainty and
optimising the makespan of the plan; plans that minimise
makespan do not necessarily have low measurement uncer-
tainty, and vice versa. We provide evidence that good quality
solutions can be found in which both metrics are around ten
percent lower in quality than the best found solutions for the
individual metrics.

The next section in this paper describes previous work
into machine tool downtime reduction, providing sufficient
detail for the reader to understand the extensions made in the
multi-objective model. Following this, a detailed description
of the extension of the temporal domain to model the nec-
essary factors to reduce the uncertainty of measurement due
to the order of the plan is provided. Equations for estimat-
ing the uncertainty of measurement when using a laser in-
terferometer are provided as an example. Next, experimen-
tal analysis is provided showing how the model performs
when optimising for time and uncertainty of measurement
separately and then in unison. Following this, excerpts from
industrial plans are shown to illustrate the ability to reduce
machine tool downtime and the uncertainty of measurement
separately and then together. The paper then concludes by
highlighting the success of the implementation and laying
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Figure 3: Conformance and non-conformance zones for
two-sided tolerance. A valid measurement must lie between
the lower and upper tolerance limits. However, due to mea-
surement uncertainty, measurements close to the tolerance
limits on either side cannot be guaranteed to be correctly
classified.

out scope for future work.

Importance of Reducing Measurement
Uncertainty

The uncertainty of measurement is dependent on many fac-
tors such as the measurement instrumentation, method of
measurement, and the propagation of interrelated geomet-
ric errors. One of the main factors to influence a measure-
ment’s uncertainty is the change in environmental tempera-
ture. In addition, the uncertainty of measurement can prop-
agate through to interrelated measurements, thus the order
that the measurements are measured in can significantly af-
fect the combined uncertainty of measurement.

The requirement to reduce the estimated uncertainty of
measurement is because of its effect on tolerance confor-
mance (i.e. our ability to say with certainty that a measure-
ment lies within a particular interval). Figure 3 illustrates
the conformance (green) and non-conformance (red) zones
based on the uncertainty value and the lower and upper tol-
erance limit (Forbes 2006; BIPM 2008). The remainder is
uncertain: the curves in Figure 3 show the likelihood that a
given measurement is incorrect.

The term false acceptance refers to when a machined part
incorrectly passes quality control checks. The term false re-
jection refers to when an adequately machined part is incor-
rectly rejected because of an incorrect assessment. Figure 3
illustrates the effect that the uncertainty of measurement
has on false acceptance and rejection. False acceptance oc-
curs when the measurement value is out-of-tolerance but the
uncertainty of measurement brings it into tolerance. Con-
versely, false rejection occurs when the measured value is in
tolerance but the uncertainty of the measurement makes it
out-of-tolerance. Therefore, only measurement values that
fall within the conformance zone are certain, within the
given confidence level, to be within the tolerance. Minimis-
ing the uncertainty of measurement can increase the size of
the conformance zone, thus reducing false acceptance and
rejection.

For example, using the example of a ruler, if a length was
required to be 20mm ±2 mm, it would only conform if the
real length was between 18.1 mm and 21.9 mm. This is
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because the ruler has a 0.1 mm uncertainty. Likewise, if the
uncertainty were± 0.5 mm, the reading will only conform if
it is between 18.5 mm and 21.5 mm. Therefore, a tolerance
of ± 2 mm is reduced to conformance of ± 1.5 mm.

Although the uncertainty of measurement must be
recorded on calibration certificates, there is an absence of lit-
erature suggesting that the uncertainty of measurement due
to the whole calibration plan (sequence of measurements) is
being considered, either by manual or automated techniques.

One reason for this is that the complexities involved with
scheduling each measurement to minimize their effect on
the cumulative uncertainty of measurement is a difficult task
that requires detailed knowledge of the machine and the
measuring instrumentation. Another reason is that creating a
calibration plan that reduces measurement uncertainty may
increase the time required for calibration, thus costing the
machine tool owner time and money in the short term.

Temporal Optimisation Model
In previous work, a PDDL2.2 domain model was produced
modelling the process of machine tool calibration planning
and allowing for the construction of temporally optimal cal-
ibration plans (Parkinson et al. 2012b). The PDDL2.2 tem-
poral optimisation model consists of the following durative
actions:

Set-up: Setting up of an instrument to measure a specific
error component on a specific axis.

Measure: The measurement procedure is where the error is
examined.

Remove: Removing the instrument from the current set-up.

Adjust Error: Adjusting the instrument to measure a dif-
ferent error.

Adjust Position: Sometimes the instrument cannot mea-
sure the entire axis at once, so it is necessary to break
the measurement up into small measurements.

The model’s ability to produce machine tool calibration
plans that are temporally optimised has been empirically
validated by performing industrial case-studies (Parkinson
et al. 2012a). In these case-studies, the LPG-td (Gerevini,
Saetti, & Serina 2008) planner was used because of its com-
petitive performance (Long & Fox 2003) and its support for
PDDL2.2, ADL, and Timed Initial Literals (Gerevini, Saetti,
& Serina 2006). When compared to the current state-of-the-
art in machine tool calibration planning, the PDDL model
could produce calibration plans that on average result in a
10.6% reduction in machine tool downtime. Based on indus-
trial experience, this equates to a £134 for a single machine
tool, and a £2680 for a machine shop with twenty machine
tools.

Uncertainty Estimation
ISO 230 part 1 (ISO230 2012) defines linear deviation as
“...the straightness of the trajectory of the functional point
or the representative point of a moving component.” In
this work, the measurement of linear deviation (positioning)
using a laser interferometer is considered. The following

section provides the equations for estimating uncertainty of
measurement as found in (ISO 230-9 2005).

Firstly, the device’s calibration certificate is used to cal-
culate its uncertainty (uD) using Equation 1 where the cal-
ibration uncertainty (UCALIBRATION ) has been provided
in micrometers per metre (µm/m). If the calibration uncer-
tainty is provided in micrometers (µm) the length L should
be removed.

uD =
UCALIBRATION × L

k
(1)

Measuring positioning error using laser interferometry re-
quires the alignment of the laser beam parallel to the axis un-
der test. A misalignment between the laser and axis can be
observed and can be reduced by manual adjustment of the
laser. Misalignment of the laser has a second order effect
on the measurement and the difference in length (∆LM ) as
a result of the misalignment can be calculated using Equa-
tion 2. However, the misalignment for many devices, such as
laser interferometers, have a misalignment within ± 1 mm.
Therefore, in this paper we define ∆LM to 1.

∆LM = L× (1− cos γ)× 1000 (2)

The influence of the misalignment can be significant on
short travel axes. From the difference in length, the uncer-
tainty contribution (uM ) can then be calculated using Equa-
tion 3.

uM =
∆LM

2
√

3
(3)

As stated in ISO 230 part 2 (ISO 230-2 2006) in Sec-
tion 3.1, the “measuring instrument and the measured ob-
ject are soaked in an environment at a temperature of 20◦C”
before any measurement takes place. Therefore, any devia-
tion from this temperature should result in compensation of
the machine tool. This compensation introduces the uncer-
tainty of the temperature measurement, and the uncertainty
of the coefficient of thermal expansion of the machine tool.
Equation 4 provides the method for calculating the uncer-
tainty due to the temperature change of the machine tool
(uM,M ). Equation 5 describes how to calculate the uncer-
tainty due to the coefficient of thermal expansion of the ma-
chine tool (uE,M ). Where α is the coefficient of thermal
expansion of the machine tool in µm, R(θ) is the possible
range due to uncertainty of the temperature difference of
the machine tool and the measuring device in ◦C, R(α) is
the error range of expansion coefficient of machine tool in
µm/(m◦C), and T∆ is the difference to 20◦C in degrees Cel-
sius, T∆ = T − 20◦C.

uM,M = α× L×R(θ) (4)

uE,M = T∆× L×R(α) (5)

Similarly to the machine tool, the measurement device un-
certainty (uM,D) will also need to be compensated due to
the temperature, as well as the uncertainty due to the coef-
ficient of thermal expansion (uE,D). Equation 6 describes
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how to calculate the device uncertainty due to the temper-
ature measurement, and Equation 7 shows how to calculate
the uncertainty due to the coefficient of thermal expansion
of the device. In some cases, such as when using a laser in-
terferometer, the device will automatically compensate for
temperature change of the device and machine tool using en-
vironmental monitoring. In this particular example it is not
necessary to calculate uM,D and uE,D as they are automat-
ically compensated for by the device. However, it is worth
noting that the compensation will have uncertainty, and con-
sideration should be taken to include this uncertainty, no
matter how small.

uM,D = α× L×R(θ) (6)

uE,D = T∆× L×R(α) (7)
During measurement, the temperature of the environment

might change resulting in the possibility of instrument and
machine tool drift that influences the measurement result.
An experiment can be performed to monitor drift by leav-
ing the instrument active for a period of time equal to the
length of time for the test to identify any change in the value
relative to temperature. From this, Equation 8 can be used
to determine the uncertainty due to environmental variation
uEV E . A downside of this approach is that it doubles the
length of time to perform the measurement.

uEV E =
EV E

2
√

3
(8)

Equation 9 shows the calculation necessary to com-
pute the estimated uncertainty for one measurement (BIPM
2008). However, many measurements will be made when
calibrating a machine tool, making the combined uncertainty
u the sum of all uc.

uc =√
u2

D
+ u2

M
+ u2

M,M
+ u2

M,D
+ u2

E,M
+ u2

E,D
+ u2

EV E

(9)

When considering interrelated measurements, individual
errors can significantly increase the error of interrelated
measurements. For example, the squareness error of two
perpendicular axes is calculated using the straightness of the
two axes, Therefore, any increase in their measurement er-
ror would also increase the measurement error in the square-
ness.

When interrelated errors, uERRi
, are to be included,

Equation 9 is expanded to include them. Where uERRi
is

the maximum permissible interrelated error value or is to be
calculated once their uncertainties are known. The model
presented in this paper considers instances where two in-
terrelated errors uERR1 and uERR2 are included in a mea-
surement’s uncertainty estimation. However, this can easily
be expanded to include the propagation of uncertainty from
many different sources.

The expanded uncertainty U can then be calculated by
using Equation 10 where the combined standard uncertainty
is multiplied by the coverage factor k.

U = k × uc (10)

Uncertainty of Measurement Optimisation
Model

For this investigation, conditions that affect the uncertainty
irrespective of the plan are ignored. This means that it is
only necessary to model aspects that cause the estimated un-
certainty of measurement to change, thus simplifying the nu-
merical aspects of the domain model.

Factors That Affect The Uncertainty of
Measurement
There are many potential contributors that affect the uncer-
tainty of measurement. However, when automatically con-
structing a calibration plan, the aim is to select the most suit-
able instrumentation and measurement technique that has
the lowest estimated uncertainty. In addition, the estimated
uncertainty should take into consideration the changing en-
vironmental data, and where possible, schedule the measure-
ments to take place where the effect of temperature on the
estimated uncertainty is at its lowest.

The following list provides the factors that affect the esti-
mated uncertainty of the calibration plan, and suggests how
they can be optimised

• Measurement instrumentation with the lowest estimated
uncertainty of measurement (uD). Where possible, in-
telligently selecting instrumentation with the lowest un-
certainty will reduce the overall estimated uncertainty of
measurement.

• The change in environmental temperature throughout the
duration of a measurement can significantly increase the
uncertainty of measurement. When possible, the mea-
surement should be scheduled to take place where the
temperature is stable (uEV E).

• When considering interrelated measurements, the change
in environmental temperature between their measurement
can significantly increase the uncertainty. For example,
the squareness error of two perpendicular axes is calcu-
lated using the straightness of the two axes, Therefore,
any temperature change throughout and between their
measurement would increase the squareness’ estimated
uncertainty of measurement. During planning, it is im-
portant to schedule interrelated measurements where the
change in environmental temperature is minimum.

Domain Modelling
The previously developed temporal model (Parkinson et al.
2012b) is extended to encode the knowledge of uncertainty
of measurement reduction. Figure 4 shows the functional
flow between the PDDL actions within the new model. In
the figure, durative actions are represented using a circle
with a solid line. Figure 4 shows that the measurement ac-
tion has been split up into two different actions. In addition
there is an adjust action which may need to be executed if
the instrumentation is not effective for the travel length of
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Figure 4: Illustration showing the PDDL actions and their
functional flow.

the axis. It is necessary to have two versions of the mea-
surement action because not all measurements have other
errors propagating down the kinematic chain and effecting
their uncertainty. The following list details the extension of
the measurement action into two actions along with and ad-
justment action:
Measureno : The measurement action represents a mea-

surement where no consideration is required to be taken
for any influencing errors.

Measurein : Conversely, this measurement action repre-
sents a measurement where consideration is required to
be taken because of influencing errors.

Adjust : Some axes are longer than the range of the mea-
suring device. In this case, the measuring device needs to
readjusted several times in order to measure the full range
of the axis.
The developed model is encoded in PDDL 2.1. This

is because we use numbers, time, and durative actions
(Fox & Long 2003). We use regular numeric fluents to
model constants and variables relating to the uncertainty
of measurements. For example, a device’s uncertainty
(UDEV ICE LASER) can be represented in PDDL as
(=(device-u ?i - instrument)0.001) where
the instrument object ?i has the value of 0.001 µm.

In the temporal model, the cost of each action is the time
taken to perform that specific task. Using this model will
produce a calibration plan, indicating the ordering of the
measurements and the time taken to perform each test. In
order to encode Equations 5 and 7, we need the access to the
change in environmental temperature (T∆ in the equations)
that occurs between the the start and end of a measurement.
Assuming we have access to the temperature as a fluent (this
will be discussed later), we can sample the value at the start
and end of the measurement with the at start and at
end syntax of PDDL. Thus, we record a temporary value
(start-temp) at the start of the action, and then calculate
T∆ at the end of the action by subtracting the start temper-
ature from the current temperature.
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Figure 5: Graph showing both the original and discretized
temperature profile. The used discretization value is 0.01

As stated previously, in order for this modelling choice to
work, we need to be able to query the temperature as a fluent
at any given time. The method used in order to achieve this
is described in the following section.

Temperature Profile In PDDL2.1 it is not possible sim-
ply to represent predictable continuous, non-linear numeric
change. More specifically, it is not possible to represent the
continuous temperature change throughout the calibration
process. This presents the challenge of how to optimise the
sequence of measurements while considering temperature.
The solution implemented in the model involves discretiz-
ing the continuous temperature change into sub-profiles of
linear continuous change.

This environmental temperature profile contains the sys-
tematic heating and cooling profile for the environment of
a machine tool. This information can be obtained from
the machine tool owner. It is not possible to predict the
non-systematic environmental temperature deviation and the
magnitude of the systematic element could fluctuate slightly.
However, using this systematic profile will allow us to pre-
dict how the temperature will change throughout the day, in
particular where it is going to be at its lowest. Scheduling
against this profile gives the best available chance of produc-
ing realistic and accurate results. During the actual calibra-
tion, deviations from the systematic profile are recorded and
taken into account on the calibration certificate.

We split the continuous temperature profile into a discrete
set of linear sections by iterating over the temperature data
looking for a difference in temperature greater than a given
sensitivity. This allows the temperature profile to be dis-
cretized into a set of linear sub-profiles. An example can be
seen in Figure 5 where the environmental temperature pro-
file (difference from 20◦C ) for a forty-eight hour period is
shown (Monday and Tuesday). The chosen sensitivity, s, is
based on the minimum temperature sensitivity of the avail-
able instrumentation. In this example, it is 0.1◦C. The graph
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(:durative-action temp-profile1
:duration(= ?duration 42.0)
:condition

(and(over all(not(start0)))
(over all (start1))))

:effect
(and
(increase (temp)(*#t 0.00595))
(at end (not(start1)))
(at end (start2))
(at start (clip-started))))

)

Figure 6: Durative actions that represents the temperature
sub-profile p1 where the duration is t1 = 42 .

shows the temperature profile across 48 hours; the second
24 hour period displays a higher temperature profile than
the first. The reason is due to the cooling effect of the week-
end where no production is taking place still being evident
throughout the Monday period.

To model these sub-profiles in the PDDL model, they are
represented as predetermined exogenous effects. In order
to encode these in PDDL2.1, we use the standard technique
of clipping durative actions together (Fox, Long, & Halsey
2004). We use the #t syntax to model the continuous linear
change through the subprofile. Because the (temp) flu-
ent is never used as a precondition, the measure actions can
make use of the continuously changing value, without vio-
lating the no moving targets (Long & Fox 2003) rule. Given
the predefined times t1,...,tn when the sub-profile p1,....pn
will change, a collection of durative actions, d1,...dn are cre-
ated that will occur for the durations t1,t2− t1,...,tn− tn−1.
An example durative action d1 that represents a sub-profile
p1 can be seen in Figure 6 where the duration t1 = 42.

Figure 7 illustrates how the greatest deviation from 20◦C
(∆T ) throughout the measurement action is encoded. In
this action, the temperature at the start of the measurement
action , t1, and at the end of the action, t2 are stored in
start-temp and temp respectively. Therefore, in the
measurement action it is possible to calculate the maximum
temperature deviation, T∆, based on two temperatures, t1
and t2.

Uncertainty Equations Implementing equations where
the result is influenced by other measurements is also en-
coded in the PDDL using fluents. For example, Fig-
ure 8 shows the calculation for the squareness error mea-
surement using a granite square and a dial test indicator
where the uncertainty is influenced by the two straightness
errors. In the model, this is encoded by assigning two
fluents (error-val ?ax ?e1)) and (error-val
?ax ?e2)), the maximum permissible straightness error
in the PDDL initial state description. This fluent will then
be updated once the measurement estimation has been per-
formed. The planner will then schedule the measurements

Time

Temperature

Temp profile

(at start)
t1

Measure

(at end)
t2

start temperature

end temperature

T∆ = |t2 − t1|

Figure 7: Illustrating showing how the current environmen-
tal temperature deviation is calculated in the measure action.

to reduce the affect that the contributing uncertainty has.
Therefore, this shows how the uncertainty can be reduced
due to the ordering of the plan.

When measuring an error component that does not have
interrelated errors, the measure-no-influence action
will be used which is the same as the measure-influence ac-
tion except that it does not have the part of the equations that
use the error-val.

Figure 8 shows the partial PDDL encoding for the esti-
mation calculations used when performing a non-orthogonal
measurement using a mechanical square and a dial test indi-
cator. From this PDDL encoding, it is noticeable that when
performing the equation to estimate uE,MACHINE TOOL

(u t-e-c), the temperature deviation from 20 ◦C (T∆)
supplied to the equation is the maximum deviation calcu-
lated in the PDDL action ((-(temp)(start-temp))).

Square Root Implementation
It is important for the planner to supply an uncertainty value
in the correct units (µm) as the output from the planner will
feed into a larger decision support tool and calibration engi-
neers expect to see uncertainty reported in this way. There-
fore, it was important to implement the uncertainty equa-
tions fully, including the square root function. To enable
this, we modified a version of the LPG-td (Gerevini, Saetti,
& Serina 2008) planner so that it parses, and plans using
the sqrt function. Its use in modelling the measurement
actions can be seen in 8. Although this limits the range of
planners that can solve problems in our domain, a simplified
domain (where the sqrt function is simply omitted) can also
be used on all of the problem files.

Experimental Analysis
The experiments were performed on a AMD Phenom II 3.50
GHZ processor with 4 GB of RAM. A modified version
of LPG-td (Gerevini, Saetti, & Serina 2008) (to allow for
longer formulae, and the square root function) was used in
the experiments. The results show the most efficient plan
was produced within a 10 minute CPU time limit. All
the produced plans are then validated using VAL (Howey,
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(at start (assign (start-temp)(temp)))
(at start (assign(temp-u)

;calculate u device using the length to measure. (Equation 1)
(+(*(/(*(u calib ?in)(length-to-measure ?ax ?er))(k value ?in))

(/(*(u calib ?in)(length-to-measure ?ax ?er))(k value ?in)))
(+(*(/(*(u calib ?in)(length-to-measure ?ax ?er))(k value ?in))

(/(*(u calib ?in)(length-to-measure ?ax ?er))(k value ?in)))
;calculate u misalignment. (Equation 3)

(+(*(/(+(u misalignment ?in)(u misalignment ?in))(2sqr3))
(/(+(u misalignment ?in)(u misalignment ?in))(2sqr3)))

;calculate u error interrelated contributors.
(+(*(/(+(error-val ?ax ?e1)(error-val ?ax ?e2))(2sqr3))

(/(+(error-val ?ax ?e1)(error-val ?ax ?e2))(2sqr3)))
;calculate u m machine tool. (Equation 4)

(+(*(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d)))
(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d))))

;calculate u m device. (Equation 6)
(+(*(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d)))

(*(u t-m-d)(*(length-to-measure ?ax ?er)(u m-d))))
;calculate u eve. (Equation 8)

(*(/(u eve)(2sqr3))(/(u eve)(2sqr3))))))))
)

)
(at end

(increase(u c) (sqrt
(+(temp-u)

(*(*(u t-e-c)(*(length-to-measure ?ax ?er)(-(temp)(start-temp))))
(*(u t-e-c)(*(length-to-measure ?ax ?er)(-(temp)(start-temp)))))))))

Figure 8: Partial PDDL code showing part of the measure-influence action.

Long, & Fox 2004). These experiments were carried out
without the ability to schedule measurements concurrently.
The experimental evidence suggests that a temporally opti-
mised plan is not necessarily a plan which has a small uncer-
tainty of measurement. The reverse is also true: plans with
a small uncertainty of measurement are not necessary ones
with short makespans.

To examine this relationship between optimisation of tem-
poral and the uncertainty of measurement, twelve differ-
ent problem instances are used and optimised for following
three different metrics:

1. U - (:metric minimize (u-m))

2. T - (:metric minimize (total-time))

3. (U+T )
2 - (:metric minimize (/(+(u c)

(totaltime))2))

Table 1 shows the empirical data from performing these
experiments. From these results, it is evident that when op-
timising for time, no consideration is taken to the uncertainty
due to the plan order. Similarly, it is evident that when op-
timising for the uncertainty due to the plan order, no con-
sideration to temporal implications is taken. However, when
optimising the plan to both the uncertainty due to the order
of the plan and to reduce the overall timespan, it is evident
that the planner can establish a good compromise.

Plan Excerpt
The plan excerpt shown in Figure 9 shows the plan order
when optimising both machine tool downtime and the uncer-
tainty of measurement due to the plan order for problem in-
stance 3A1A. Firstly, it is evident that temporal optimisation
has been achieved by scheduling measurements that use the
same instrumentation sequentially so that the instrumenta-
tion only needs to be adjusted, not removed and set-up once
again. Secondly, it can be seen that the uncertainty of mea-

Optimise T Optimise U Optimise T & U

Instance T U(µm) T U(µm) T U(µm)

3A1A 33:12 200 34:12 18 33:38 27
3A1B 29:42 150 28:03 138 30:12 138
3A1C 29:21 199 31:45 193 29:21 193
3A2A 31:14 93 33:00 27 31:19 33
3A2B 28:27 90 30:34 82 28:57 82
3A2C 26:04 152 27:05 93 26:05 116

5A1A 52:05 99 56:56 52 55:11 53
5A1B 52:28 76 55:11 55 52:55 72
5A1C 50:18 66 51:29 59 50:54 70
5A2A 47:46 142 50:58 92 50:28 115
5A2B 45:17 135 47:46 94 46:05 112
5A2C 47:46 211 49:11 142 48:27 168

Table 1: Temporal & Uncertainty optimisation result
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Instrumentation set-up
Instrumentation adjustment
Measurement
Set-up removal
Temperature profile

EYX: Straightness in the Y-Axis direction
EZX: Straightness in the Z-Axis direction
EZY: Straightness in the Z-Axis direction
EXY: Straightness in the X-Axis direction
EXZ: Straightness in the X-Axis direction
EYZ: Straightness in the Y-Axis direction
EC0Y: Non-orthogonality between the Y- and X-axis
EC0Z: Non-orthogonality between the Z- and Y-axis
EC0Y: Non-orthogonality between the X- and Z-axis
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Figure 9: Uncertainty and Temporal Optimisation.

surement due to the plan order has been reduced by schedul-
ing interrelated measurements together as well as scheduling
them where the temperature difference is at its lowest.

From examining the temperature profile seen in Figure 5,
it is evident that there are areas where the temperature dif-
ference is lower. However, when solving multi-optimisation
planning problems, a trade-off between both metrics is go-
ing to take place. In Table 1, this trade-off can be seen where
the calibration plan duration is 33 hours 38 minutes and the
uncertainty of measurement metric is 37.33 µm. It is ev-
ident that both metrics are not as low as when optimising
for them individually, but it is clear that the plan is a good
compromise showing significant reduction in both machine
tool downtime and the uncertainty of measurement due to
the plan order. In comparison between optimum plans, the
metrics in the multi-objective plans on average 1.68% worse
for time and 17% worse for the uncertainty of measurement
than when they are optimised individually. However, the
multi-object search plans are on average have a 2.69% re-
duction in the time metric when compared to the downtime
of the uncertainty optimised plan and a 18.5% improvement
in estimated uncertainty of measurement metric when com-
pared to the uncertainty of the temporally optimised plan.

Future Work
This paper presents machine tool calibration as example of
where the reduction in the uncertainty of measurement has
significant implications. However, the presented work pro-
vides a significant contribution to the metrology community,
showing how the use of automated planning can optimise

calibration plans to reduce the uncertainty of measurement.
Currently, the uncertainty of measurement is estimated for
individual measurements in metrology, and even though the
effects of interrelated errors are known, the associated com-
plexity means that little consideration is taken to producing
an optimal sequence of measurements that can reduce the
uncertainty of measurement. The work presented in this pa-
per increases the state-of-the-art in calibration planning and
uncertainty estimation, and will be deployed to calibration
engineers in the field in a decision support tool.

Conclusions
Creating a calibration plan by hand, that minimises machine
tool downtime and measurement uncertainty, is a difficult
and time-consuming activity. Balancing the reduction in un-
certainty with the resulting increase in time required only
makes the task harder. Any software tool that can assist in
this activity can save engineers time in creating and execut-
ing the calibration plan, and can save the client time in re-
duced machine downtime. Now, due to our new model, the
client can also be guaranteed a more accurate result.

This work demonstrates that by extending our previously
created machine tool calibration domain model, not only
can machine tool downtime be reduced, but so can the un-
certainty of measurement. Encoding the relevant domain
knowledge resulted in the discretization of the continuous
temperature profile that is then encoded by stitching durative
actions together. In creating the model we have developed a
robust preprocessor that provides a square root function that
can be used in a generic PDDL domain to specified levels of
relative error.

Experimental data has shown that the model performs
well when optimising for both metrics to reduce the
makespan and the accumulated uncertainty of measurement
numeric fluent. On average, when trying to optimise both
metrics together, there is an increase of downtime and the
uncertainty of measurement of 9%. However, the experi-
mental analysis displays that this is not too detrimental, re-
sulting in the observation that performing a multi-objective
search is feasible. The multi-optimisation metric consid-
ered in this paper considers an equal weighting between time
and uncertainty. However, it can be easily expanded to add
weighting so that the client can weight one metric in favour
the other.
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