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Abstract
We address the problem of minimizing staffing cost in a
contact center subject to service level requirements over
multiple weeks. We handle both the capacity planning
and agent schedule generation aspect of this problem.
Our work incorporates two unique business require-
ments. First, we develop techniques that can provide
near-optimal staffing for 24×7 contact centers over long
term, upto eight weeks, rather than planning myopically
on a week-on-week basis. Second, our approach is us-
able in an online interactive setting in which staffing
managers using our system expect high quality plans
within a short time period. Results on large real world
and synthetic instances show that our Lagrangian re-
laxation based technique can achieve a solution within
94% of optimal on an average, for eight week problems
within ten minutes, whereas a generic integer program-
ming solver can only achieve a solution within 80% of
optimal. Our approach is also deployed in live business
environment and reduces headcount by a decile over
techniques used previously by our client business units.

1 Introduction
Cost effective staffing that meets service level requirements
is crucial for profitability and sustainability of technology
firms (Aksin, Armony, and Mehrotra 2007). Around of 60-
80% of the operating budget of call and contact centers is
spent on staffing cost (Aksin, Armony, and Mehrotra 2007;
Robbins and Harrison 2010). Therefore, optimizing the
staffing cost is of significant interest in such setting. Further-
more, staffing decisions are typically made weeks or months
in advance to allow adequate time for hiring and training
agents. This necessitates long term planning ranging from 4
to 8 weeks. The approach we develop addresses several such
aspects of staffing contact centers in a real world business
environment based on rigorous techniques from mathemati-
cal optimization.

Staffing in call centers has received significant attention
within the OR and management communities. Recent lit-
erature on call center staffing and scheduling has been fo-
cussed on handling high variability in demand. The demand
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is assumed to be a non homogeneous Poisson process and
is usually described as arrival rates over a planning hori-
zon divided into intervals of equal size (typically ranging
from 15 minutes to 1 hour). The methods require either solv-
ing a (mixed integer) LP (Bassamboo, Harrison, and Zeevi
2006) or a mix of LP and simulation. (Harrison and Zeevi
2005) solve the problem via stochastic fluid models which
reduce the staffing problem to a multi-dimensional newsven-
dor problem and can be solved numerically by a combina-
tion of LP and Monte Carlo simulation. Stationary indepen-
dent period by period (SIPP) approach finds the minimum
number of servers needed to meet the service target in each
interval. Schedules are then created to cover the require-
ments of each period. (Harrison and Robbins 2008) describe
a SIPP based approach wherein they add schedules based on
simulation output on top of a good initial heuristic solution.
(Robbins and Harrison 2010) propose a two stage approach
in which a slave problem feeds the master LP with a cutting
plane to attain the optimal staffing levels. (Atlason, Epel-
man, and Henderson 2004) describe a two stage approach
wherein simulation provides cutting planes for a master LP
to solve the problem iteratively. (Ed et al. 2002) discuss a
director system that integrates forecasting and planning in a
single tool.

Contact centers are a generalization of call centers where
a customer can send an off-line query that has to be an-
swered within some time frame. Examples of contact centers
are text and email support centers, insurance claims depart-
ments etc. The turn around time (TAT) for contact centers
typically ranges from few hours to days. Hence the standard
call center models which assume that contacts are answered
in the interval of arrival are inappropriate for a contact cen-
ter scenario. Since the peak demand can be spread over TAT,
staffing requirement for a non-voice contact center (NVCC)
are significantly lower than those for a call center with same
incoming contact volume. Such demand spreading makes
the solution space for NVCC staffing problem bigger, thus
making it a difficult problem to solve.

In our work, we develop techniques for long term staffing,
including capacity planning and agent scheduling, for effec-
tive contact center management. Our approach is motivated
by real business constraints arising out of our engagement
with clients within a large IT company with more than 20K
employees. Our approach provides provably near-optimal
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staffing for 24×7 contact centers over long plan horizon,
upto 8-weeks. This is in contrast to approaches which plan
myopically on a week-on-week basis ignoring inter-week
dependencies, which can lead to violation of service level in
24×7 contact centers. Another unique business requirement
is that staffing managers expect to use our tool in an interac-
tive fashion. The business justification is that managers may
need to tweak parameters and be able to run the planner with
new parameters before deciding upon the best staffing plan.
Therefore, a planner that does not provide a good solution
within a few minutes is not acceptable. Our approach, based
on Lagrangian relaxation, incorporates well both these re-
quirements. It is iterative in nature providing a solution or a
staffing plan approximately every minute even for large 8-
week problems. The runtime and space complexity increase
linearly with the number of weeks to plan for, resulting in a
scalable approach. Furthermore, we also get a quality bound
showing how far is the current solution from the optimal.

We test our approach on large real-world datasets pro-
vided by our clients as well as challenging synthetic in-
stances. Using bounds generated by our approach, we show
that our approach can achieve a solution within 94% of op-
timal on an average for 8-week problems within 600 sec-
onds, whereas CPLEX can only achieve a solution within
80% of optimal within the same time limit. A variant of our
approach is also deployed in the live business environment.
Business validation shows that it reduces the headcount by
5-10% over custom techniques used previously by our client
business units.

2 Contact Center Staffing (CSM) Problem
In this section, we describe the contact center staffing man-
agement (CSM) problem. We assume that the contact cen-
ters operate 24×7. The problem inputs are the following:
• Granularity: Each day is discretized into multiple time

intervals of a fixed duration, say 30 minutes, also called
the problem granularityG. For a scenario with 30 minute
granularity, a day contains 48 consecutive time intervals
indexed from 1 to 48.
• Horizon: Each week consists of 7 days. Horizon refers

to the number of weeks the planning is done for. An
8-week problem will have 8 × 7 × 48 = 2688 time
intervals. Each time interval is uniquely indexed as
〈Week#, Day#, Interval#〉.

• Contacts: For every time interval, we are given the ex-
pected number of incoming call volumes or contacts.
This is estimated based on historical call volume and is
provided by the client.

• TAT: Turn-around-time or TAT refers to the business re-
quirement that a contact should be answered within a
pre-specified amount of time. The TAT is fixed for a sin-
gle instance.

• Shift Length (sl ): It refers to the amount of time an
agent can work during the day. We can also specify lower
and upper bound on the shift length.

• Workdays (wd ): It refers to the number of days an
agent can work in a week, usually 5.

• AHT: Average handling time (AHT) refers to the aver-
age time required (in minutes) to handle a contact in each
of the time interval. Note that handling time for a contact
depends on the interval in which it gets serviced and not
on the interval of arrival. The AHT can be different for
different time intervals.

Given the above inputs, the objective is to find the minimum
number of agents and their schedules such that every con-
tact arriving within problem horizon can be answered within
TAT time intervals. For simplicity, in this paper we assume
that an agents works 9.5 hours shift for 5 work days.

Scheduling Constraints: Agent schedules are further sub-
ject to following business constraints:
Constraint 1. Each agent is required to work consec-
utive wd number of days in a week assuming weekday
wraparound (explained later).

Assuming that the week starts from Monday, week-
day wraparound means that the day after Sunday is
Monday of the same week. An example shift can be
〈Sat, Sun, Mon, Tue, Wed〉 with Thursday and Friday off of
the same week.
Constraint 2. Each day the agent logins, it works for con-
secutive sl time intervals.

The concept of day is somewhat vague in 24 × 7 con-
tact centers as agents can start their shifts at 11 P.M. in the
night. For consistency, we consider the 24-hour interval be-
ginning from the agent login time relevant for computing
agent’s shift.
Constraint 3. An agent logins at the same time every day it
is working.

These constraints are necessary to maintain consistency in
agents’ weekly schedules. The schedules can change from
one week to another. The above three constraints represent
some of the basic business requirement. Our approach can
handle their extensions as well, such as allowing agents to
take any day off, login at different times of the day, allow
rest times during the shift and take into account productivity
factors. For ease of exposition, we have not described these
additional constraints.

3 Mathematical Program for CSM
In this section, develop the outline of the mixed-integer
(MIP) program for the CSM problem. The key to develop a
small (w.r.t. to integer variables) MIP formulation is to effi-
ciently handle the scheduling constraints that apply to every
agent’s shift. An easy way will be to create variables cor-
responding to a sufficiently large number of agents, assign
binary variables to each agent and enforce constraints over
these variables. However, this formulation will not be com-
pact as we are assigning a unique identity to every agent in
a large pool resulting in an increase in the MIP size. This
fortunately is not required by realizing that every agent is
identical. Therefore, we next develop novel strategies that al-
low us to enforce scheduling constraints compactly for each
agent without requiring us to create separate sets of variables
for each of them. We start with some definitions.
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Figure 1: Circular ordering among weekdays in a week.

Definition 1. The set TIw denotes a sorted set of all time
intervals for the week w:
TIw =

{
〈w, d, i〉 | d ∈ {1, . . . , 7}, i ∈ {1, . . . , NI}

}
where NI is the number of intervals in a day. For a time

granularity of 30 minutes NI = 48. We denote the week,
day and interval of t ∈ TIw by t.w, t.d and t.i respectively.
Next we define an order function O.
Definition 2. Given a sequence S, O(e, S) returns the po-
sition of an element e in S, with positions ranging from
1 to |S|. For s, s′ ∈ S the notation s ≤ s′ means that
O(s, S) <= O(s′, S).

To define the shift of an agent and address constraint 1,
we introduce the notion of circular ordering among week-
days as shown in Figure 1. We define the successor of a day
d as the day d′ that follows the day d as per Figure 1. For ex-
ample, the successor of ‘Sun’ is ‘Mon’ as per Figure 1. We
denote this relation using the successor function S(d) = d′.
Using the same circular ordering, we define a distance func-
tion D(d, d′) as number of directed edge traversals required
to move from day d to the day d′ as per Figure 1. For ex-
ample, D(Sun,Mon) = 1 whereas D(Mon,Sun) = 6. The
distance function is sensitive to the argument ordering and
always positive. In addition, D(d, d)=0 for any day d.
Definition 3. A 5-day shift of an agent, starting from day d1,
is a sequence 〈d1, d2=S(d1), d3=S(d2), d4=S(d3), d5=
S(d4)〉, where d ∈ {Mon, . . . , Sun} and S(·) denotes the
successor function.

Using the above definition, we see that
〈Sat, Sun, Mon, Tue, Wed〉 is a valid shift, whereas
〈Sat, Mon, Tue, Thu, Fri〉 is not, as the agent does not work
for 5 consecutive days. Using this notion of a shift, we
define the following entities:
• Variables x[t] ∀t ∈ TIw denote the number of agents

whose shift starts at interval t.i on day t.d according to
the shift definition 3. To avoid double counting, we only
count an agent only on the first day of its shift.

• Simple arrival window SAW[t] ∀t ∈ TIw denotes the
set of time tuples of the last 5 days (including the current
one) as per the circular ordering defined in Figure 1 with
the interval number t.i.

SAW[t]={t′ ∈ TIw :D(t′.d, t.d)≤5 & t′.i= t.i} (1)

• Based on SAW[·], we define the arrival window
AW[t] ∀t ∈ TIw that also accounts for additional agents
that are available to work in the interval t due to con-
straint 2:

AW[t] =
⋃

t′∈TIw :0≤O(t,TIw )−O(t′,TIw )≤sl−1

SAW[t′] (2)

Before providing the MIP formulation, we define a few more
parameters:
• C[t] ∀t ∈ TIw denotes the number of contacts arriving

in the interval t. It is provided by the business unit.
• CHW[t] ∀t ∈ TIw denotes the TAT consecutive inter-

vals starting from interval t (inclusive). Intuitively, it rep-
resents the set of available intervals in which the contacts
arriving in interval t can be serviced without violating
the TAT. Note that call handling window definition for
last TAT−1 intervals of a week is ambiguous since the
contacts arriving in those intervals can be processed next
week without violating SLA. To make it unambiguous,
we add TAT−1 intervals at the end of TIw and define
CHW for last TAT−1 intervals appropriately.

• With the constructs defined above, table 1 represents the
CSM problem formulation for a week. The Meet TAT
constraints enforce that all contacts are handled within
TAT. The Can not work more than demand constraints en-
sure that work handled upto time t does not exceed work
arriving upto time t. Can not work more than capacity
constraints imply that minutes of work done in an in-
terval is not more than agents minutes available.
Due to the large TATs in NVCC setting it is acceptable,
and often preferable, that some healthy backlog be main-
tained. Servicing all contacts arriving in a week in that
week itself will require higher headcount than optimal.
This implies contacts from one week flowing over to the
next. Also, in 24×7 contact centers, agents working dur-
ing the last sl−1 intervals of one week may also over-
flow to the next week (figure 2). That is why a solution
framework which solves each week’s problem indepen-
dently assuming that work coming in an interval is fin-
ished in that interval itself does not work for NVCC.
To extend this problem over multiple weeks, first we de-
fine the set TI of all time intervals as

TI={〈w, d, i〉|w∈ {1..N}, d∈ {1..7}, i∈ {1..NI}}

where N is the number of weeks and NI is the number
of intervals in a day. Replacing TIw by TI, the formu-
lation in table 1 represents the full problem for several
weeks. As the number of weeks increase, the multiple
week problem takes exponentially higher amount of time
to solve.

4 Lagrangian Relaxation for CSM-MIP
The global CSM-MIP is very hard to solve optimally due to
large number of integer variables, especially for long plan-
ning horizon such as 8 weeks. Furthermore, we also show
empirically that even solvers such as CPLEX can not get ap-
proximate solutions fast enough to be usable in an interactive
fashion, as required in our business setting. As highlighted
earlier, there are two types of inter-week dependencies, as
shown in Figure 2. First, the contacts that arrive in the last
TAT− 1 intervals of first week can potentially overflow into
the second week by remaining unserviced in the first week.
This is referred to as contact overflow dependency. Second,
according to the shift scheduling constraint 2, agents that
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Variables: W [t], x[t] ∀t ∈ TIw

Input: C[t],AHT[t],AW[t] ∀t ∈ TIw

Minimize:
∑

t∈TIw

x[t]

Subject to:
Meet TAT (3)∑
t′∈CHW[t]

W [t′] +
∑
t′<t

W [t′] ≥
∑
t′≤t

C[t′] ∀t ∈ TIw (4)

Can not work more than demand (5)∑
t′≤t

W [t′] ≤
∑
t′≤t

C[t′] ∀t ∈ TIw (6)

Can not work more than capacity (7)

W [t] · AHT[t] ≤ G ·
∑

t′∈AW[t]

x[t′] ∀t ∈ TIw (8)

W [t] ∈ {0} ∪ <+, x[t] ∈ N0 ∀t ∈ TIw (9)

Table 1: Mixed-Integer program for a single week CSM

are working in the last sl −1 intervals can overflow into
the initial intervals of the second week. This is referred to
as agent overflow dependency. Figure 2 shows an example
with TAT=3 and sl=4.

Our strategy to obtain fast, quality bounded approximate
solutions is to relax the contact and agent overflow depen-
dencies between every two pair of adjacent weeks using the
well known technique of Lagrangian relaxation (Bertsekas
1999). The resulting Lagrangian dual of the global CSM-
MIP has a particularly simple structure as it is composed
of multiple subproblems, one per week of the plan hori-
zon. Thus, a dual subproblem is significantly smaller than
the CSM-MIP and can be solved much faster. As the dual
of the CSM-MIP provides a lower bound on the quality, we
obtain quality bounds using this technique. Furthermore, we
iteratively maximize the dual using its subgradient, that is
essentially obtained for free by solving each dual subprob-
lem. We refer to such a decomposition based approach as
Dual Decomposition based Workforce Analytics and Plan-
ning (DD-WAP).

The DD-WAP approach satisfies a number of business
constraints in our setting. First, it can handle large planning
horizon as the runtime and space complexity increases lin-
early with the number of weeks, as opposed to the expo-
nential increase in the complexity for generic MIP solvers.
Furthermore, we always get quality bounds showing how
far the current solution is from the optimal. Second, DD-
WAP approach is iterative. Therefore, it is highly desirable
in an interactive setting in which staffing managers need to
repeatedly solve the problem and want to get a good solu-
tion quickly. Empirically, for 8-weeks problem, each itera-
tion takes about one minute for real world instances.

4.1 Agent Overflow Dependency
We now describe how to relax the agent overflow depen-
dency constraint. First, notice that only the agents that po-

Week 2Week 1

Figure 2: Inter-week dependency. Each week is divided into a
number of time slots. Top arrows denote contact overflow depen-
dency. Bottom arrows denote agent overflow dependency.

tentially work in the last sl −1 time intervals of a week w
can potentially overflow to initial sl −1 time intervals of
the subsequent week w′. We use the notation that subscripts
w, w′ index the variables corresponding to week w and w′
respectively. We introduce the variables:

zw′ [t] ∀t ∈ TIw′ : 1 ≤ O(t,TIw′ ) ≤ sl−1

Intuitively, the variable zw′ [t] denotes the number of
agents who login in the last day of previous week w and
are available to work in the interval t of week w′. The last
sl −1 intervals of the week w are positioned from index
|TIw | −sl +2 to |TIw | in the sequence TIw . Using the
base b = |TIw | − sl+ 1, we compute z variables as:

zw[t
′] =

|TIw |∑
t:O(t,TIw )=b+O(t′,TIw′ )

( ∑
t′′∈SAW[t]

x[t′′]

)
(10)

We create one z variable for each of the first sl − 1 in-
tervals of the first day of week w′. That is, for the set
∪sl−1i=1 {〈w′, 1, i〉}. The Eq. (10) is best understood using an
example. Let us consider a 2 week problem with half hour
granularity resulting in 48× 7 = 336 time intervals in a sin-
gle week. Also assume shift length sl = 19 intervals (9.5
hours). The last 18 intervals of the first week are indexed
from b+ 1 to 336, where b = 336− 19 + 1 = 318.

Consider the interval indexed 5 on the first day of week
2. The agents which are potentially available in this interval
must have started their shift within the last sl − 1 intervals.
The earliest such interval is the interval indexed b + 5 of
the first week. This is because an agent who logins in the
interval 323 of the first week works for 14 intervals in the
first week and 5 intervals in the second week, resulting in
a shift length of 19. Extending this reasoning further, any
agent which logins after interval 323 of the first week is also
available to work in the interval 5 of the second week due to
shift length being 19.

4.2 Demand Overflow Dependency
We now describe how to relax the demand overflow depen-
dency constraint. First, notice that only contacts that arrive
in the last TAT−1 intervals of week w can overflow to the
initial TAT − 1 time intervals of the subsequent week w′ to
get serviced. We therefore introduce the variables:

IWw′ [t] ∀t ∈ TIw′ : 1 ≤ O(t,TIw′ ) ≤ TAT−1

Intuitively, variable IW[t] denotes the work that must be
done in the interval t of week w′ to handle unserviced con-
tacts that overflow from weekw tow′. We now develop con-
straints that relate variables IW and the work done in weeks
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w and w′. We first introduce the notion of aggregate con-
tacts:

Agw[k] =
∑

t∈TIw :1≤O(t,TIw )≤k

Cw[t] (11)

Let TWw denote the total work done in the week w:

TWw =
∑
t∈TIw

Ww[t] (12)

Consider the last TAT−1 intervals in the set TIw . They
are indexed from b+1 to b+TAT−1, where the base b =
|TIw| − TAT + 1.

Consider the interval b+r for the week w. We now com-
pute the number of contacts that have arrived until the inter-
val b+r, but are not serviced in the week w:

Agw[b+ r]− TWw (13)

Notice that the above quantity can be negative too, which
implies all the contacts that have arrived until the interval
b+r have been handled in week w itself. The contacts which
have arrived in the interval b+r should be handled at most by
the interval r of week w′ to enforce the TAT. Therefore, we
enforce the constraint that the total initial work IWw′ until
the interval r of week w′ must the greater than the unser-
viced contacts that arrived until the internal b+r of previous
week w: ∑

t∈TIw′:1≤O(t,TIw′)≤r

IWw′ [t] ≥ Agw[b+ r]− TWw

∀r = 1 to TAT− 1 (14)

In addition to the above constraint, there are other small
changes that will be described later. To summarize, we have
outlined constraints that enforce agent overflow and demand
overflow, namely constraints (10) and (14) respectively. Im-
portantly, using the additional variables z[·] and IW[·], we
have represented all the dependencies among two adjacent
weeks in a highly separable manner. Next, we describe how
to exploit such separable constraints in a Lagrangian relax-
ation framework.

4.3 Dualizing Dependency Constraints
First notice that for a long planning horizon problem, say
8-weeks, constraints (10) and (14) between every adja-
cent week summarize all the dependencies among different
weeks. Therefore, our aim in this section is to show how to
relax these dependency constraints in a principled manner.
After relaxing these constraints, we get a dual subproblem
for each week, which can be solved independently of each
other leading to high scalability.

We first provide a brief overview of the Lagrangian re-
laxation approach, more details can be found in (Bertsekas
1999, Chapter 6). Consider the optimization problem:

min f(x)

s.t x ∈ X, gj(x) ≤ 0, j = 1, . . . , r

The dual function q(·) and the Lagrangian L(·) of the above
problem after dualizing all the constraints g are given as:

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{
f(x) + µ · g(x)

}
(15)

The dual solution q(µ) is a lower bound for every value
of dual variables µ. The advantage while working with the
dual formulation of the original problem is that the structure
of the dual is often much simpler leading to computational
gains. Furthermore, the dual solution also provides a lower
bound on the original problem. In addition, the dual opti-
mization problem

max
µ:q(µ)>−∞

q(µ) (16)

is always concave and can be solved using the projected sub-
gradient method (Bertsekas 1999). We use the notation that
for a given week w, the week w denotes the week immedi-
ately before and w′ denotes the week immediately after w.
We use additional dummy weeks for the first and the last
week of the planning horizon.

Dualizing Agent Overflow: When we dualize the con-
straint (10) along the lines of (15), we get the following ad-
ditional term (analogous to µ.g(x)) in the objective function
of the weekly MIP for the week w:

Aw(λ, z) =
sl −1∑
r=1

λww(r)z[t : O(t,TIw )=r]−

sl −1∑
r=1

λww′(r)

{ |TIw |∑
t:O(t,TIw )=b+r

( ∑
t′′∈SAW[t]

x[t′′]

)}
(17)

In the above, we use λ as the dual variables for equality con-
straints (10). To make the usage of subscripts clear, consider
the week w=2. The variable λww′ is denoted as λ23. Con-
sider the week w=3. The variable λww is also λ23. There-
fore, using such common dual variables summarize the de-
pendencies among different weeks. Also notice that, all the
variables such as z and SAW in the above equation are lo-
cal to the week w. For exposition purpose, we have avoided
using subscripts.

Dualizing Demand Overflow: Dualizing constraint (14)
leads to the following terms in the objective function of the
weekly MIP for week w:

Dw(µ, IW, TW ) =
TAT−1∑
r=1

µww(r)

{
−

r∑
t:O(t,TIw )=1

IW[t]

}
+

TAT−1∑
r=1

µww′(r)Ag[b+ r]− TW
TAT−1∑
r=1

µww′(r) (18)

where TW is the total work done during week w. Again, all
the variables are local to the week w. Using the quantitiesA
and D, evaluating the dual function q(λ,µ) becomes much
easier and reduces to solving a single MIP for each week w:

q(λ,µ) =

#Weeks∑
w=1

qw(λw,µw) (19)

where qw(·) is the solution of the optimization problem
shown in Table 2. Such a decomposable structure of the
dual function is the key to significant gain in scalability

399



Variables: W [·], x[·], z[·], IW[·], IWT, TW
Input: C[·],AHT[·],AW[·],λ,µ

Minimize:
∑

t∈TIw

x[t] +Aw(λ,z) +Dw(µ, IW, TW )

Subject to:
Meet TAT:∑
t′∈CHW[t]

W [t′] +
∑
t′<t

W [t′] ≥
∑
t′≤t

C[t′] + IWT ∀t ∈ TIw

Meet InitWorkLoad:∑
t′≤t

W [t′] ≥
∑
t′≤t

IW[t′] ∀t : O(t,TIw )=1, . . . ,TAT−1

Cannot Work More Than Demand:∑
t′≤t

W [t′] ≤
∑
t′≤t

C[t′] + IWT ∀t ∈ TIw

Cannot Work More Than Capacity1:

W [t] · AHT[t]≤G ·
{ ∑
t′∈AW[t]

x[t′]+z[t]

}
∀t :O(t,TIw )≤sl−1

Cannot Work More Than Capacity2:

W [t] · AHT[t] ≤ G ·
∑

t′∈AW[t]

x[t′]∀t ∈ TIw : O(t,TIw ) ≥ sl

Total Init Work Load

IWT =

TAT-1∑
t:O(t,TIw )=1

IW[t]

Total Work Done:

TW =
∑
t∈TI

W [t]

W [t] ∈ {0} ∪ <+, x[t] ∈ N0∀t ∈ TIw

z[t] ∈ N0∀t : O(t,TIw ) ≤ sl−1, IW[·] ∈ {0} ∪ <+

Table 2: MIP for solving the dual subproblem for week w

for large planning horizon over the global MIP formulation.
Constraints Meet TAT in Table 2 enforce that TAT is met for
contacts arriving in the current week and for the entire back-
log coming from previous week (IWT). Meet InitWorkLoad
ensure correct computation of workload overflowing from
previous week. Cannot Work More Than Demand imply that
work done upto any time interval can not exceed work arriv-
ing upto that interval. The Cannot Work More Than Capacity1
constraints for first sl −1 intervals state that minutes of
work done is limited by agents coming over from previ-
ous week and agents logging in the current week. Can-
not Work More Than Capacity2 state that after the first sl−1
intervals, minutes of work done in an interval is limited by
agents logging in the current week only. Remaining con-
straints are self explanatory. Note that for the decomposed
dual problem time intervals are defined over a week only,
with TAT−1 extended intervals added at the end of week.

4.4 Subgradient Based Dual Optimization
We now address the problem of optimizing the dual:

max
λ,µ:q(λ,µ)>−∞

q(λ,µ) (20)

We maximize the dual iteratively by using the projected sub
gradient technique (Bertsekas 1999). The variables λ, for
each r = 1, . . . ,sl − 1, are updated after each iteration
as:

λ?w,w+1(r)← λw,w+1(r) + α

[
zw+1[t

′ : O(t′,TIw′ )=r]−

|TIw |∑
t:O(t,TIw )=b+r

( ∑
t′∈SAWw[t]

xw[t
′]

)]
∀w = 1 . . .H− 1

(21)

whereH denotes the problem horizon, and zw+1 denote the
solution of MIP in Table 2 for the week w+1 and xw denote
the solution for the week w and α is the step parameter. The
parameters µ, for each r = 1, . . . ,TAT−1, are updated as:

µ?w,w+1(r)←
(
µw,w+1(r) + α

[
Agw[b+ r]− TWw−

r∑
t∈TIw+1:O(t,TIw+1)=1

IWw+1[t]

])
+

∀w = 1 . . .H− 1

(22)

where ()+ denotes the projection on the positive (≥ 0)
real line, variables with overhead bar denote the solution ob-
tained from the corresponding MIP in Table 2. The step pa-
rameter α is calculated using strategies highlighted in (Bert-
sekas 1999, Section 6.3.1).

As the dual solution obtained may not be a feasible primal
solution, we use a number of strategies (omitted due to space
constraints) to extract a consistent primal solution from the
dual. These strategies involve solving a series of small MIPs,
one for each week. This step, therefore, is also scalable with
the plan horizon.

5 Experiments
We test our DD-WAP approach on multiple real world as
well as synthetic datasets. All the instances were 8-week
problem with a granularity of 30 minutes. We compare our
solver with CPLEX, which was used to solve the global MIP
formulation. Each dual subproblem in our approach was also
solved using CPLEX. All our experiments were performed
on a dual core PC with 8GB RAM and 2.6GHz CPU. The
DD-WAP solver was implemented in JAVA.

5.1 Real World Datasets
We had access to two real world datasets provided by our
client business units. The first dataset comprises the actual
demand and handling time information for each time interval
for 30 consecutive weeks. The second datset had the same
information for 12 weeks. We created 20 different 8-week
instances from the first dataset and 10 different 8-week in-
stances from the second dataset. The shift length was 19 in-
tervals, implying a 9.5 hour shift for each agent and the TAT

400



CPLEX DD-WAP

Primal Dual Primal Dual % Gain

460 339.50 368 343.10 20.00%
517 394.20 423 389.92 18.18%
404 390.50 413 389.91 -2.23 %
389 374.25 412 373.25 -5.91 %
466 366.86 395 371.74 15.24%
364 354.71 382 357.00 -4.95 %
475 362.94 386 367.51 18.74%
487 358.12 373 361.64 23.41%
461 356.86 388 356.34 15.84%
434 359.25 403 363.05 7.14%
460 339.50 365 343.07 20.65%

- 184.95 200 188.90 100.00%
517 394.20 414 389.92 19.92%
404 390.50 415 389.91 -2.72 %
389 374.25 409 373.25 -5.14 %
466 366.87 393 371.74 15.67%
417 354.71 380 357.00 8.87 %
475 362.95 383 367.51 19.37%
487 358.13 379 361.64 22.18%
461 356.87 385 356.34 16.49%

Table 3: Solution quality comparisons between CPLEX and DD-
WAP for real dataset 1 after 10 minutes, total 20 instances. A ‘-’
indicates no solution was found within the time limit.

was 10 intervals or 5 hours. Each agent was required to work
5 days per week. Our clients had a strict time limit of 5 min-
utes for getting the solution. This was required so as to use
the planner in an interactive fashion. For the purpose of this
work, we use a deadline of 10 minutes. Our decomposition
based approach has enough scope for parallelism as each
dual subproblem can be solved in parallel. Therefore, an im-
proved parallel version of our current sequential approach
can meet the 5 minute deadline.

Table 3 shows the solution quality comparisons for
CPLEX and the DD-WAP approach. We report the best pri-
mal and dual achieved by each approach within 10 min-
utes. The primal solution quality denotes the total number
of agents required for the 8-weeks. Therefore, a lower pri-
mal value is better. Similarly, a higher dual value is bet-
ter as the dual is a lower bound on the primal. The last
column shows the gain in solution quality ((PrimalCPLEX−
PrimalDD WAP)/PrimalCPLEX). A positive gain value indicates
that the DD-WAP approach is better. This gain value shows
that DD-WAP approach consistently gives significantly bet-
ter results than the CPLEX for most instances.

Figure 3 shows the best solution quality achieved by DD-
WAP as a percentage of the optimal, computed using the
bounds provided by the DD-WAP approach. This figure
clearly shows that the DD-WAP approach provides provably
near-optimal solution (about 94% of optimal) for all the in-
stances. This is encouraging news for our approach which
is much more scalable w.r.t. the planning horizon than the
global MIP formulation solved using CPLEX. The CPLEX
was only able to provide a solution within 80% of the opti-
mal on average for these instances within 10 minutes. This
clearly shows the ability of our approach to get a good solu-
tion significantly faster than CPLEX.
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Figure 3: Solution quality as a percentage of optimal for the DD-
WAP approach after 10 minutes for real dataset 1
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Figure 4: Solution quality as a percentage of optimal for the DD-
WAP approach after 10 minutes for real dataset 2

Table 4 shows the solution quality comparisons for the
real dataset 2. This table clearly shows the advantage of our
approach over CPLEX. The CPLEX is unable to provide a
feasible solution with the time limit of 10 minutes for many
instances. The column ‘When Feasible’ shows the time (in
seconds) when CPLEX first provided a feasible solution for
the global MIP. This column shows that CPLEX takes sig-
nificantly more time than the allowed 600 seconds limit to
even get a feasible solution. This further validates that our
approach is going to be more useful in a time limited inter-
active setting.

Figure 4 shows the best solution quality achieved by

CPLEX DD-WAP

Primal Dual When Feasible Primal Dual

- - 839.00 765 731.63
- - 1111.46 787 748.00

869 774.33 516.00 802 770.58
- - 932.45 804 768.34
- - 714.84 785 758.56

755 739.49 483.18 769 731.50
- - 712.10 744 706.49
- - 942.90 727 699.28
- - 972.81 714 681.00
- - 764.92 711 669.00

Table 4: Solution quality comparisons between CPLEX and DD-
WAP for real dataset 2 after 10 minutes, total 10 instances. A ‘-’
indicates no feasible solution was found within the time limit.
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(a) Average demand 65
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(b) Average demand 75
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(c) Average demand 85

Figure 5: Best Primal and Dual solution quality (synthetic instances) with iteration. Each value is scaled to be ≤ 1.

Synthetic Instances

Mean 10 Min. Gap Final Gap

65 3.78% 2.40%
75 5.14% 4.14%
85 4.89% 2.70%

Table 5: Solution quality results on synthetic instances for DD-
WAP. ‘Mean’ denotes the average contacts per time interval. ‘Gap’
denotes the distance from the optimal solution.

DD-WAP as a percentage of the optimal, computed using
the bounds provided by the DD-WAP approach. This fig-
ure shows that DD-WAP approach provides provably near-
optimal solution (within 95% of optimal) for all the 10
instances. This result further illustrates the ability of our
approach to get a good solution significantly faster than
CPLEX. Furthermore, we have also deployed a simplified
version of the DD-WAP solver with our client business units,
which provides 5-10% headcount reduction over their previ-
ous methods.

5.2 Synthetic Instances
We generated a number of synthetic 8-week benchmarks
based on properties of the real world instances. The average
number of contacts arriving per time interval for real world
instances was 70. Therefore, we vary the average contact pa-
rameter from 65 to 85. We use the same handling time as in
the real world instances. We sample the number of contacts
arriving per interval from the gamma distribution, which is
often used to model queueing systems. We use the shape pa-
rameter k of this gamma distribution as 3 to allow enough
variations in the number of contacts across different time in-
tervals. The scale parameter θ was chosen to be ‘Mean’/k,
where ‘mean’ is the required average number of contacts
(65, 75 or 85). The expected value of a gamma distribution
is kθ, resulting in the required average value.

Table 5 shows the solution quality results for DD-WAP
for varying average demand (65, 75 or 85). We generated 5
instances for each average demand setting, resulting in a to-
tal of 15 8-week instances. The ‘10 min. gap’ column shows
the average gap (over 5 instances) between the best DD-
WAP solution and the optimal computed using the bounds
provided by DD-WAP. The‘Final Gap’ column shows the fi-

nal gap after 29 iterations of our solver. This table further
demonstrates that our approach can quickly provide near-
optimal solution for a range of settings. The CPLEX was
unable to provide a feasible solution within 10 minutes time
limit and is therefore not reported.

Figure 5 shows how the primal and dual solution qual-
ity evolve with iterations of DD-WAP for three different in-
stances, one for each mean demand of 65, 75 and 85. These
instances were chosen to highlight how the large initial gap
between the primal and the dual solution in the first iteration,
about 14% for each of the three instances, can be effectively
reduced by the DD-WAP approach to less than 4% at the end
of 29 iterations. These results further illustrate the utility of
the DD-WAP approach even for difficult instances where the
initial gap between the primal and the dual solution is high.

6 Conclusion and Future Directions
In this work, we addressed the contact center staffing prob-
lem. Our approach, based on Lagrangian relaxation, ad-
dressed the two key business constraints. First, it is highly
scalable with the length of the planning horizon and is able
to find provably good quality solutions for such large plan-
ning problems. Second, our approach is applicable in an
interactive setting when a good solution is desired quickly
by staffing managers. Our approach provided near-optimal
solutions within 10 minutes for complex real life data in-
stances, while CPLEX solving the global MIP struggled to
even find a feasible integer solution within 10 minutes. The
DD-WAP approach is scalable since the runtime and space
complexity increases linearly with the number of weeks. Our
key contributions are thus formulating the problem of con-
tact center management (CSM) in a MIP framework and
providing an efficient iterative approach based on dual de-
composition to solve the CSM problem.

In this paper we have considered a simpler version of the
CSM problem where in agents work consecutive days, log
in at the same time every day. Real business settings re-
quire capabilities to allow flexible login at multiple times
as well flexible work days. With all these constraints added,
the full problem formulation can take up to a day to get a
solution within 90% of the optimal. As more such business
constraints are added, the scalability and anytime nature of
the DD-WAP approach would offer even greater advantage.
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