
Planning Meets Data Cleansing∗

Roberto Boselli, Mirko Cesarini, Fabio Mercorio, and Mario Mezzanzanica
Dept. of Statistics and Quantitative Methods - CRISP Research Centre,

University of Milan-Bicocca, Milan, Italy
firstname.lastname@unimib.it

Abstract

One of the motivations for research in data quality is to auto-
matically identify cleansing activities, namely a sequence of
actions able to cleanse a dirty dataset, which today are often
developed manually by domain-experts. Here we explore the
idea that AI Planning can contribute to identify data inconsis-
tencies and automatically fix them. To this end, we formalise
the concept of cost-optimal Universal Cleanser - a collection
of cleansing actions for each data inconsistency - as a plan-
ning problem. We present then a motivating government ap-
plication in which it has be used.
Keywords: Data Quality, Data Cleansing, Government Ap-
plication

Introduction and Related Work
Today, most researchers agree that the quality of data is
frequently poor (Fisher et al. 2012) and, according to the
“garbage in, garbage out” principle, dirty data may affect
the effectiveness of decision making processes.

In such a scenario, the data cleansing (or cleaning) re-
search area focuses on the identification of a set of domain-
dependent activities able to cleanse a dirty database (wrt
quality requirements), which usually have been realised in
the industry by focusing on business rules relying on the ex-
perience of domain-experts. Furthermore, exploring cleans-
ing alternatives is a very time-consuming task as each busi-
ness rule has to be analysed and coded separately, then the
overall solution still needs to be manually evaluated. This
paper aims at expressing data cleansing problems via plan-
ning to contribute in addressing the following issues in the
data cleansing area.
(i) Modelling the behaviour of longitudinal data. Usually
longitudinal data (aka panel or historical data) extracted
by Information Systems (ISs) provide knowledge about
a given subject, object or phenomena observed at mul-
tiple sampled time points (see (Singer and Willett 2003;

∗This work is partially supported within a Research
Project granted by the CRISP Research Centre (Interuniver-
sity Research Centre on Public Services - www.crisp-org.it)
and Arifl (Regional Agency for Education and Labour -
www.arifl.regione.lombardia.it)
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bartolucci, Farcomeni, and Pennoni 2012). In this regard,
planning languages like PDDL can help domain experts for-
malising how data should evolve according to an expected
behaviour. Specifically, a planning domain describes how
data arriving from the external world - and stored into the
database - may change the subject status1, while a planning
instance is initiated with subject’s data. The goal of such a
planning problem is to evaluate if data evolve according to
the domain model.
(ii) Expressing data quality requirements. Data quality is a
domain-dependent concept, usually defined as “fitness for
use”. Here we shall focus on consistency, which refers to
“the violation of semantic rules defined over (a set of) data
items.“ (Batini and Scannapieco 2006). In reference to re-
lational models, such “semantic rules” have usually been
expressed through functional dependencies (FDs) and their
variants useful for specifying integrity constraints. As ar-
gued by Chomicki (1995), FDs are expressive enough to
model static constraints, which evaluate the current state
of the database, but they do not take into account how the
the database state has evolved over time. Furthermore, even
though FDs enable the detection of errors, they fall short of
acting as a guide in correcting them (Fan et al. 2010). Fi-
nally, FDs are only a fragment of first-order logic and this
motivates the usefulness of formal systems in databases, as
studied by Vardi (1987). Planning formalisms are expres-
sive enough to model complex temporal constraints then a
cleansing approach based on AI planning might allow do-
main experts to concentrate on what quality constraints have
to be modelled rather than on how to verify them.
(iii) Automatic identification of cleaning activities. A gap
between practice-oriented approaches and academic re-
search contributions still exists in the data quality field.
From an academic point of view, two very effective ap-
proaches based on FDs are database repair and consis-
tent query answering(see. e.g. (Chomicki and Marcinkowski
2005)). As a drawback finding consistent answers to aggre-
gate queries becomes NP-complete already using two (or
more) FDs, as observed by Bertossi(2006). To mitigate this
problem, a number of promising heuristics approaches have
been defined (Yakout, Berti-Équille, and Elmagarmid 2013;

1“Status” here is considered in terms of a value assignment to a
set of finite-domain state variables.

439

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Kolahi and Lakshmanan 2009), whose effectiveness still has
to be evaluated on real-life problems.

Recently the NADEEF (Dallachiesa et al. 2013) and
LLUNATIC (Geerts et al. 2013) tools have been devel-
oped for unifying the most used cleansing solutions by both
academy and industry through variants of FDs. As Dal-
lachiesa et al. argue, the consistency requirements are usu-
ally defined on either a single tuple, two tuples or a set of
tuples. While the first two classes can be modelled through
FDs and their variants, the latter class of quality constraints
requires reasoning with a (finite but not bounded) set of data
items over time as the case of longitudinal data, and this
makes the exploration-based technique (as the AI Planning)
a good candidate for that task.

In this regard, planning would contribute to the genera-
tion of optimal cleansing activities (wrt a domain-dependent
objective function) by enabling domain experts to express
complex quality requirements and effortlessly identify the
best suited cleansing actions for a particular data quality
context.

The Labour Market Dataset
According to the Italian law, every time an employer hires
or dismisses an employee, or an employment contract is
modified (e.g. from part-time to full-time), a Compulsory
Communication - an event - is sent to a job registry. The
public administration has developed an ICT infrastructure
(The Italian Ministry of Labour and Welfare 2012) gen-
erating an administrative archive useful for studying the
labour market dynamics (see, e.g.(Lovaglio and Mezzanzan-
ica 2013)). Each mandatory communication is stored into a
record which presents several relevant attributes: e_id and
w_id are ids identifying the communication and the per-
son involved respectively. e_date is the event occurrence
date whilst e_type describes the event type occurring to the
worker’s career. The event types can be the start, cessation
and extension of a working contract, and the conversion from
a contract type to a different one; c_flag states whether the
event is related to a full-time or a part-time contract while
c_type describes the contract type with respect to the Italian
law. Here we consider the limited (fixed-term) and unlim-
ited (unlimited-term) contracts. Finally, empr_id uniquely
identifies the employer involved.

A communication represents an event arriving from the
external world (ordered with respect to e_date and grouped
by w_id), whilst a career is a longitudinal data sequence
whose consistency has to be evaluated. To this end, the con-
sistency semantics has been derived from the Italian labour
law and from the domain knowledge as follows.

c1: an employee cannot have further contracts if a full-time
is active;
c2: an employee cannot have more than K part-time con-
tracts (signed by different employers), in our context we
shall assume K = 2;
c3: an unlimited term contract cannot be extended;
c4: a contract extension can change neither the contract type
(c_type) nor the modality (c_flag), for instance a part-time
and fixed-term contract cannot be turned into a full-time

contract by an extension;
c5: a conversion requires either the c_type or the c_flag to
be changed (or both).

Table 1: Example of a worker career
e_date e_type c_flag c_type empr_id

1st May 2010 start PT limited CompanyX
1st Nov 2010 convert PT unlimited CompanyX
12th Jan 2012 convert FT unlimited CompanyX
28th July 2013 start PT limited CompanyY

Let us consider a worker’s career as in Tab. 1. A worker
started a limited-term part-time contract with CompanyX
then converting it twice: to unlimited-term in November
2010 and to full-time in January 2012. Finally, in July 2013
a communication arrived from CompanyY reporting that the
worker had started a new part-time contract, but no com-
munication concerning the cessation of the previous active
contract had ever been notified.

The last communication makes the career inconsistent as
it violates the constraint c1. Clearly, there are several alter-
natives that domain experts may define to fix the inconsis-
tency (as shown in Tab. 2) many of which are often inspired
by common practice. Probably, in the example above a com-
munication was lost. Thus it is reasonable to assume that the
full-time contract has been closed in a period between 12th

January 2012 and 28th July 2013.

Table 2: Some corrective action sequences
State employed [FT,Limited,CompanyX]

Inconsistent event (start,PT,Limited,CompanyY)
Alternative 1 (cessation,FT,Limited,CompanyX)
Alternative 2 (conversion,PT,Limited,CompanyX)
Alternative 3 (conversion,PT,Unlimited,CompanyX)
Alternative 4 (conversion,FT,Unlimited,CompanyX)

(cessation,FT,Unlimited,CompanyX)

However, one might argue that the communication might
have been a conversion to part-time rather than a cessation
of the previous contract and, in such a case, the career does
not violate any constraints as two part-time contracts are al-
lowed. Although this last scenario seems unusual, a domain
expert should take into account such hypothesis.

Data Cleansing as Planning
Modelling data cleansing as a planning problem can be used
to (i) confirm if data evolution follows or not an expected
behaviour (wrt quality requirements) and (ii) to support do-
main experts in the identification of all cleansing alterna-
tives, summarising those that are more interesting for the
analysis purposes. Notice that an IS recording longitudinal
data can be seen as an event-driven system where a database
record is an event modifying the system state and an ordered
set of records forms an event sequence. We can formalise
this concept as follows.

Definition 1 (Events Sequence) Let R = (R1, . . . , Rl) be
a schema relation of a database. Then,
(i) An event e = (r1, . . . , rm) is a record of the projection
(R1, . . . , Rm) overR with m ≤ l|r1 ∈ R1, . . . , rm ∈ Rm;

440

(ii) Let ∼ be a total order relation over events, an event se-
quence is a ∼-ordered sequence of events ε = e1, . . . , ek
concerning the same object or subject.

In classical planning, a model describes how the system
evolves in reaction to input actions. A planner fires actions to
explore the domain dynamics, in search of a (optimal) path
to the goal. Similarly, when dealing with longitudinal data
the system represents the object or subject we are observing,
while an event is an action able to modify the system state.

The Fig. 1 should clarify the matter by showing some
PDDL components modelling the Labour Market domain.
The CO predicate represents a communication as de-
scribed before while the is_active predicate is used
for modelling an ongoing contract. Then, the actions
are mapped on the e_type domain, as the case of the
start_contract action. Specifically, the action requires
that a START communication is arrived with the expected
event_seq_number to be fired. The action’s effect is to
add the is_active predicate (initiated with the commu-
nication parameters) and to enable the receiving of the next
event (if any).

(:types
worker c_type c_flag company_t e_type nat_number - object)

(:constants
START END CONVERT EXTEND NULL_E - e_type
LIMITED UNLIMITED NULL_C - c_type
PT FT NULL_T - c_flag
CX CY CZ NULL_CM - company_t)

(:predicates
(CO ?w - worker ?ct - c_type ?f - c_flag ?c - company_t
?e - e_type ?n - nat_number)

(event_seq_number ?n1 - nat_number)
(is_active ?c1 - company_t ?f1 - c_flag ?ct1 - c_type)
(next ?n - nat_number ?m - nat_number))

(:action start_contract
:parameters (?w - worker ?ct - c_type ?f - c_flag ?c -
company_t ?e - e_type ?n ?m - nat_number)
:precondition (and
(event_seq_number ?n)
(next ?n ?m)
(mn ?w ?ct ?f ?c ?e ?n) ;; the CO exists
(= ?e START)) ;; it is a "start" event
:effect (and
(not (event_seq_number ?n)) ;; disable the n-th CO
(event_seq_number ?m) ;; be prepared for receiving the m-th
CO

(is_active ?c ?f ?ct))) ;; add the contract

Figure 1: Main PDDL domain components

Once a model describing the evolution of an event sequence
has been defined, a planner works in two steps for generating
the cleansing activities.

Step 1. It simulates the execution of all the feasible
(bounded) event sequences, summarising all the inconsisten-
cies into an object, the so-called Universal Checker (UCK),
that would represent a topology of the inconsistencies that
may affect a data source.

In this first phase the goal of the planning problem is to
identify an inconsistency, that is a violation of one or more
semantic rules. This task can be accomplished by enabling a
planner to continue the search when a goal has been found.
The Fig. 2 shows an example of goal statement for catch-
ing simulated career paths that violate the constraint C1. We
formalise such a planning problem on FSSs as follows.

(:goal (and
(exists (?c1 ?c2 ?c3 - company_t ?ct1 ?ct2 ?ct3 - c_type)
(or (and

(is_active ?c1 FT ?ct1)
(is_active ?c2 FT ?ct2)
(or (not (= ?c1 ?c2)) (not (= ?ct1 ?ct2))))

(and
(is_active ?c1 FT ?ct1)
(is_active ?c2 PT ?ct2))))))

Figure 2: An example of PDDL goal statement

Definition 2 (Planning Problem on FSS) A Finite State
System (FSS) S is a 4-tuple (S,I ,A,F), where: S is a finite
set of states, I ⊆ S is a finite set of initial states,A is a finite
set of actions and F : S ×A→ S is the transition function,
i.e. F (s, a) = s′ iff the system from state s can reach state
s′ via action a. Then, a planning problem on FSS is a triple
PP = (S, G, T) where s0 ∈ S, G ⊆ S is the set of the goal
states, and T is the finite temporal horizon.

A solution for PP is a path (on the FSS) π =
s0a0s1a1 . . . sn−1an−1sn where, ∀i = 0, . . . , n − 1, si ∈
Reach(S) is a state reachable from the initial ones, ai ∈ A
is an action, F (si, ai) is defined, |π| ≤ T , and sn ∈ G ⊆
Reach(S).

Thus a collection of all the inconsistencies identified can
be synthesised as follows.

Definition 3 (Universal Checker (UCK)) Let PP =
(S, G, T) be a Planning Problem on a FSS S = (S,I ,A,F).
Moreover, let Π be the set of all paths able to reach a
goal for PP , then a Universal Checker C is a collection of
state-action pairs that for each π ∈ Π summarises all the
pairs (sn−1, an−1) s.t. F (sn−1, an−1) ∈ G.

Step 2. For each pair (si, ai) ∈ UCK denoting an incon-
sistency classified with a unique identifier - the error-code,
we shall construct a new planning problem which differs
from the previous one as follows: (i) the new initial state is
I = {si}, where si is the state before the inconsistent one,
that is F (si, ai) = si+1 where si+1 violates the rules; (ii)
the new goal is to “execute action ai”. Intuitively, a correc-
tive action sequence represents an alternative route leading
the system from a state si to a state sj where the action ai
can be applied (without violating the consistency rules). To
this aim, in this phase the planner explores the search space
and selects the best corrections according to a given crite-
rion.

Definition 4 (Cleansing Actions Sequence) Let PP =
(S, G, T) be a planning problem and let C be a Universal
Checker of PP .

Then, a T -cleansing actions sequence for the pair
(si, ai) ∈ C is a non-empty sequence of actions εc =
c1, . . . , cj , with |εc| ≤ T s.t. exists a path πc = sic1 . . .
si+jcj skaisk+1 on S, where all the states si, . . . , sk /∈ G
whilst sk+1 ∈ G. Finally, let W : S × A → R+ be a
cost function, a cost-optimal cleansing sequence is a se-
quence s.t. for all other sequences π′c the following holds:
W(πc) ≤ W(π′c) by denoting the cost of the path πc as
W(π′c) =

∑k−1
i=0 W(si, ai).

Roughly speaking, a UC is a collection of cleansing action
sequences synthesised for each inconsistency identified.

441

Definition 5 (Universal Cleanser (UC)) Let C be a univer-
sal checker. A Universal Cleanser is a map K : Reach(S)×
A → 2A which assigns to each pair (si, ai) ∈ C a T -
cleansing action sequence εc.

The UC is synthesised off-line and it contains a single
cost-optimal action sequence for each entry. Clearly, the cost
function is domain-dependent and usually driven by the pur-
poses of the analysis: one could fix the data by minimising/-
maximising either the number of interventions or an indica-
tor computed on the overall cleansed sequence.

Furthermore the UC is domain-dependent as it can deal
only with event sequences conforming to the model used
during its generation. On the other hand, the UC is also data-
independent since it has been computed by taking into ac-
count all the (bounded) event sequences, and this makes the
UC able to cleanse any data source, according to the process
shown in Fig. 3.

Apply

Cleansing

Planning

Domain

Planner

Source

Dataset

Universal

Cleanser
Cleansed

Dataset

Sequence

consistent

Sequence

inconsistent

Planning

Problem Generate a new

Planning Problem

Figure 3: Overview of the cleansing process

Preliminary Results and Future Outlook
We used the UPMurphi temporal planner (Della Penna et al.
2009; Mercorio 2013) to synthesise a UC for the domain
presented, by exploiting the planning as model checking
paradigm. Furthermore, it is the basis of the (Multidimen-
sional) Robust Data Quality Analysis (Mezzanzanica et al.
2011; Boselli et al. 2013). Notice that the UC has been syn-
thesised with no optimisation criteria, thus it actually repre-
sents an exhaustive repository of all the (bounded) feasible
cleansing activities. The UC contains 342 different error-
codes, i.e. all the possible 3-steps (state,action) pairs leading
to an inconsistent state of the model.

An important metric for measuring data quality is the ini-
tial quality level of the source archive. Hence, as a first step
we used the UPMurphi planner to identify careers present-
ing at least one inconsistency on 1, 248, 814 anonymized
COs describing the careers of 214, 429 people. UPMurphi
has recognised 92, 598 careers as inconsistent (43% of to-
tal). The blue triangles in Fig. 4 represent error-codes found
on the dataset whilst red crosses identify error-codes not
found. Such a kind of result is actually quite relevant for
domain-experts at CRISP institute as it provides a bird’s eye
view of the inconsistency distribution affecting the source
dataset. The refinement of cleansing activities for such ca-
reers plays a crucial role in guaranteeing the quality of

 1

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342

Cardinality (logarithmic scale)

E
rr

o
r

C
o
d
e

 1

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228

Cardinality (logarithmic scale)

 1

 1
0

 1
0
0

 1
0
0
0

 1
0
0
0
0

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114

Cardinality (logarithmic scale)

C
o
n
s
is

te
n
c
y
 V

e
ri
fi
c
a
ti
o
n
 -

 R
e
s
u
lt
s

E
rr

o
r

C
o
d
e
 p

re
s
e
n
t

E
rr

o
r

C
o
d
e
 n

o
t
p
re

s
e
n
t

Figure 4: A graphical visualisation of the distribution of the error-codes found.

Figure 4: A graphical visualisation of the distribution of
the error-codes found on the dataset. The x-axis reports the
error-codes while the y-axis summarises the number of ca-
reers affected by that error.

the cleansed data. For instance, the three most numerous
error codes are related to an extension, cessation or con-
version event received when the worker was in the unem-
ployed status (error codes 335, 329 and 319 represent about
30% of total inconsistencies). For the sake of completeness,
the dataset and the results have been made available on-
line at http://goo.gl/DBsKTp. The traditional development
of cleansing routines is a resource consuming and error
prone activity as the huge set of data to be cleansed, the
complexity of the domain, and the continuous business rules
evolution make the cleansing process a challenging task.

As a further step, we intend to model the labour market
domain through PDDL that would represent the first plan-
ning benchmark problem of a data quality scenario. Then, a
lot of off-the-shelf planners such as METRIC-FF (Hoffmann
2001) might be used and evaluated on a real-life dataset.

442

References
Bartolucci, F.; Farcomeni, A.; and Pennoni, F. 2012. La-
tent Markov models for longitudinal data. Boca Raton, FL:
Chapman & Hall/CRC Press.
Batini, C., and Scannapieco, M. 2006. Data Quality: Con-
cepts, Methodologies and Techniques. Data-Centric Systems
and Applications. Springer.
Bertossi, L. 2006. Consistent query answering in databases.
ACM Sigmod Record 35(2):68–76.
Boselli, R.; Cesarini, M.; Mercorio, F.; and Mezzanzanica,
M. 2013. Inconsistency knowledge discovery for longitudi-
nal data management: A model-based approach. In Human-
Computer Interaction and Knowledge Discovery in Com-
plex, Unstructured, Big Data - Third International Work-
shop, HCI-KDD, volume 7947 of LNCS, 183–194. Springer.
Chomicki, J., and Marcinkowski, J. 2005. On the computa-
tional complexity of minimal-change integrity maintenance
in relational databases. In Inconsistency Tolerance. Springer.
119–150.
Chomicki, J. 1995. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM Transac-
tions on Database Systems (TODS) 20(2):149–186.
Dallachiesa, M.; Ebaid, A.; Eldawy, A.; Elmagarmid, A. K.;
Ilyas, I. F.; Ouzzani, M.; and Tang, N. 2013. Nadeef: a
commodity data cleaning system. In Ross, K. A.; Srivastava,
D.; and Papadias, D., eds., SIGMOD Conference, 541–552.
ACM.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2009. UPMurphi: a tool for universal planning on PDDL+
problems. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 106–
113. AAAI Press.
Fan, W.; Li, J.; Ma, S.; Tang, N.; and Yu, W. 2010. Towards
certain fixes with editing rules and master data. Proceedings
of the VLDB Endowment 3(1-2):173–184.
Fisher, C.; Lauría, E.; Chengalur-Smith, S.; and Wang, R.
2012. Introduction to information quality.
Geerts, F.; Mecca, G.; Papotti, P.; and Santoro, D. 2013. The
llunatic data-cleaning framework. PVLDB 6(9):625–636.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22(3):57.
Kolahi, S., and Lakshmanan, L. V. 2009. On approximating
optimum repairs for functional dependency violations. In
ICDT, 53–62. ACM.
Lovaglio, P. G., and Mezzanzanica, M. 2013. Classification
of longitudinal career paths. Quality & Quantity 47(2):989–
1008.
Mercorio, F. 2013. Model checking for universal planning in
deterministic and non-deterministic domains. AI Commun.
26(2):257–259.
Mezzanzanica, M.; Boselli, R.; Cesarini, M.; and Mercorio,
F. 2011. Data quality through model checking techniques.
In Proceedings of the 10th International Conference on In-
telligent Data Analysis (IDA), volume 7014 of Lecture Notes
in Computer Science, 270–281. Springer.

Singer, J., and Willett, J. 2003. Applied longitudinal data
analysis: Modeling change and event occurrence. Oxford
University Press, USA.
The Italian Ministry of Labour and Welfare. 2012. An-
nual report about the CO system, available at http://goo.gl/
XdALYd last accessed 6 november 2013.
Vardi, M. 1987. Fundamentals of dependency theory. Trends
in Theoretical Computer Science 171–224.
Yakout, M.; Berti-Équille, L.; and Elmagarmid, A. K. 2013.
Don’t be scared: use scalable automatic repairing with max-
imal likelihood and bounded changes. In International con-
ference on Management of data, 553–564. ACM.

443

