
Integrated Motion Planning and Coordination for Industrial Vehicles
Marcello Cirillo and Federico Pecora and Henrik Andreasson

Center for Applied Autonomous Sensor Systems, Örebro University, Sweden
<name>.<surname>@oru.se

Tansel Uras and Sven Koenig
Department of Computer Science, University of Southern California, USA

{turas,skoenig}@usc.edu

Abstract
A growing interest in the industrial sector for au-
tonomous ground vehicles has prompted significant in-
vestment in fleet management systems. Such systems
need to accommodate on-line externally imposed tem-
poral and spatial requirements, and to adhere to them
even in the presence of contingencies. Moreover, a
fleet management system should ensure correctness,
i.e., refuse to commit to requirements that cannot be
satisfied. We present an approach to obtain sets of alter-
native execution patterns (called trajectory envelopes)
which provide these guarantees. The approach relies on
a constraint-based representation shared among multi-
ple solvers, each of which progressively refines trajec-
tory envelopes following a least commitment principle.

Introduction
The industry standard approach to the management of fleets
of autonomous vehicles still largely relies on fixed trajecto-
ries (Marshall, Barfoot, and Larsson, 2008) and manually
specified ad-hoc traffic rules. This approach presents two
drawbacks: First, traffic rules are not sufficient to guaran-
tee deadlock-free coordination; Second, even small modifi-
cations to the environment require the definition of new tra-
jectories and the manual update of the traffic rules, both of
which are expensive and lengthy procedures.

An automated solution to autonomous fleet management
should adhere to several requirements: (1) the individual
motions of each vehicle should be feasible with respect to
the vehicle’s capabilities; (2) deadlocks and collisions must
be avoided; (3) the system should be able to accommodate
externally imposed temporal and spatial constraints.

We propose an integrated approach to fleet management
which guarantees the achievement of kinematic, dynamic,
temporal, and spatial requirements, as well as the absence of
deadlocks and collisions. Our approach is designed to work
online and has been experimentally validated both in sim-
ulation and on real vehicles. Finally, we prove the relevant
formal properties of the system under reasonable conditions.

Representation
Our system is grounded upon the notion of trajectory en-
velopes (Pecora, Cirillo, and Dimitrov, 2012), that is, col-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

s
(j)
i+1

e
(j)
i

`
(j)
i+1

≤ e
(j)
i+1
− s

(j)
i+1

≤ u
(j)
i+1

e
(j)
i+1

s
(j)
i

`
(j)
i
≤ e

(j)
i
− s

(j)
i
≤ u

(j)
i

T (j)
i

T (j)
i+1

y

x

p(j)

S(j)
i

(polygon i) S(j)
i+1

(polygon i + 1)

Simple Temporal Problem (STP)

`
(j)
i,i+1

≤ e
(j)
i
− s

(j)
i+1

≤ u
(j)
i,i+1

Figure 1: A trajectory envelope for vehicle j consisting of
two sets of polyhedral and temporal constraints.

lections of spatial and temporal constraints on vehicle tra-
jectories. Specifically, a trajectory envelope is composed of
a spatial envelope and a temporal envelope. The former is
a set S = {S1, . . . ,Sn} of spatial constraints on where a
vehicle’s reference point can be within a given map M of
the environment. Each spatial constraint Si is a set of linear
inequalities defining a convex 2D polyhedron. Fig. 1 depicts
an example of constraints on (x, y). To each Si we associate
a set of temporal constraints Ti of the form

`i ≤ ei − si ≤ ui (1)
`i,i+1 ≤ ei − si+1 ≤ ui,i+1, (2)

where si (ei) denotes the time in which the vehicle’s pose
begins (ceases) to be within the polyhedral constraint Si, and
`i, `i,i+1, ui, ui,i+1 ∈ R are fixed lower and upper bounds.
Hence, (1) defines bounds on when the reference point of
the vehicle is within the convex region specified by Si, while
(2) defines bounds on when the reference point is within the
spatial overlap between Si and Si+1 (which is a convex set
as well). The temporal envelope of a vehicle is the collection
of temporal constraints T = {T1, . . . , Tn}.
Definition 1. A trajectory envelope is a pair E = (S, T),
where
• S =

⋃
i Si is the spatial envelope of the vehicle, and

• T =
⋃

i Ti is the temporal envelope of the vehicle.
A trajectory envelope is thus a set of spatial and tempo-

ral constraints on the position of a vehicle’s reference point.

463

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Let p : [0, 1] → R2 × S1 denote a path for a vehicle, in
terms of positions and orientations of its reference point,
parametrized using its arc lenght σ. Given a time history
along the path σ = σ(t), we refer to p(σ) as a trajectory.
E contains the trajectory p(σ) if p(σ(t)) ∈ Si for all t ∈ Ti.
Given N vehicles, each with E(j), j ∈ {1 . . . N}, the prob-
lem of finding s(j)i and e(j)i (for all i, j) that satisfy temporal
constraints {T (1), . . . , T (N)} is a Simple Temporal Problem
(STP) (Dechter, Meiri, and Pearl, 1991) with variables

t =
⋃
i,j

{s(j)i , e
(j)
i }.

A STP admits many solutions, each defining the amount of
time e(j)i − s

(j)
i during which vehicle j’s reference point

should be within the polyhedral constraints S(j)i . A solu-
tion of this STP can be found in Θ(|S|3) with the Floyd-
Warshall all-pairs-shortest-paths algorithm (Floyd, 1962),
where S = {S(1), . . . ,S(N)}.

Integrated Reasoning
The collection of trajectory envelopes {E(1), . . . , E(N)} for
all vehicles constitutes a constraint network with temporal
and spatial constraints (Fig. 2). This network is used as the
common representation for reasoning by several modules:

• A motion planner adds an initial trajectory envelope
E(j) = (S(j), T (j)) for each vehicle j such that (1) the
constraints in S(j) cover one or more kinematically feasi-
ble paths that lead the vehicle from its current position to
a goal position, and (2) the constraints in T (j) bound the
vehicle to traverse the polyhedra at least at the vehicle’s
minimum speed and at most at its maximum speed.

• A coordinator refines the envelopes {E(1), . . . , E(N)} of
all vehicles so as to eliminate (1) trajectories which lead to
collisions or deadlocks, as well as (2) those which do not
satisfy the temporal constraints present in the network.

• A vehicle executive realizes the interface between vehicle
controllers and the trajectory envelope representation: it
selects an appropriate trajectory to be executed by each
controller, and updates the trajectory envelopes with con-
straints representing the current progress of each vehicle.
This propagates any mismatch between prescribed and
executed trajectories on all vehicles in the fleet.

• A trajectory smoother further refines trajectory envelopes,
by excluding those which are not feasible with respect to
the dynamic constraints of each vehicle and the specific
mechanics of the deployed controllers.

• A controller on board each vehicle synthesizes control
actions according to a Model Predictive Control (MPC)
scheme (Qin and Badgwell, 2003). The controller also
feeds back the current status of a vehicle so that it can
be accounted for by other modules.

Each algorithm alters the common constraint-based repre-
sentation to prune out solutions that are infeasible from its
particular point of view. All algorithms are used on-line, in

(a) (b)

Figure 3: Two vehicles need to switch places (a). A solution
which considers the joint spatial constraints of the vehicles
is required (b).

a continuous control loop at three levels of abstraction: co-
ordination layer (motion planner and coordinator), vehicle
execution layer (vehicle executive and trajectory smoother),
and vehicle control layer.

Motion Planning
Non-holonomic motion planning has been extensively stud-
ied in the past decades (LaValle, 2006). In particular, three
families of methods are currently widely used: Probabilistic
Roadmaps (PRMs) (Kavraki et al., 1996), Rapidly-exploring
Random Trees (RRTs) (LaValle, 1998; Karaman and Fraz-
zoli, 2011) and lattice-based motion planners (Pivtoraiko
and Kelly, 2009). Our motion planner belongs to the lat-
ter family: lattice-based approaches combine the strengths
of the other two with well studied classical AI graph-
exploration algorithms. Here, the differential constraints
are incorporated into the search space by means of pre-
computed motion primitives which trap the motions onto a
regular lattice. However, in our framework, a single-robot
motion planner would not be enough. For instance, consider
the problem represented in Fig. 3(a): if the two vehicles need
to switch places without changing orientation, their indi-
vidual motions would completely overlap and no temporal
adjustment could avoid a collision. Therefore, we extended
our planner to solve multi-robot problems. Multi-robot path
planning is a very active research area, but existing solutions
either depend on strongly simplifying assumptions (Wagner
and Choset, 2011; Luna and Bekris, 2011), or cannot guar-
antee deadlock-free joint motions (ter Mors, 2011).

Single Vehicle. Given a model of vehicle maneuverabilty,
the intuition behind lattice-based motion planning is to sam-
ple the state space in a regular fashion and to trap the mo-
tions of the vehicle on a lattice graph G = 〈V,E〉, that is,
a graph embedded in a Euclidean space Rn which forms a
regular tiling (Pivtoraiko, Knepper, and Kelly, 2009). Each
vertex v ∈ V represents a valid pose, or configuration, of
the vehicle, while each edge e ∈ E encodes a motion which
respects the non-holonomic constraints of the vehicle. Our
first aim is to generate time-independent motions, thus we
focus only on kinematic constraints.

Definition 2. A model m of a vehicle is a tuple
〈d,Θ,Φ, r, P, g〉, where d encodes the geometric dimensions
of the vehicle, Θ a finite set of orientations, Φ a finite set of
steering angles, r the resolution of an R2 regular grid, P

464

control
actions

spatial
constraints

co
n
strain

ts
tem

p
o
ral

co
n
strain

ts
tem

p
o
ral

critical
sets

constraints
temporal
spatial &

Vehicle
Executive

tem
p
o
ral

co
n
strain

ts

mission constraints / contingencies

ControllersPerception

sensor readings

Coordinator Trajectory
Smoother

current polygon

reference path

Motion Planner

sp
atial &

 tem
p
o
ral co

n
strain

ts

tr
aj

ec
to

ry
en

ve
lo

pe
s

tr
aj

ec
to

ry
en

ve
lo

pe
sdrivable

area

tr
aj

ec
to

ry
en

ve
lo

pe
s

reference
trajectories

fleet

Trajectory Envelopes {E(1), . . . , E(N)}

Figure 2: All algorithms cooperatively refine a common constraint network representing trajectory envelopes.

a finite set of allowed motions which respect the kinematic
constraints of the vehicle and g a cost function.

Definition 3. A valid configuration for a vehicle model
m= 〈dm,Θm,Φm, rm, Pm, gm〉 is a four dimensional state
vector c = 〈x, y, θ, φ〉, where (x, y) lies on a grid of resolu-
tion rm, θ ∈ Θm and φ ∈ Φm.

Under the assumption of even terrain, we can design Pm

(the set of motion primitives of model m) to be position-
invariant.1 A cost function gm is associated to each p ∈ Pm.
In our implementation, gm(p) is calculated by multiply-
ing the distance covered by p to a cost factor which pe-
nalizes backwards and turning motions. A planning prob-
lem for the j-th vehicle is fully specified by a four-tuple
〈m(j), c

(j)
s , c

(j)
g ,M〉, where m(j) is a vehicle model, c(j)s

is the start configuration of the vehicle, c(j)g its goal con-
figuration and M is a grid map of the environment with
the same resolution of rm(j) in which all known obstacles
are represented. A valid solution to the planning problem
is a collision-free sequence of motion primitives π(j) =

(p
(j)
0 , . . . , p

(j)
n) connecting c(j)s to c(j)g . An optimal solution

π
(j)
opt is a valid solution with minimum cost.

Starting from c
(j)
s , the state space can be explored us-

ing efficient graph search algorithms (in our case, A∗ or
ARA∗ (Likhachev, Gordon, and Thrun, 2003)). To speed
up lattice exploration, we use a combination of heuristic
functions: Euclidean distance, a pre-calculated distance ta-
ble (Knepper and Kelly, 2006) (both admissible) and, for
cluttered environments, we run a wavefront algorithm from
the cell containing cg , whose results we use to avoid use-
less exploration of blocked areas. As this last heuristic is not
necessarily admissible for non-holonomic vehicles, we use
it only in cluttered environments. The final heuristic value
equals the maximum of the single heuristics employed.

Extension to Multiple Robots. Our planner is an exten-
sion of lattice-based motion planning to multi-robot sys-
tems, where we can consider vehicles with different mod-
els and also multiple vehicles with the same model. In the

1This assumption can be relaxed if the vehicle’s controller can
absorb minor perturbations or by means of a post-processing step.

implementation presented in this paper, we impose the con-
straint that the grid r is identical for all vehicles. Definition 3
still holds for individual vehicles, but the search space of the
joint plan is no longer a lattice graph. Here, each state in the
search space represents a joint configuration of all vehicles:
Definition 4. Given a set of N vehicles, a state is an or-
dered set C = {c(1), · · · , c(N)}, where each c(i) ∈ C is a
valid configuration of vehicle i and there is no spatial over-
lap between any two configurations.
Definition 5. A multi-robot planning problem for N vehi-
cles is fully specified by a tuple 〈M, Cs, Cg,M〉, where:

• M = {m(1), · · · ,m(N)} is an ordered set of vehicle
models, such that m(j) is the model of vehicle j;

• Cs = {c(1)s , · · · , c(N)
s } is an ordered set of start configu-

rations, such that c(j)s refers to the j-th vehicle;

• Cg = {c(1)g , · · · , c(N)
g } is an ordered set of goal configu-

rations, such that c(j)g refers to the j-th vehicle;
• M is a grid map of the environment where all known ob-

stacles are specified.
A valid global solution to a multi-robot planning problem

is an ordered set of sequences of motion primitives πglob =

(π(1), · · · , π(N)) such that π(i) connects c(i)s to c(i)g for ev-
ery 1 ≤ i ≤ N and there exist at least one valid schedule
which avoids collisions among vehicles. An optimal solution
to the problem is a valid global solution which minimizes
the sum of the costs for all vehicles. Given a multi-robot
motion planning problem with N vehicles, a state corre-
sponds to a point in the joint configuration space of the form
C = {c(1), · · · , c(N)}, where c(i) = 〈x(i), y(i), θ(i), φ(i)〉.
We generate the successors of a state C̄ by selecting in turn
each vehicle i and by applying to its configuration c̄(i) all the
applicable motion primitives in Pm(i) , while considering the
other vehicles as obstacles. Therefore, in each successor, all
the individual configurations of vehicles remain unchanged
but one. Each vertex v̂ corresponds to a unique state Ĉ in the
joint configuration space. The cost associated to v̂ is equal to
the cost of the shortest path from Cs to Ĉ. The optimal so-
lution is therefore a minimum-cost path in the search space
fromCs toCg . In our implementation, we explore the search

465

space using A∗ and ARA∗. Note that the single vehicle case
is a special case of the multi-robot problem. Here, we use the
same heuristic functions described above, and the heuristic
value of a state is calculated as the sum of the heuristic val-
ues of the individual configurations. As the search space be-
comes rapidly very large, we also designed and implemented
two methodologies for speeding up the search, whose de-
scription is outside the scope of this paper. However, it is
important to note that neither prune valid solutions.

From timeless motions to trajectory envelopes. For each
vehicle, the output of the motion planner is published to the
common constraint network in the form of spatial and tem-
poral constraints. First, a set of convex polyhedra is calcu-
lated which covers the path in the current map of the en-
vironment. The spatial constraints contain the positions and
orientations computed by the motion planner, as well as ad-
jacent positions and orientations obtained by “sweeping” the
footprint of the vehicle within given displacement and turn-
ing parameters. This procedure gives controllers the freedom
to spatially deviate from the reference trajectory while re-
maining within the spatial constraints. The result is an initial
spatial envelope S(j) = {S(j)1 , . . . ,S(j)n } for each vehicle j.
An example for five vehicles is shown in Fig. 8. Second, an
initial temporal envelope T (j) is calculated for each vehi-
cle containing the constraints (1) and (2). The input to the
procedure is the state information as provided by the motion
planner and boundary conditions on initial and final veloci-
ties, steering velocity, speed and acceleration. Based on the
maximum allowed velocity and distance between two states,
a minimum transition time ∆tmin is computed. This is used
to compute the lower bounds in the temporal envelope T .
The maximum transition time ∆tmax determines the upper
bounds, and is computed by plugging in minimum boundary
conditions. We impose a minimum speed vmin = ε > 0: this
allows vehicles to move arbitrarily slow, a condition which
is needed to ensure schedulability of joint motions.

Coordination
The set of constraints T (j) resulting from the motion plan-
ner constitutes a STP which admits, by construction, at least
one solution (assignment of t). Note, however, that since ve-
hicles share the same floor space, it is also necessary to im-
pose that trajectory envelopes do not overlap in both time
and space (which would imply the possibility of collisions).

Definition 6. A conflict is a pair of polyhedra (S(i)k ,S(j)m),
in the trajectory envelopes of vehicle i and j respectively,
that overlap both spatially and temporally, i.e.,

S(i)k ∩ S
(j)
m 6= ∅ ∧ (3)[

s
(i)
k , e

(i)
k

]
∩
[
s(j)m , e(j)m

]
6= ∅. (4)

Therefore, the solution of the STP may not be conflict-
free, because there is no constraint in T that enforces the
absence of conflicts. The coordinator is responsible for de-
termining a set of temporal constraints Ta that refines the
temporal envelopes so as to be conflict- and deadlock-free.

Definition 7. Given the trajectory envelopes E =
{E(1), . . . , E(N)} of N vehicles computed by the motion
planner, a coordination problem consists of finding a set of
constraints Ta that, if added to E , eliminate all conflicts.

Finding a set of additional constraints Ta that make E
conflict-free can be cast as a Constraint Satisfaction Prob-
lem (CSP) (Tsang, 1993), where the variables are conflicts
(see Definition 6). The values of these variables are tem-
poral constraints that eliminate temporal overlap between
polygons (resolving constraints). Finding a set of conflict-
free trajectory envelopes requires exponential time, as it can
be cast as a resource scheduling problem with maximum
time-lags2 (Brucker and Knust, 2006). It would indeed be
also possible to employ de-centralized approaches to solve
this problem. However, in order to guarantee global feasi-
bility with respect to temporal and spatial constraints along
with the absence of collisions and deadlocks, a distributed
approach would also require exponential computation, ei-
ther in the form of an exponential number of messages or
of exponential message size (Faltings, 2006). Note also that
while polynomial-time distributed algorithms can be used to
guarantee safe navigation (Bekris et al., 2012), these cannot
enforce adherence to temporal constraints like deadlines.

Function ScheduleTrajectories(E): success or failure
static Ta = ∅1
C ← pairs of conflicting polyhedra2
while C 6= ∅ do3

(S(i)
k ,S(j)

m)← Choose(C, hc) // (see Definition 6)4

Rc =
{
s
(i)
k ≥ e

(j)
m , e

(i)
k ≤ s

(j)
m

}
5

whileRc 6= ∅ do6
r ← Choose(Rc, hr)7
Rc ←Rc \ r // remove constraint r fromRc8
Ta ← Ta ∪ r // add constraint r to STP9
if STP is consistent then10

if ScheduleTrajectories(E) = failure11
then
Ta ← Ta \ r12

else return success13

else Ta ← Ta \ r14

return failure15

return success16

Algorithm ScheduleTrajectories() solves the
trajectory scheduling problem with a standard CSP back-
tracking search. It is inspired by the Earliest Start Time
Approach precedence-constraint posting algorithm (Cesta,
Oddi, and Smith, 2002) for resource scheduling. The algo-
rithm starts by collecting all conflicts (line 2). The assess-
ment of condition (4) (possible temporal overlap) is per-
formed by comparing the Earliest Time solutions of the STP.
As usual in CSP search, the conflicts are ordered according
to a most-constrained-first variable ordering heuristic. In our
case, hc gives preference to pairs of polygons that are spa-
tially closer to other conflicting pairs (as earlier failures al-

2Floor space can be seen as a shared resource which is concur-
rently used by the vehicles when they traverse a polygon.

466

vehicle 1
vehicle 1

vehicle 2

vehicle 2

(a) (b)

∆yield
∆yield+
∆brake

∆brake

Figure 4: Example of coordination (a), and of protracted
yielding due to delay of a vehicle with precedence (b).

low to prune large parts of the search tree). Once a conflict is
chosen (line 4), its possible resolving constraints are identi-
fied (line 5). These are the values of the CSP’s variables, and
each is a temporal constraint that would eliminate the tem-
poral overlap of intersecting polygons. Since conflict sets
are pairs of polyhedra, there are only two ways to resolve
the temporal overlap, namely imposing that the end time
of polyhedron S(j)m is constrained to occur before the start
time of polyhedron S(i)k , or vice-versa. Again as is common
practice in CSP search, the value (resolving constraint) to
attempt first is chosen (line 7) according to a least constrain-
ing value ordering heuristic. hr leverages temporal slack to
choose the ordering that least affects the temporal flexibility
of the time points. The algorithm then attempts to post the
chosen resolving constraint into the STP (line 9). If the STP
is consistent, then the procedure goes on to identify and re-
solve another conflict through a recursive call (line 11). In
case of failure (line 14), the chosen resolving constraint is
retracted from the STP and another value is attempted.

An example of coordination is shown in Fig. 4(a): the tra-
jectory envelopes of two vehicles are modified to eliminate
temporal overlap from spatially overlapping polyhedra; in
particular, vehicle 2 is scheduled to yield for a time ∆yield
to vehicle 1. The figure shows one possible temporal profile
that is conflict free — note that the trajectory envelope is
refined by the coordinator, therefore many alternative tem-
poral profiles for the two vehicles’ trajectories exist. As we
show below, commitment to a particular profile does not oc-
cur until a reference trajectory is dispatched to the vehicle
controllers; also, other possible temporal profiles may be se-
lected subsequently as a result of on-line contingencies.

Vehicle Execution Layer
The execution layer of our architecture comprises two mod-
ules, namely a vehicle executive and a trajectory smoother.
The former computes reference trajectories for the vehicle
controllers. Specifically, the controller operates using a fixed
period of 60 ms, and for each period it requires a refer-
ence state and velocities. The input to the computation of
reference trajectories consists of a reference path (from the
motion planner), and temporal envelopes that have been re-
fined by the coordinator (from the common representation).
Each T (j)

i of vehicle j’s temporal envelope provides bounds
on when vehicle j should reach or leave a spatial envelope

S(j)i . A reference trajectory is extracted by computing a so-
lution to the temporal problem (committing to a particular
assignment of times to polyhedra), and combining the ob-
tained times with the reference path. This is done by first
applying a linear interpolation to assign a velocity profile to
the reference path (as the coordinator uses the initial tem-
poral envelopes T (j) to assign times, the required velocity
change between envelopes may require too high accelera-
tions). To ensure that the trajectory will be dynamically fea-
sible, we apply a trajectory smoothing method, which em-
ploys an MPC based scheme (similar to the one used by the
controller) to perform a simulated run where the computed
control actions form the smoothed reference trajectory. Al-
though we cannot guarantee the dynamic feasibility of the
solutions generated by the coordinator, we have in practice
never generated a solution which could not be executed.

Continuous Reasoning
The algorithms described above are computationally very
different, ranging from exponential (motion planning and
coordination) to low-order polynomial complexity. For this
reason, the frequency of operation of each algorithm varies
widely: vehicle controllers continuously solve a Quadratic
Programming problem every 60 ms (16.7 Hz), and the vehi-
cle executive updates the network and forwards reference
trajectories at 10 Hz. Coordination is performed at most
once per second. Finally, motion planning is only called into
play when new goals for vehicles are available, and trajec-
tory smoothing is triggered when motions are computed.

Coordinator-Motion Planning Loop
Motion planner and coordinator realize a more tight inte-
gration when needed. Given N vehicles, motions are first
computed independently, resulting inN trajectory envelopes
{S(1) ∪ T (1), . . . ,S(N) ∪ T (N)}. If the addition of con-
straints that eliminate conflicts were completely delegated to
the coordinator, conflicts could only be resolved by remov-
ing temporal overlap. However, there may be cases in which
the only way to enforce the absence of conflict also involves
removing spatial overlap. This is the case, for instance, when
two vehicles are required to switch places (Fig. 3): the mo-
tion planner would most likely generate completely overlap-
ping spatial envelopes for the two vehicles, thus eliminating
the possibility of temporal adjustment. In situations such as
these, the ScheduleTrajectories() algorithm fails.
The failure is signaled to the motion planner, along with
a critical set {i1, . . . , im} of vehicles that should be con-
sidered for multi-robot motion planning. The result is joint
motions for all m vehicles which include non-overlapping
polygons in which vehicles can yield for others. The new
envelopes are then temporally refined by the coordinator to
enforce that vehicles yield to each other.

The problem of identifying sets of vehicles the joint mo-
tion planning of which yields successful coordination is
solved as follows: each conflict that is visited (line 4 in
ScheduleTrajectories()) is added to a set C; let the
number of occurrences of vehicle i in C be occ(i, C). If co-
ordination fails, a vector of vehicle indices is created and

467

ordered by increasing occ(i, C); the first two elements of the
vector are provided to the motion planner; if subsequent co-
ordination fails, joint motion planning is attempted on the
vehicles whose indices are in position two and three of the
vector; after all successive pairs of indices in the vector have
been exhausted, the size of the set of indices is increased to
three, and so on. This is to increase the computational bur-
den of joint motion planning only to the extent necessary.

Coordinator-Vehicle Executive Loop
The vehicle executive also updates the temporal envelopes
of all vehicles to reflect the current state of vehicles as exe-
cution progresses. These updates allow the coordinator to
continuously propagate any deviations from the temporal
profile. This is necessary because although the constraints
Ta computed by the coordinator ensure the absence of colli-
sions and deadlocks, the delay of vehicle j may induce other
vehicles yielding to j to protract yielding. For example, sup-
pose vehicle 1 is scheduled to proceed through the intersec-
tion before vehicle 2 (Fig. 4(a)), which is scheduled to stay
idle for ∆yield; an obstacle blocks vehicle 1 before the inter-
section (Fig. 4(b)), rendering vehicle 1 idle for ∆brake; the
Ta computed by the coordinator are still contained in the ve-
hicles’ trajectory envelopes, thus forcing vehicle 2 to wait
for ∆brake + ∆yield in its current position until vehicle 1 has
passed the intersection. Here, it may be convenient to re-
invoke the coordinator to compute a set of resolving con-
straints T ′a to replace Ta. These constraints take into account
that time has elapsed since the last computation, which may
have altered the heuristic value hr of a resolving constraint.
This would be the case in the example above if vehicle 2’s
deadline had in the mean time become significantly closer;
the coordinator would then resolve the threat of collision by
giving precedence to vehicle 2, while forcing vehicle 1 to
procrastinate its mission if it recovers from the delay to ac-
commodate the new precedence. In general, the coordinator
is re-invoked whenever further delays could compromise a
mission deadline, so as to ensure that enough temporal slack
is available at trajectory envelope generation. In the very rare
occasions when spatial envelopes need re-calculation, mis-
sion deadlines could become unachievable. However, in this
highly unlikely circumstance, our system is still guaranteed
to notify failure and stop execution (see Theorem 2).

Coordination and vehicle execution are interleaved, and
therefore vehicles are subject to changing reference trajec-
tories. As the coordinator computes temporal bounds with-
out considering vehicle dynamics, the trajectory smoother is
responsible for re-computing the input to the j-th controller
whenever T (j) changes as a result of coordination.

Finally, it is necessary to account for the computational
overhead required by motion planning and coordination
when modeling the current state of the fleet in the constraint
network. If coordination occurs at time tnow, the resulting
constraints will eliminate conflicts under the assumption that
vehicles have not changed state between tnow and tnow+∆t,
where ∆t is the execution time of the coordinator. This may
lead to incorrect behavior. We address this issue by (1) en-
forcing a timeout ∆t to the solvers, and (2) allowing vehicle
executives to feed back the predicted state at time tnow+∆t.

If the solvers are not be able to generate valid trajectory en-
velopes in the given ∆t, a stopping signal is sent to all vehi-
cles to avoid unpredictable behaviour. This is followed by a
second invocation of the solvers with a longer ∆t. Note that
in our experiments this mechanism has never been triggered.

Formal Properties
We wish to provide an overall fleet management system that
can guarantee to compute trajectories that are kinematically-
and dynamically-feasible, conflict- and deadlock-free. We
subject these requirements to three assumptions (which ac-
count for the continuous nature of space and time): (1) the
map used by the motion planner is appropriately discretized
given the operational conditions of the system; (2) the set of
motion primitives for each vehicle is chosen appropriately;
and (3) parallel motions are never required to solve a multi-
robot motion planning problem.3 Under these assumptions:
Lemma 1. Given a multi-robot problem where parallel mo-
tions are not required, the motion planner is complete.

Proof. Under the assumption that the discretization of the
working space and the set of motion primitives of each vehi-
cle allow for a solution, completeness follows from the fact
that the algorithm performs a systematic search.

Lemma 2. If the motion planner finds a joint plan from Cs

to Cg , the plan is guaranteed to be schedulable.

Proof. Each edge in the search graph represents the appli-
cation of a single motion primitive of a single vehicle, while
the others are treated as obstacles. Thus, if vmin is arbitrarily
small, a joint plan extracted from the search graph connect-
ing Cs to Cg corresponds already to a valid schedule.

Lemma 3. The ScheduleTrajectories() algorithm
is correct.

Proof. By construction, the search algorithm resolves all
collisions by sequencing overlapping polyhedra of differ-
ent vehicles though temporal precedence constraints, hence
guaranteeing the absence of collisions. Constraints (1)
and (2) imply that no feasible trajectory can take infinite
time, thus eliminating the possibility of a temporal profile
which leads to deadlock.

Lemma 4. The ScheduleTrajectories() algorithm
is complete.

Proof. Follows from the fact that the algorithm performs a
systematic search in the space of possible sequencing con-
straints for conflicting polyhedra.

Theorem 1 (Correctness). If motion planning and
coorindation succeed, the resulting trajectory envelopes
contain at least one trajectory that is kinematically feasible,
conflict- and deadlock-free.

3Such instances correspond to situations in which no vehicle
can move without another moving concurrently, and are excep-
tional — e.g., bumper-to-bumper traffic in a one-lane roundabout.

468

1 vehicle [msec] 2 vehicles [msec]
SW1 SW3 SW1 SW3

OS (2) 4 (7) - (128) 379 (2163)
Cross - - (59) 67 (82) (61) 67 (74)

Table 1: Aggregated results for the motion planner test runs,
expressed as (25th percentile) median (75th percentile).

Proof. We impose a timeout ∆t on both motion planner and
coordinator, and these solvers assume that the initial state
of the vehicles is the one predicted for tnow + ∆t. Also, if
motion planning and/or coordination fail, a stopping signal
is sent to all vehicles so that they abort execution of possibly
conflicting trajectories. Hence, provided that the prediction
is accurate, correctness follows from Lemmas 2 and 3.

Theorem 2 (Completeness). If a set of kinematically-
feasible, conflict- and deadlock-free trajectories exists, the
motion planner and coordinator will yield a non-empty set
of trajectory envelopes.

Proof. Follows from Lemmas 1, 2, 4, and from the fact that
coordination failure will eventually lead to the exploration of
joint-motion solutions among all vehicles if necessary.

Experimental Evaluation
We evaluate our system along two lines. First, we briefly
validate the performance of the computationally intensive
solving components, namely the motion planner and the co-
ordinator. We then illustrate our system on industrial au-
tonomous forklifts, and perform a qualitative comparison
with state of the art approaches for fleet management.

Motion Planning
We present a short evaluation of our motion planner in two
simulated setups, Open Space and Crossing. We employed
two vehicle models, SW1 and SW3, representing the same
car-like vehicle. Both models have a grid resolution of 0.2
meters and |Θ| = 8. In SW1, |ΦSW1| = 1 and |PSW1| =
224, while in SW3 |ΦSW3| = 3 and |PSW3| = 736. A larger
set of motion primitives entails a larger branching factor in
the search space. When testing the full system, we never
generated joint plans for more than two vehicles at a time.
As we are interested in evaluating the planner in realistic
situations, here we consider the same number of vehicles.

The Open Space scenario is a 20 by 20 meters obstacle-
free space, where we used the SW1 model. We generated
two sets of 50 test runs. In each set we deployed, respec-
tively, one and two vehicles in the environment, with ran-
domly chosen start and goal configurations, and we solved
them optimally using A∗. The aggregated execution times
are summarized in Table 1 (upper row), where we report
their median and the 25th and 75th percentile. Most of the
single-vehicle instances were solved in less than 7 ms, while
when two vehicles were present at the same time, the me-
dian time rose to 379 ms and 75% of the problems took less
than 2 seconds to be solved. There were, however, 3 outliers
which took more than 30 seconds to be completed.

(a) (b)

Figure 5: Crossing scenario: 5(a) starting configurations in
one of the test runs; 5(b) schedulable joint plan for the two
vehicles.

In the Crossing scenario, two vehicles maneuver in close
quarters to pass a crossing. The simulated environment has a
size of 10 by 10 meters and the vehicles’ start and goal con-
figurations are placed at one of the ends of the corridors. We
prepared 14 test runs, covering all possible start/goal combi-
nations for two vehicles without symmetries. Fig. 5(a) shows
the start configurations of one of our test runs, where the two
vehicles are required to swap places: the joint solution found
by the planner ensures that one of the vehicles moves aside
to let the second one pass (Fig. 5(b)). We repeated the same
test runs using models SW1 and SW3, and we explored the
search space using A∗. The results, in terms of execution
times, are presented in Table 1. The calculation of the joint
plans required in all runs less than a second, even when we
used model SW3 which presents a |PSW3| = 736.

Coordination
The evaluation of the coordinator was performed with a
benchmark of 900 problems. On an 50 by 50 meters obstacle
free map, we pre-defined 80 poses, where the (x, y) coordi-
nates of each pose correspond to one of 10 points distributed
on a circle, 40 meters in diameter, and where the orientation
θ is one of 8 pre-determined angles. The problems were di-
vided into 9 sets, each corresponding to an increasing num-
ber of vehicles concurrently deployed in the map, from 2 to
10. For each set, we performed 100 runs. In each run, we
randomly chose initial and final poses for the number of ve-
hicles required, only avoiding that any two vehicles had the
same starting or final (x, y) positions. To make the problems
more difficult to solve, we also added temporal constraints
imposing that the temporal distance between all initial poly-
hedra is zero, thus forcing all vehicles to start moving at the
same time. This, combined with a non-zero minimum speed
for all vehicles, is what allows some benchmark problems to
be unsatisfiable (UNSAT). We measured the time required
by the coordinator to find a conflict-free solution for each
run, or to identify the problem as unsolvable. The results are
shown in Fig. 6 (the percentage of satisfiable problems is
shown on top of each set). As expected, solving time grows
exponentially with the number of vehicles involved.

Two features of these results are interesting. First, note
that problem difficulty here is somewhat artificially inflated,
as all vehicles are constrained to operate in a relatively small
area at roughly the same time and they are also constrained

469

vehicle 1

vehicle 2

(a) (e)(d)(c)(b) (f)

Figure 7: Second scenario: (a) vehicles 1 and 2 and their targets; (b) vehicle 1 is braked, causing vehicle 2 to yield; (c) the brake
is released and vehicle 1 resumes motion; (d) vehicle 2 resumes motion; (e) vehicle 1 and (f) vehicle 2 reach their final poses.

SAT
98%

SAT
97%

SAT
91% SAT

85%

SAT
79% SAT

71%
SAT
50%

SAT
48%

SAT
37%

2 3 4 5 6 7 8 9 10

UNSAT
SAT

All

Number of vehicles

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

S
ch

ed
u
li

n
g
 t

im
e

[m
se

c]

Figure 6: Quantitative evaluation of the coordinator.

to start moving at the same time. Even under these unlikely
circumstances, the average resolution time remains under
one second up to problems with 8 vehicles deployed. Sec-
ond, the calculation of each set of discrete trajectory en-
velopes never takes more than 50 milliseconds (the most
challenging problem here contains 94 polyhedra).

Test Cases with Industrial Forklifts
Our system has been deployed on two forklift platforms.
The platforms have car-like kinematics and are controlled by
velocity and steering commands. Three scenarios illustrate
the principal features of our approach. The first scenario in-
volved repeatedly posting goal poses for the two forklifts
in the test environment. The limited space leads to signifi-
cant spatio-temporal overlap, thus incurring frequent yield-
ing behavior. The second scenario is a variant of the first
in which unforeseen contingencies were created by sending
the vehicles brake commands (Fig. 7). We can contrast the
scenario with state of the art approaches to coordination of
large robot teams, e.g., the work of Kleiner, Sun, and Meyer-
Delius (2011) in which robots are assumed to move on a
grid. Although the method provides a means to resolve con-
flicts on-line, it cannot guarantee adherence to other tem-
poral constraints, as the resolving strategies used are local.
Also, grid motions would render impossible to satisfy the
non-holonomic constraints of common industrial vehicles.

As a third scenario (see video attachment), we illustrate
the ability of our system to recover from a coordination fail-
ure. The vehicles are instructed to switch poses, causing the
motion planner to synthesize completely overlapping spa-
tial envelopes. Consequently, the coordinator fails to find
conflict-free envelopes and the multi-robot motion planner
generates a new trajectory which ensure spatially disjoint
polyhedra. Calculating local motions for each robot inde-
pendently (Kleiner, Sun, and Meyer-Delius, 2011) would
not safeguard against unschedulable situations. Also, meth-

ods which assign pre-defined priority levels to different
robots (ter Mors, 2011), or use merit-based tokens to decide
which agent should take initiative (Desaraju and How, 2011)
cannot ensure deadlock-free situations.

Figure 8: Spatial envelopes generated for a set of vehicles in
a logistics environment.

We also performed a set of runs in a simulated indus-
trial production site (using a physical simulation in Gazebo),
which involve one to five vehicles in an area that affords
long motions. The layout used in the simulation is part of a
factory in which automatically guided vehicles transit along
pre-defined paths. Conversely, in our simulation, the mo-
tions of the vehicles were computed on-line. Fig. 8 shows
the occupancy map of the environment and the spatial en-
velopes for an initial set of target poses. The task was to tra-
verse between production and storage areas to simulate the
transportation of goods. To evaluate the performance of the
system, we computed the amount of idle time for each ve-
hicle. The analysis shows that idle time never exceeds 30%,
even with 5 vehicles and under the assumption that motion
planning and coordination are triggered only when previous
goals are reached. This extremely unsophisticated form of
task dispatching represents a worst case, as it forces vehicles
to enter an idle state while new envelopes are computed, and
is far less advanced than current industrial practice.

Conclusions and Future Work
We have presented a fleet management system which ad-
heres to several key requirements distilled from industrial
applications, among which completeness and correctness.
Our approach is grounded on a common constraint-based
representation of trajectories, called trajectory envelopes.
Trajectory envelopes represent spatial and temporal con-
straints on coordinated trajectories for all vehicles in the
fleet. Several solvers, each working on a different aspect
of the overall problem, continuously refine the trajectory
envelopes to remove infeasible solutions. The overall sys-

470

tem, as well as its component solvers, have been tested both
in simulation and with autonomous industrial forklifts. Our
work opens several interesting avenues for future research.
A first, interesting possibility would be the integration of
new solvers in our system, which can impose additional con-
straints, e.g., high-level task allocation. Another important
aspect that we intend to explore is how to realize a tighter in-
tegration between motion planner and coordinator, as we be-
lieve that an intertwined approach could improve the quality
of the solutions. Also, from the motion planner perspective,
it would be very interesting to investigate the application of
state of the art multi-robot path planning algorithms, both
optimal (Wagner and Choset, 2011) and suboptimal (Röger
and Helmert, 2012), to the lattice state space – this requires
adapting these algorithms to make them take into account
the kinematic constraints of the vehicles. Finally, we also
intend to study strategies to further reduce idle time and in-
crease operations efficiency.

Acknowledgments. The research at Örebro University
was supported by project “Safe Autonomous Navigation”
(SAUNA), funded by the Swedish Knowledge Foundation
(KKS). The research at USC was supported by NSF under
grant number IIS-1319966 and ONR under grant number
N00014-09-1-1031. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.

References
Bekris, K. E.; Grady, D. K.; Moll, M.; and Kavraki, L. E.
2012. Safe distributed motion coordination for second-
order systems with different planning cycles. Int. Journal
of Robotics Research (IJRR) 31(2).

Brucker, P., and Knust, S. 2006. Complex Scheduling.
Springer.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109–136.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.

Desaraju, V., and How, J. 2011. Decentralized path plan-
ning for multi-agent teams in complex environments using
rapidly-exploring random trees. In Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA).

Faltings, B. 2006. Distributed constraint programming. In
Rossi, F.; van Beek, P.; and Walsh, T., eds., Handbook of
Constraint Programming. Elsevier. 699–729.

Floyd, R. W. 1962. Algorithm 97: Shortest path. Communi-
cation of the ACM 5:345–348.

Karaman, S., and Frazzoli, E. 2011. Sampling-based al-
gorithms for optimal motion planning. The Int. Journal of
Robotics Research 30(7):846–894.

Kavraki, L.; Svestka, P.; Latombe, J.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. on Robotics
and Automation 12(4):566–580.
Kleiner, A.; Sun, D.; and Meyer-Delius, D. 2011. Armo:
Adaptive road map optimization for large robot teams. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS).
Knepper, R. A., and Kelly, A. 2006. High performance state
lattice planning using heuristic look-up tables. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS).
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. TR 98-11, Computer Science
Dept., Iowa State University.
LaValle, S. M. 2006. Planning Algorithms. Cambridge,
U.K.: Cambridge University Press.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems 16.
Luna, R., and Bekris, K. E. 2011. Push and swap: fast coop-
erative path-finding with completeness guarantees. In Proc.
of the 22nd Int. Joint Conf. on AI (IJCAI).
Marshall, J.; Barfoot, T.; and Larsson, J. 2008. Autonomous
underground tramming for center-articulated vehicles. Jour-
nal of Field Robotics 25(6-7):400–421.
Pecora, F.; Cirillo, M.; and Dimitrov, D. 2012. On mission-
dependent coordination of multiple vehicles under spatial
and temporal constraints. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS).
Pivtoraiko, M., and Kelly, A. 2009. Fast and feasible delib-
erative motion planner for dynamic environments. In Proc.
of the ICRA Workshop on Safe Navigation in Open and Dy-
namic Environments: Application to Autonomous Vehicles.
Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics 26(3):308–333.
Qin, S., and Badgwell, T. 2003. A survey of industrial model
predictive control technology. Control Engineering Practice
11:733–764.
Röger, G., and Helmert, M. 2012. Non-optimal multi-agent
pathfinding is solved (since 1984). In Proc. of the Fifth An-
nual Symp. on Combinatorial Search (SoCS).
ter Mors, A. 2011. Conflict-free route planning in dynamic
environments. In Proc. of the IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems (IROS).
Tsang, E. 1993. Foundations of Constraint Satisfaction.
Academic Press, London and San Diego.
Wagner, G., and Choset, H. 2011. M*: A complete multi-
robot path planning algorithm with performance bounds. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS).

471

