Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

A Robotic Execution Framework for Online Probabilistic (Re)Planning

Caroline P. Carvalho Chanel

caroline.chanel @isae.fr
Université de Toulouse - ISAE
10 av. Edouard-Belin, 31055 Toulouse, France

Abstract

Due to the high complexity of probabilistic planning
algorithms, roboticists often opt for deterministic re-
planning paradigms, which can quickly adapt the cur-
rent plan to the environment’s changes. However, prob-
abilistic planning suffers in practice from the common
misconception that it is needed to generate complete or
closed policies, which would not require to be adapted
on-line. In this work, we propose an intermediate ap-
proach, which generates incomplete partial policies tak-
ing into account mid-term probabilistic uncertainties,
continually improving them on a gliding horizon or
regenerating them when they fail. Our algorithm is a
configurable anytime meta-planner that drives any sub-
(PO)MDP standard planner, dealing with all pending
and time-bounded planning requests sent by the ex-
ecution framework from many reachable possible fu-
ture execution states, in anticipation of the probabilis-
tic evolution of the system. We assess our approach on
generic robotic problems and on combinatorial UAVs
(PO)MDP missions, which we tested during real flights:
emergency landing with discrete and continuous state
variables, and target detection and recognition in un-
known environments.

Introduction

In many robotic applications, autonomous agents are faced
to complex task planning problems, which may not be
known before the mission, and thus must be solved on-
line. Classical approaches consist in making deterministic
assumptions about the future evolution of the system, then
plan a sequence of actions on the basis of these assump-
tions, and potentially replan when the current state of the
world differs from the predicted one. Complex plan mon-
itoring and repairing techniques are required to maximize
the chance of mission success (Lemai and Ingrand 2004;
Finzi, Ingrand, and Muscettola 2004; Fazil Ayan et al. 2007;
Doherty, Kvarnstrom, and Heintz 2009). These techniques
may rely on “real-time” (or “anytime”) planning algorithms
(Korf 1990) to boost plan generation and reduce the overall
mission time, but such algorithms are not sufficient in them-
selves to execute the mission. Indeed, they tend to compute

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Charles Lesire, Florent Teichteil-Konigsbuch

454

{charles.lesire florent.teichteil}. @onera.fr
Onera — The French Aerospace Lab
2 av. Edouard-Belin, 31055 Toulouse, France

successive suboptimal plans, whose quality increases over
time, which can be executed without waiting for the final
optimal plan to be produced. However, there is no strong
guarantees that each plan, even the first action of the plan,
is computed in a known limited time, which is necessary for
smooth plan execution and integration with other processes.

On the other hand, some planning algorithms take into
account probabilities about the possible future evolutions of
the system, by generating a plan conditioned on all future
contingencies, named policy. Due to the high complexity of
planning under probabilistic uncertainties, most state-of-the-
art algorithms do not construct full policies, i.e. defined over
the entire state space. Instead, they compute either partial
closed policies (Meuleau et al. 2009; Hansen and Zilberstein
2001), i.e. defined over a subset of the states but which are
guaranteed to succeed if the planning model is physically ac-
curate, or incomplete policies that are continually completed
and improved over time (Barto, Bradtke, and Singh 1995;
Bonet and Geffner 2009; Pineau, Gordon, and Thrun 2006;
Ross and Chaib-Draa 2007). However, none of these ap-
proaches are fully reliable in robotics. In the first case, build-
ing closed policies would be useless because the planning
model rarely match the real physical model, meaning that
the execution has actually a high chance to fail in practice. In
the second case, the algorithms are certainly said to be any-
time, but they cannot guarantee to provide an action on time
when queried by the execution engine, simply because they
all rely on uninterruptible so-called Bellman backups (Put-
erman 1994) whose completion time is difficult to bound.

In this paper, we propose an intermediate approach where
we continually improve an incomplete partial policy over
time, like in anytime probabilistic methods, but we allow
ourselves to query the policy before completion of the opti-
mization at any time and stop the current planning instance
in order to replan from a new execution state, much like de-
terministic plan/replan approaches. Our method is formal-
ized as an execution model that embeds the AMPLE proba-
bilistic meta-planner, which guarantees to provide safe and
optimized actions in the current state of the world, at pre-
cise execution time points. AMPLE is a complete rewriting
of routines for solving (Partially Observable) Markov Deci-
sion Processes in a general algorithmic schema, which opti-
mizes several local policy chunks at future possible obser-
vations of the system, while executing the current action.

On the contrary, existing (PO)MDP anytime algorithms op-
timize the policy only from the robot’s current observation,
not anticipating its possible interactions with its environ-
ment, so that no applicable action may be available in the
current execution state when queried by the execution con-
troller. We first introduce (PO)MDP modeling and optimiza-
tion. Then, we present a model for anytime policy optimiza-
tion and execution under time constraints, and the corre-
sponding AMPLE algorithm. We finally test our algorithm
on random on-line MDP problems, as well as real complex
UAV missions modeled as on-line (PO)MDPs that were suc-
cessfully tested in real conditions. To the best of our knowl-
edge, these are among the first applications of (PO)MDPs
on-board UAVs, whose problems cannot be known prior to
the flight, and whose policies are optimized and successfully
executed during the flight. We show that AMPLE achieves
good quality while being always reactive to the execution
engine’s queries, which provides a practical paradigm for
on-line (PO)MDP planning in large robotic problems.

Policy optimization under probabilistic
uncertainties

In this section, we formally define Markov Decision Pro-
cesses (MDPs), a popular and convenient general model for
sequential decision-making under uncertainties. We present
both the complete observation case (simply noted as MDPs,
see (Puterman 1994)) and the Partially Observable one
(POMDPs, see (Kaelbling, Littman, and Cassandra 1998)),
as our AMPLE planner matches both cases.

Complete and Partially Observable MDPs

A (Partially Observable) Markov Decision Process is a tu-
ple M = (S,0,A,T,R,Q) where: S is a set of states ;
O is a set of observations, in the complete observable case,
O = S ; Ais aset of actions ; T is the probabilistic tran-
sition function, such that, for all (s,a,s’) € S x A x S,
T(s,a,s") = Pr(s' | a,s); R is the reward function, such
that, for all (s,a,s’) € S x A x S, R(s,a,s’) is the reward
associated to the transition T'(s, a,) ; 2 is the probabilistic
observation function, such that, forall (s’, a,0) € Sx AxO,
O(s',a,0) = Pr(o] a, s'); in the complete observable case,
O(s',a,0) = 1{y—,).Itis often convenient to define the ap-
plication function app : A — 25, such that, for all a € A,
app(a) is the set of states where action « is applicable. Be-
sides, the successor function succ : S x A — 25 defines,
forall s € S and a € A, the set of states succ(s, a) that are
reachable in one step by applying action a in state s.

Algorithms for solving (PO)MDPs

Solving (PO)MDPs consists in computing an action policy
that optimizes some numeric criterion V', named value func-
tion. In general, for a given policy 7, this criterion is defined
as the discounted expected sum of stochastic rewards gath-
ered when successively applying 7 from the decision pro-
cess’ beginning up to the planning horizon which may be
infinite. In the MDP case, states are completely observable
sothat w : S — A is directly applicable over the state space.
In the POMDP case, states are not directly observable and
the policy is not applicable by the controller over the hidden

455

states of the system. Instead, the policy is applied over the
history of actions performed and of observations gathered
from the beginning of the decision process, which allows the
planner to compute a probability distribution over the possi-
ble states of the system at each time step, named belief state,
thanks to successive applications of Bayes’ rule (Kaelbling,
Littman, and Cassandra 1998). We note B C [0; 1] the set
of belief states ; for all b € B,) _gb(s) = 1. It often
happens that the belief state is computed by the controller it-
self instead of the planner: in this case, the policy is defined
over belief states, 7 : B — A. Some algorithms optimize
7 over all the possible initial (belief) states of the world,
like linear programming (Kaelbling, Littman, and Cassan-
dra 1998), value iteration, policy iteration (Puterman 1994;
Hoey et al. 1999). Some other recent planners use the knowl-
edge of the system’s initial (belief) state, and sometimes
of goal states to reach via heuristic search, in order to
compute a partial policy that is defined only over a sub-
set of (belief) states that are reachable from the initial (be-
lief) state by successively applying feasible actions from
it (LAO* (Hansen and Zilberstein 2001), (L) RTDP (Bonet
and Geffner 2003), RFF (Teichteil-Konigsbuch, Kuter, and
Infantes 2010), HAO* (Meuleau et al. 2009), HSVI (Smith
and Simmons 2005), RTDP-Be1 (Bonet and Geffner 2009),
or AEMS (Ross and Chaib-Draa 2007)).

General algorithmic schema of (PO)MDP solving

As far as we know, most (PO)MDP algorithms, at least itera-
tive ones, follow the algorithmic schema depicted in Alg. 1.
They first initialize data structures and, for some algorithms,
store the set of possible initial states (MDPs) or the ini-
tial belief state (POMDPs) (Line 1). Then, they improve the
value function (Line 2), possibly using the discount factor ~.
During this step, some algorithms also update the policy or
the set of explored states (heuristic search MDP algorithms)
or beliefs (point-based or heuristic search POMDP algo-
rithms). They iterate until a convergence test becomes true
(Line 2), for instance when the difference between two suc-
cessive value functions is e-bounded, or when two succes-
sive policies are equal, or when the policy becomes closed,
or when a maximum number of iterations N is reached.
Some sampling-based algorithms like RTDP or HSVI may
eventually converge after an infinite number of iterations, so
that the convergence test should be always false in theory.
Finally, data structures are cleaned before returning the opti-
mized value function and corresponding policy (Line 3); in
some cases, the policy is computed for the first time during
this final step, once the value function has converged.

Algorithm 1: General schema of (PO)MDP algorithms

input : (POOMDP M,0 <y < 1l,e >0, N € N*, set of
initial states or belief state [

output: Value function V' and policy 7

solve_initialize([);

2 repeat solve_progress(y);
until solve_converged(e, N);

3 solve_end(); // compute m if not done yet

4 return (V,7);

—

// update V or w

Anytime algorithms (Bonet and Geffner 2003; Pineau,
Gordon, and Thrun 2006; Bonet and Geffner 2009) guar-
antee to quickly build an applicable policy at initialization
(Line 1) or at each improvement (Line 2), but no time thresh-
old is given that correspond to the current action’s expected
execution time in order to constrain the policy’s building or
improvement time in such a way that it is always applica-
ble in the robot’s next execution state. Therefore, when the
execution controller queries an action in the next execution
state, the policy may be broken and not applicable at all,
which is not acceptable for time-constrained robotic mis-
sions. To overcome this issue which has been nearly never
studied in the (PO)MDP literature, a finer control over the
optimization process and its interaction with the possible fu-
ture execution states of the robot is needed, as we propose in
the next.

Anytime policy optimization and execution

In this section, we present our AMPLE (Anytime Meta PLan-
nEr) planner, which drives any (PO)MDP planner that con-
forms to the general algorithmic schema depicted in Algo-
rithm 1, and which is proved to be strictly anytime in the
sense of policy execution under time constraints: it ensures
to return an applicable relevant action in any possible given
state at a precise time point, when required by the execution
engine. AMPLE is designed as a configurable bi-threaded
program: at first glance, an “execution” thread reactively
interacts with the execution engine by managing multiple
present and future planning requests, while an “optimiza-
tion” thread deliberatively optimize planning problems in
background by controlling the actual (PO)MDP optimizer.
To this end, the (PO)MDP optimizer, which was normally
conceived to be run as in Algorithm 1, is now broken up into
several functions (solve_initialize, solve_progress,
solve_converged, solve_end) that are directly managed
by the optimization thread of the meta-planner according to
the planning requests pending in the execution thread. In this
sense, the optimization thread can be seen as an algorithmic
rewriting of Algorithm 1. Planning requests management in
the execution thread conforms to a formal model defined as
a configurable (controllable) finite state machine (Figure 1),
whose particular configuration in conjunction with the op-
timization thread algorithm actually yield to a well-defined
planning algorithm. To be more concrete, Algorithm 1 is a
particular instance of the execution thread’s finite state ma-
chine and optimization thread’s algorithm together, so that
we can exactly reproduce algorithms like VI, LAO*, RTDP,
HSVI, AEMS, etc. Most importantly, other configurations
yield to anytime original algorithms, built upon the previous
ones.

We first formalize planning requests, which AMPLE can
deal with. Then, we define the configurable reactive finite
state machine of the execution thread, as well as the de-
liberative algorithm of the optimization thread. Finally, we
formalize two particular anytime instances of the AMPLE
meta-planner, which are actually two original anytime prob-
abilistic planning algorithms based on the solve_x func-
tions of standard (PO)MDP algorithms, disassembled from
Algorithm 1 and reorganized in a more general algorithm.

456

Planning requests

Planning requests are sent by the execution engine to the
AMPLE planner. When received, the latter must update the
current policy depending on information included in the
planning request, whichis atuple R = (I, A, a, o) defined
as follows. First, I is a set of states (MDPs) or belief states
(POMDPs) from which the policy must be updated; belief
states are computed using the history of actions, observa-
tions and Bayes’ rule. Second, A is the (continuous) maxi-
mum duration of the policy update; if the planning request is
received at ¢y by the AMPLE planner, then the execution en-
gine may ask for an optimized action to execute in any states
or observations x € I at any time point ¢t > to + A. Third,
« is the particular algorithm of the sub-(PO)MDP planner to
use in order to update the policy; different algorithms may
be used in different planning requests by the execution en-
gine, in order for instance to adapt optimization to the par-
ticular (PO)MDP that is being solved; it may be also use-
ful to unjam the AMPLE planner if it is trapped because of
the current algorithm that would not be appropriate to the
(PO)MDP problem solved. Fourth, «, contains the parame-
ters of algorithm « (e.g., € and 7).

It is worth noting that, according to the model of the plan-
ning problem, the set of (belief) states I does not need to
be physically reachable from the (belief) state of the system
that is currently being executed. It has two pragmatic ad-
vantages: first, the execution engine can broaden the set of
future states or observations from which the AMPLE planner
is requested to plan, in anticipation of errors in the model
of the planning problem that would shift the most expected
future states or observations away from the true current state
of the system. Second, in case this shift would not have been
anticipated and the true current state is not included in the
policy, the execution engine can still ask AMPLE to recon-
struct a fresh local policy from the current state after a short
bootstrap duration.

The AMPLE framework

Planning requests constitute the core information exchanged
between the two threads of AMPLE, whose main routine
is depicted in Procedure 1 and explained in the next para-
graph. Each procedure or algorithm presented in the next
relies on some parts of the following data structures and
notations (bold italic data are shared between the execu-
tion and optimization threads): M, (PO)MDP model of the
problem; psm, state machine that formalizes the interaction
between the execution and optimization threads of AMPLE;
pln, sub-(PO)MDP planner driven by AMPLE in the opti-
mization thread; my, default policy generated before exe-
cution; pr, list of planning requests managed by the exe-
cution thread and solved by the optimization thread, mod-
elled as a first-in first-out queue (first received requests are
first solved); g, backup policy defined on the set of (be-
lief) states I of each solved planning request; stopCurren-
tRequest, boolean indicating whether the current request be-
ing solved in the optimization thread should be interrupted;
stopPlannerRequested: boolean indicating whether AMPLE
should be stopped (for instance when the mission is fin-
ished).

——— immediate transition
(execution thread)

Waiting
Proble

load_problem

- — — automatic transition
when processing

done (optimization
thread)

‘manbafuv[a“ppn

get_action

I get_action I

Figure 1: AMPLE’s Controllable Finite State Machine

Procedure 1 describes the main routine of AMPLE. After
creating an empty list of planning requests, an empty backup
policy for solved requests and initializing stopping condition
booleans (Lines 1 to 4) , AMP LE loads the state machine that
defines the interactions with the system’s execution engine
(Line 5), and the default policy required to guarantee reac-
tivity in case the optimized policy would not be available
in the current execution state (Line 6). Note that the default
policy can be a parametric or heuristic policy specifically
designed for a given mission. Then, it launches two concur-
rent threads: the optimization thread (Line 7), where queued
planning requests are solved, and the execution thread (Line
8), which interacts with the system’s execution engine and
queues planning requests.

Procedure 1: AMPLE _main()
input: M, pin
Create empty list of planning requests: pr;
Create empty backup policy for solved requests: 7y, ;
stopCurrentRequest < false;
stopPlannerRequested < false;
psm < load_AMPLE_state_machine();
mgq < load_default_policy(M);
launch_thread(AMPLE_optimize(M, pln, psm, pr,
Ty, StopCurrentRequest, stopPlannerRequested));

8 launch_thread(AMPLE_execute(M, psm, 7q , pr, s,

stopCurrentRequest, stopPlannerRequested));

N B W N =

AMPLE’s execution thread. The execution thread adds
and removes planning requests according to the current ex-
ecution state and to the future probable evolutions of the
system, and reads the action to execute in the current exe-
cution state in the backup policy or in the default one. Dif-
ferent strategies are possible, leading to different actual any-
time algorithms described later. Sequences of additions and
removals of planning requests and of action retrievals are
formalized in the state machine defined in Figure 1, which
also properly defines synchronizations between the execu-
tion and the optimization threads.

The add_plan request command of this state machine

457

simply puts the state machine in the PLANNING mode and
adds a request r to the queue of pending planning requests
pr. The remove_plan request command removes a re-
quest r only if it is not being solved by the optimization
thread, i.e. only if it is not at the front of the list of pending
planning requests pr. Otherwise, it sets the stopCurrentRe-
quest variable to true in order to request the optimization
thread to stop solving this request. Finally, the get_action
command reads the optimized action to execute in the cur-
rent execution state if it is included in the backup policy 7,
If not, the action from the default policy 74 is used, so that
the planning process is always reactive to the robot’s global
execution engine.

AMPLE’s optimization thread. The optimization thread
(Algorithm 2) is a complete reorganization of standard
(PO)MDP algorithmic schema depicted in Algorithm 1, in
order to automatically manage the queue of planning re-
quests and to locally update the policy in bounded time
for each planning request. It is conceived as an endless
loop that looks at, and accordingly reacts to, the cur-
rent mode of the state machine defined in Figure 1. If
the mode is LOADING_PROBLEM (further to an activation
of the load problem command in the execution thread),

Algorithm 2: AMPLE optimize

1 solvingRequest < false;

2 while true do

3 if psm.state = LOADING_PROBLEM then
4 subpln.load_problem(M);

5 psm.state <— PROBLEM_LOADED;

6 else if psm.state = PLANNING then

7 if solving Request = false then

8 | launch front request();

9 else

10 t < get current CPU time ;

1 if subpln.solve_converged(pr.front.a,)
or t — requestStartTime > pr.front.A
or stopCurrentRequest = true
or stopPlannerRequested = true then

12 subpln.solve_end();

13 T < T U subpln.policy(pr.front.I);

14 pr.pop_front();

15 stopCurrentRequest < false;

16 if pr is not empty then

17 | launch front request();

18 else

19 psm.state <— PROBLEM_SOLVED;

20 L solving Request < false;

21 else

2 subpln.solve_progress(pr.front.ay);

23 T < T U subpln.policy(pr.front.I);

24 Procedure launch_front_request

25 solvingRequest < true;

26 subpln.set_algorithm(pr.front.a,pr.front.ap);
27 requestStartTime < get current CPU time ;

28 subpln.solve_initialize(pr.front.l);

it loads the problem from the (PO)MDP model M and
changes the mode to PROBLEM_LOADED (Lines 3 to 5). If
the mode is PLANNING (further to an activation of some
add_plan_request commands in the execution thread), it
tests if the front planning request in the queue is already
being solved (Line 7). If not, it launches its optimization
(Lines 25 to 28), which mainly consists in recording the
current CPU time and calling the solve_initialize pro-
cedure of the sub-(PO)MDP planner. Otherwise, it means
that the optimization thread was already solving this re-
quest from a previous iteration of its endless loops. In this
case, it tests if the optimization of this request must end
now (Line 11), which can happen if the sub-(PO)MDP plan-
ner has converged, or if the time allocated to solve the re-
quest has been consumed, or if requested by the execution
thread via the remove_plan_request command, or if the
AMPLE planner has to be stopped. If all these conditions
are false, we continue to optimize the request by calling the
solve_progress procedure of the sub-(PO)MDP planner
and we update the backup policy 7, at the initial (belief)
state of the request (Lines 22 to 23). Otherwise, we call the
solve_end procedure of the sub-(PO)MDP planner, update
the backup policy and remove the current planning request
from the queue (Lines 12 to 15). Then, we launch the next
planning request in the queue if any, or change the mode of
the state machine to PROBLEM_SOLVED.

At least two helpful instantiations of AMPLE

All ingredients are there to design anytime probabilistic
planning algorithms, depending on how AMPLE’s execution
thread’s state machine (see Figure 1) is used. Since AMPLE’s
optimization thread automatically manages the queue of
planning requests to solve (see Algorithm 2), we just have
to take care of adding and removing planning requests in the
execution thread according to the current execution state and
to the future probable evolutions of the system. First of all,
we have to bootstrap the planner so that it computes a first
optimized action in the initial (belief) state of the system.
Many strategies seem possible, but we present a simple one
in Procedure 2.

Procedure 2: bootstrap_execution()

input : M, psm, pr

output: b: initial (belief) state
load_problem(M);

Wait until psm.state = PROBLEM_LOADED;
Create initial planning request ;

r.I < initial (belief) state;

r.AA < choose bootstrap planning time;

r.o, 7.0 +— choose (PO)MDP solving algorithm;
add_plan_request(psm,pr,r);

Wait r.A amount of time;

b < observe and update current (belief) state;
return b;

e ® N AN R W N =

—
5

We first load the problem from the (PO)MDP model M
and wait for its completion by looking at the mode of the
state machine (Lines 1-2). We then create a first planning
request, filled with the initial (belief) state of the system,
a chosen bootstrap planning time A, and a (PO)MDP al-
gorithm with its parameters (Lines 3-6). Finally, we add a

458

planning request to the queue of planning requests, wait an
amount A of time (meanwhile the request is optimized in
the optimization thread), and return the (belief) state corre-
sponding to the observation of the system (Lines 7-10).
Now that the planner is bootstrapped, we can go into the
“act-sense-plan” loop, for which we propose two different
planning strategies presented in the next paragraphs.

AMPLE-NEXT: predicting the evolution of the system one
step ahead. In this setting, each time the system begins to
execute an action a, we compute the next possible (belief)
states of this action and add planning requests for each of
these (belief) states. With this strategy, we can anticipate the
short-term evolution of the system so that we give a chance
to the optimization thread to provide an optimized action on
time when the current action has completed in the execution
thread. Moreover, as the internal policy of the sub-(PO)MDP
planner is not cleared between successive planning requests,
the chance to provide an optimized action in the current ex-
ecution state increases with time. The AMPLE-NEXT strat-
egy is described in Algorithm 3. Once an action has com-
pleted, we look at the next action a to execute by calling
the get_action command for the current execution state;
we start executing it and compute its expected duration A,
(Lines 3 to 5). Then, we add planning requests for each pos-
sible next observation of the system (translated into a belief
state b’ in the partially observable case), whose maximum
computation time is proportional to A, and to the probabil-
ity of getting b’ as effect of executing a (Lines 6 to 11). We
wait for action a to complete (meanwhile added planning re-
quests are solved in the optimization thread) and remove the
previous planning requests in case they are not yet solved
by the optimization thread (Lines 12 to 14). Finally, we ob-
serve the current execution state (Line 15) and go back to
the beginning of the execution loop (Line 3).

Algorithm 3: AMPLE-NEXT _execute

1 b < bootstrap_execution(M,psm,pr);
2 while stopPlannerRequested = false do

3 a < get_action(psm, w4, e, b);

4 Start execution of action a;

5 A, < expected duration of action a;

6 prNext < empty list of planning request pointers;

7 for b’ € succ(b,a) do

8 rI b

9 r.A + Pr(t']a,b) x Aq;

10 add_plan_request(psm,pr,r);

1 prNext.push_back(r);

12 Wait until action a has completed;

13 for r € prNext do

14 remove_plan_request(psm,pr,r,
stopCurrentRequest);

15 b < observe and update current (belief) state;

AMPLE-PATH: reasoning about the most probable evo-
lution of the system. The previous strategy lacks from
execution-based long-term reasoning, even if the sub-
(PO)MDP planner actually reasons about the long-term evo-
lution of the system when optimizing planning requests. The

strategy presented in this paragraph rather analyzes the most
probable execution path of the system, which can be com-
puted by applying the current optimized policy or the de-
fault one if necessary from the current execution state via
successive calls to the get_action command. This strategy
is formalized in Algorithm 4. We first choose the depth for
analyzing the (belief) state trajectory of the most probable
path (Line 1), noted pathDepth. As in the AMPLE-NEXT
strategy, we then bootstrap the execution (Line 2) and en-
ter the “act-sense-plan” loop where we first get the action
a to apply in the current execution state, begin to execute
it and compute its expected duration A, (Lines 4-6). Then
(Lines 7-14), we successively apply the get_action proce-
dure and get the most probable (belief) state at each iteration,
starting from the current (belief) state b up to pathDepth.
For each visited (belief) state of the explored trajectory, we
add a planning request starting at this (belief) state with a
maximum computation time proportional to A, and to the
inverse of pathDepth. The end of the loop (Lines 15-18) is
identical to AMPLE-NEXT.

Algorithm 4: AMPLE-PATH _execute
1 pathDepth < choose path lookahead depth;

2 b < bootstrap_execution(M, psm,pr);

3 while stopPlannerRequested = false do

4 a < get_action(psm, 74, e, b);

5 Execute action a;

6 A, <+ expected duration of action a;

7 prPath < empty list of planning request pointers;

8 b« b;

9 for 0 < k < pathDepth do

10 b+ argmax Pr(b"|get_action(t'),b’);
b’ €suce(b’,a)

1 r.I < b;

12 r.A pathATaepth;

13 add_plan request(psm,pr,r);

14 prPath.push_back(r);

15 Wait until action a has completed;

16 for r € prPath do

17 remove_plan request(psm,pr,r,

stopCurrentRequest);
18 b < observe and update current (belief) state;

Experimental evaluation
Random MDP problems

We first evaluated the AMPLE meta-planner on random
MDP problems using both the NEXT and PATH execution
processes. The solved problems are random probabilistic
graphs composed of 10000 states solved using the LAO*
optimal heuristic algorithm (Hansen and Zilberstein 2001)
via AMPLE planning requests. AMPLE results are illustrated
through execution and optimization timelines until success
(Figure 2). Each time slice of the execution (resp. optimiza-
tion) thread corresponds to the execution of one action (resp.
the optimization of one planning request).

Figure 2(a) shows the timelines for the AMPLE-NEXT
execution process. After a first bootstrap (where only the
optimization thread is active), we can notice that the opti-
mization continues for a few time. Then, small optimization

459

pieces are still processed when new planning requests are
sent to the planner, as it still requires the value function to
converge on next possible states (requests’ initial states) that
have not been totally explored. Finally, the value function
quickly converges for the whole state space as shown by the
evolution of the Bellman error, and we can notice that only
the execution thread still goes on.

Figure 2(b) shows the timelines for the AMPLE-PATH ex-
ecution process with a path depth of 1 (only the next most
probable state is requested). Two behaviors are noticeable:
first, the optimization process continues much longer than
in the NEXT strategy; the later indeed explores a larger state
space at each request, thus converges faster. Second, by only
considering the most probable next state, the execution is
more exposed to disturbances, i.e. to arriving in a state that
has not been explored; this is observable around time 150,
where the Bellman error suddenly increases, and replanning
is needed, which leads to a slightly longer optimization time.
This phenomenon is emphasized for a path depth of 3 (Fig-
ure 2(c)) and 5 (Figure 2(d)), where replanning requests re-
quire a longer optimization time. However, we can notice
that when the execution follows the most probable path, the
optimization converges quite quickly (e.g., no more opti-
mization pieces after time 100 on Figure 2(c)).

To conclude with, the AMPLE-NEXT process seems to
provide a more convenient behavior with respect to prob-
lem optimization and mission execution. However, when
the problem has a prevailing most probable path, the
AMPLE-PATH execution process may be an efficient execu-
tion framework, with a fast optimization process, and online
reactive repair phases when the system state leaves the most
probable path. In the two next experiments, we then decided
to only implement and test the AMPLE-NEXT approach.

Real-world probabilistic planning for autonomous
rotorcrafts in unknown and uncertain environment

Emergency landing. The first UAV mission embedding
the AMPLE framework consists in an autonomous emer-
gency landing: the UAV is performing a mission (e.g., a
search and rescue mission, an observation mission, or a
cargo mission) when a critical disturbance occurs (e.g., one
of the two engines is damaged). The UAV must then perform
an autonomous emergency landing: first, the UAV scans the
zone over which it is flying, builds a map of the zone, and de-
duces some flat landable sub-zones. Finding a zone to land is
urgent, as fuel consumption may be increased by the poten-
tial engine damages, leading to an approximate landing time
limited to 10 minutes. Then, the AMPLE process is used to
solve the landing problem: the UAV can go from a sub-zone
to another, perform a scan of a sub-zone at a lower altitude
to determine its probabilistic landability, and try to land on
a given sub-zone. As both landability and action effects are
uncertain, this problem is modeled as an MDP. To solve it,
we use an RTDP-like algorithm (Barto, Bradtke, and Singh
1995) on an MDP with continuous variables (Meuleau et
al. 2009). The MDP has two continuous state variables, and
more than twice the number of sub-zones as discrete state
variables, so that the number of discrete states is exponential
in the number of sub-zones. The theoretical worst-case time

1.80-03 1.80-03

optimization thread ESmEm
execuion thread Zzzz1
Bellman error ——

optimization thread e
execution thread ©zzzz1
Bellman error —

1.60-03 16003

1.40-03 1.40-03

12603 12003 f§

10003 GG 49%4594Y 10000

Beliman error
Bellman error

NN

8.00:04 {A) 8.00:04

R

6.00-04

N

6.06:04
4.00-04 [40604 |

20004 20004

R hRRRiRY
NN
RN
AllmmaTEst
ARy
NN
MMM hihii==
Al
AaaRmhRhihany
MMM
AR
NN

Ay
ARkt
R
ATy

/
W
7
7
%

==

R

D%4% %0500 5000%:

0.08400

0.0e400 &
0 150
time (5) time (5)

(a) NEXT (b) PATH-1
Figure 2: Execution and optimization

needed to optimize the policy with state-of-the-art MDP al-
gorithms on a 1Ghz processor as the one embedded in our
UAV is about 1.5 hours with 5 sub-zones, 4 months with
10 sub-zones, more than 700 millenniums with 20 zones;
whereas the mission’s duration is at most 10 minutes. Thus,
time-constrained policy optimization like AMPLE is required
to maximize the chance of achieving the mission.

Autonomous outdoor real-flight experiments have been
conducted using the AMPLE-NEXT execution process. Data
have been collected during the flights and incorporated in
additional real-time simulations in order to statistically eval-
uate the performance of our planner (Figure 3).

Figure 3(a) shows the total mission time in two cases: the
online AMPLE usecase, where the policy is optimized during
execution, and an offline case that corresponds to first com-
puting the policy, and then executing it. Since we use RTDP,
a heuristic algorithm, offline computation times are actually
better than the previously mentioned worst-case times; yet
we have a priori absolutely no guarantees to get better than
worst-case performances. The average optimization time is
the time taken by the optimization thread, which is the same
in both cases (interleaved with execution in the online case,
preceding execution in the offline case). Actually, this offline
case is not used in flight, but shows the interest of the AMPLE
execution framework: the mission time is shorter in the on-
line case, and moreover, with a total mission time limited
to 10 min, the offline process would have made the mission
fail, while the online process still succeeds. Note that mis-
sion times increase with the number of zones, but this is in-
dependent from the optimization framework: there are more
zones to potentially explore, so that the overall actions take
physically more times to be executed. Figure 3(b) shows the
rate of default actions used in the mission. We can notice
that the number of default actions is quite high in this mis-
sion (~ 60%). However, when a default action is used, it
means that the planner had not yet computed any policy in
the corresponding state. Then, even if the default action is
not optimal, it is the only way to guarantee reactivity, i.e. not
wait for the optimization process to complete (which would

900

NN average mission total ime (offline)
EERE@ average mission total time (online)
average optimization time

default actions 722722

800

700

600

500

time (s)
percent

400
300
200
100

number of zones

(a) Mission times

number of zones

(b) Default actions rate

Figure 3: Autonomous emergency landing results.

Bellman error

optimizafion thread EmEmm
‘execution thread zzzz1
Bellman error ——

optimization thread EEEEm
execuion thread Zzzzz1
B error ——

Bellman error

50

time (s)

(c) PATH-3

timelines for different execution strategies.

460

lead to a “plan-then-execute” frame).

Target detection and recognition. The second UAV mis-
sion consists in a real target detection and identification mis-
sion, where the goal is to identify a particular car model
among several cars, and land next to this target. Due to the
nature of the problem, it is modeled as a POMDP, where
the partial observability concerns the actual identity of cars.
The UAV can act in the environment by moving between
zones, changing height level or view angle in order to ob-
serve the cars, and land. The cars can be or not in any of
the zones considered in the model (no more than one car
per zone). The total number of states depends on the num-
ber of zones, the height levels and the car models. In this
test case, we consider 5 possible observations in each state:
{car not detected, car detected but not identified, car iden-
tified as target A, car identified as target B, car identified as
target C}. The probabilistic observation model, which repre-
sents the uncertain outputs of the image processing based on
the algorithm described in (Saux and Sanfourche 2011), was
learnt during several outdoor test campaigns. Note that the
POMDP problem is unknown before flight and thus must be
solved online, because the actual number of zones is discov-
ered at the beginning of the flight by using a dedicated im-
age processing algorithm. We use a QMDP approximation
as default policy (Littman, Cassandra, and Kaelbling 1995):
although not optimal, it can be quickly computed at the be-
ginning of the mission, once the zones are extracted from
the map. As the formal model is a POMDP, the AMPLE’s
optimization thread handles the AEMS online POMDP algo-
rithm (Ross and Chaib-Draa 2007). AMP LE was successfully
tested during real flights: Figures 4 and 5 respectively show
the UAV’s global flight trajectory and the actual observation-
action pairs obtained during the flight.

In order to analyze AMPLE’s behavior on this domain,
we performed several realistic simulations on different in-
stances of the problem, with 3 searching zones, 2 height lev-
els and 3 target models. The mission’s time limit is 3 min-
utes. Figure 6 highlights the benefits of AMPLE compared
with the classical approach of AEMS for different planning

Figure 4: UAV’s trajectory performed during the real flight.

t=0

a = go-to(hs)
—

t=1

a = change_view

t=2

a = goto_zone(zz)

t=23

o=asA

o=as A

o = not ident. 0 =no car

a = change_view

a = change_view

t=4 t=5

a = go_to(z3)

t=06

a = change_view
g z s

re e

o=asC 0 =no car

o=asA o=asC

Figure 5: Sequence of decisions for time step ¢. Each image represents the input of the image processing algorithm after the
current action a is executed. Observations o represent the successive outputs of the image processing algorithm’s classifier.

6.0e+01

6.0e+01

optimization thread
execution thread
eliman error

optimization thread
execution thread
ellman error

5.0e+01 5.0e+01

4.0e+01 4.0e+01

3.0e+01 3.0e+01

Bellman error
Bellman error

2.0e+01 T\ 2.0e+01

1.0e+01 1.0e+01 \

0.0e+00 LN

0.0e+00 &
0 200 0 50

50 100
time (s)

150 100

time (s)

150 200

(a) AEMS (interleaved), A = 4s (b) AEMS (interleaved), A = 3s (c) AEMS (interleaved), A = 2s

Bellman error

6.0e+01

6.0e+01

optimization thread
execution thread
ellman error

optimization thread
execution thread
ellman error

5.0e+01 5.0e+01

4.0e+01 4.0e+01

3.0e+01 3.0e401 |\

Bellman error

2.0e+01 2.0e+01 -\

1.0e+01 [\ 1.0e+01

0.0e+00 —&

0.0e+00 “==
0 200 0 50

50 100
time (s)

150 100

time (s)

(d) AEMS in AMPLE-NEXT.

150 200

Figure 6: Timelines for classical AEMS (interleaved approach) with 4s, 3s, 2s for planning versus AEMS in AMPLE-NEXT.

times (4, 3 and 2 seconds), which consists in interleaving
planning and execution, i.e. it plans for the current belief
state (for a long-term horizon) at every decision epoch, but
not in advance for the future ones as in our optimize-while-
execute approach. With the classical use of AEMS (Figures
6(a), 6(b) and 6(c)), we can easily notice that the mission’s
total time increases with the time allocated to plan from the
current execution state. Successive red bars show that the
POMDP needs to be (re-)optimized in each new execution
state. On the contrary, our approach (Figure 6(d)) continu-
ally optimizes for future possible execution states while ex-
ecuting the action in the current execution state, so that opti-
mized actions are always immediately available in each new
execution state. Thus, the mission’s duration is lower with
our approach than with the interleaved approach (at least
30% less). In other words, in our approach the amount of
time saved relies on the sum of time slices of the classical
approach when the optimization thread is idle. The more ac-
tions get time to be executed, the more time will be saved.

We performed some additional comparisons by running
50 software-architecture-in-the-loop (SAIL) simulations of
the mission using images taken during real flights. Our SAIL
simulations use the exact functional architecture and algo-
rithms used on-board our UAV, a Yamaha Rmax adapted to
autonomous flights, as well as real outdoor images. We av-
eraged the results and analyzed the total mission time and
planning time, the percentage of timeouts and successes in
terms of landing near the searched car. Action durations are
uniformly drawn from [T}, Trhaez], With T, = 8s and
T4 = 10s, which is representative of durations observed
during real test flights. As expected (see Figure 7), AMPLE
continually optimizes the policy in background, contrary to
the interleaved approach. As a result, it is more reactive: it
has the minimum mission’s time, while providing the best
percentage of success and the minimum number of time-
outs. Note that, in Figure 7(a), AEMS2s performs better in
averaged mission time (avg. over successful missions), but
the percentage of successful missions is lower than in our ap-
proach (Figure 7(b)). Furthermore, less than 20% of default

461

actions were used, which shows the relevance of optimizing
actions in advance for the future possible belief states.

Conclusion

In this paper, we have proposed AMPLE, a framework
for anytime optimization of (PO)MDP problems, and any-
time execution of the resulting policy. Contrary to exist-
ing (PO)MDP anytime algorithms, AMPLE’s optimization
thread locally updates the policy at different future execu-
tion states, by calling procedures of the underlying planning
algorithm. The execution thread is in charge of managing
planning requests and launching optimized actions accord-
ing to the current system state. Based on this framework, we
have proposed two possible instantiations: AMPLE-NEXT
that anticipates all the next possible execution states, and
AMPLE-PATH that anticipates the most probable path with
a given depth. We have evaluated and shown the relevance of
our approach on random problems and on two real and chal-
lenging UAV missions: AMPLE allows us to always com-
plete the missions while a classical “optimize-then-execute”
process would not succeed in the granted time.

The AMPLE framework can still be extended with new ex-
ecution process instantiations. Possible instantiations could
consider safety considerations, for instance by adding re-
quests for states where the safety properties may be violated,
or for very unprobable states that correspond to fault occur-
rences. Another interesting extension concerns the execution
of policies in a reinforcement learning framework in such a
way that learned actions are always safe and informative,
which is often antagonist in practice.

average and std. dev. mission total time &2

success 1
average and std. dev. planning time

time out def. actions

time (s)

(a) Avg. time for success. (b) Percent. among missions.

Figure 7: Target detection and recognition mission.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intelli-
gence Journal 72:81-138.

Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming.
In International Conference on Automated Planning and
Scheduling (ICAPS).

Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
bel vs. point-based algorithms. In International Joint Con-
ference on Artificial Intelligence (IJCAI).

Dobherty, P.; Kvarnstrom, J.; and Heintz, F. 2009. A temporal
logic-based planning and execution monitoring framework
for unmanned aircraft systems. Journal on Autonomous
Agents and Multi-Agent Systems 19(3):332-377.

Fazil Ayan, N.; Kuter, U.; Yaman, F.; and Goldman, R. 2007.
HOTRIDE: hierarchical ordered task replanning in dynamic
environments. In International Conference on Automated
Planning and Scheduling (ICAPS).

Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-
based executive control through reactive planning for au-
tonomous rovers. In International Conference on Intelligent
Robots and Systems (IROS).

Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence Journal 129(1-2):35-62.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
International Conference on Unvertainty in Artificial Intel-
ligence (UAI).

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Aritificial Intelligence 101:99—-134.

Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3):189-211.

Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In AAAI Conference
on Artificial Intelligence (AAAI).

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable environ-
ments: Scaling up. In International Conference on Machine
Learning.

Meuleau, N.; Benazera, E.; Brafman, R.; Hansen, E.; and
Mausam. 2009. A heuristic search approach to planning
with continuous resources in stochastic domains. Jounal of
Artificial Intelligence Research (JAIR) 34:27-59.

Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime Point-
Based Approximations for Large POMDPs. Jounal of Arti-
ficial Intelligence Research (JAIR) 27:335-380.

Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY, USA:
John Wiley & Sons, Inc., 1st edition.

Ross, S., and Chaib-Draa, B. 2007. AEMS: An anytime on-
line search algorithm for approximate policy refinement in

462

large POMDPs. In International Joint Conference on Artifi-
cial Intelligence (IJCAI).

Saux, B., and Sanfourche, M. 2011. Robust vehicle cate-
gorization from aerial images by 3D-template matching and
multiple classifier system. In International Symposium on
Image and Signal Processing and Analysis (ISPA).

Smith, T., and Simmons, R. 2005. Point-based POMDP al-
gorithms: Improved analysis and implementation. In Inter-
national Conference on Uncertainty in Artificial Intelligence
(UAI).

Teichteil-Konigsbuch, F.; Kuter, U.; and Infantes, G. 2010.
Incremental plan aggregation for generating policies in

MDPs. In International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS).

