
Concurrent Plan Recognition and Execution for Human-Robot Teams

Steven J. Levine and Brian C. Williams
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar St., Cambridge, MA 02139
{sjlevine, williams}@mit.edu

Abstract

There is a strong demand for robots to work in envi-
ronments, such as aircraft manufacturing, where they
share tasks with humans and must quickly adapt to each
other’s needs. To do so, a robot must both infer the in-
tent of humans, and must adapt accordingly. The lit-
erature to date has made great progress on these two
tasks - recognition and adaptation - but largely as sepa-
rate research activities. In this paper, we present a uni-
fied approach to these two problems, in which recogni-
tion and adaptation occur concurrently and holistically.
Key to our approach is a task representation that uses
choice to represent alternative plans for both the hu-
man and robot, allowing a single set of algorithms to
simultaneously achieve recognition and adaptation. To
achieve such fluidity, a labeled propagation mechanism
is used where decisions made by the human and robot
during execution are propagated to relevant future open
choices, as determined by causal link analysis, narrow-
ing the possible options that the human would reason-
ably take (hence achieving intent recognition) as well
as the possible actions the robot could consistently take
(adaptation). This paper introduces Pike, an executive
for human-robot teamwork that quickly adapts and in-
fers intent based on the preconditions of actions in the
plan, temporal constraints, unanticipated disturbances,
and choices made previously (by either robot or hu-
man). We evaluate Pike’s performance and demonstrate
it on a household task in a human-robot team testbed.

Introduction
There is a strong demand for robots to work in environments
where they share tasks with humans. These tasks include air-
craft manufacturing, household chores such as cooking and
cleaning, medical care, and countless others. In all of these
situations, the robots must be able to both infer the intent of
humans, and must adapt accordingly.

The literature to date has made great progress on these
two areas - recognition and adaptation - but largely as sepa-
rate research activities. Numerous approaches to plan recog-
nition have been proposed, as noted in (Carberry 2001).
However, these approaches generally focus solely on recog-
nition, not on how a robotic agent should adapt once the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

human’s intent is inferred. There has similarly been a large
body of work on adaptation. Most, however, do not incorpo-
rate plan recognition. This work presents a unified approach
to these two problems, providing recognition and adaptation
simultaneously through a single set of algorithms.

To achieve unified recognition and adaptation, we use a
plan representation containing controllable choices for the
robot and uncontrollable choices made by the human. These
choices are not independent; rather, they are highly coupled
through the plan’s state and temporal constraints. Our ap-
proach exploits these interconnections to reason over con-
sistent sets of decisions, allowing the executive to deter-
mine which courses of action the human would logically
take (intent recognition) to maintain plan consistency, and
additionally ascertaining which actions the robot should
take (adaptation). During an offline compilation stage, la-
beled causal links are extracted from the contingent plan.
These causal links are then transformed into constraints over
consistent sets of choices, and subsequently encoded into
an Assumption-based Truth Maintenance System (ATMS),
along with extracted temporal conflicts. During execution,
the executive quickly reasons over consistent sets of choices
using this ATMS, committing to decisions as appropriate.
As execution proceeds and the human and robot both make
choices, the results of these decisions are propagated by
the ATMS to other open choices, and hence their domains
are pruned. Additionally, violated causal links (resulting
from unmodeled disturbances) may further constrain future
choices and hence influence plan recognition and adaptation.
In this way, the executive reasons over choices made in the
past, action preconditions, temporal constraints, and unan-
ticipated disturbances.

Our innovations are threefold. First, we introduce a novel,
unified approach to plan recognition and adaptation that uses
a human-robot plan representation with choice. Second, we
generalize the notion of causal links to contingent, tempo-
rally flexible plans and present a set of algorithms for au-
tomatically extracting them from said plans. Finally, we ex-
tend a state-of-the art dynamic execution system designed
for temporal constraints to also make fast online choices
based on state, thereby achieving concurrent recognition and
adaptation.

490

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



Related Work
There is a rich literature on plan adaptation. Beginning
with temporally-flexible plans such as Simple Temporal
Networks (STNs), efficient dispatchers have been devel-
oped that perform fast, online, least-commitment scheduling
(Dechter, Meiri, and Pearl 1991; Tsamardinos, Muscettola,
and Morris 1998). Later approaches introduced uncertainty
and uncontrollability into these models, resulting in execu-
tives that could adapt to many different types of temporal
disturbances (Effinger et al. 2009; Vidal 1999). These sys-
tems focus on adapting to temporal rather than state con-
straints, and aren’t designed for recognizing human plans.

A number of adaptation techniques do however recover
based on violated state constraints. Many such systems have
focused on integrated planning and execution, such as Ix-
TeT eXeC (Lemai and Ingrand 2004), ROGUE (Haigh and
Veloso 1998), IPEM (Ambros-Ingerson and Steel 1988), and
HOTRiDE (Ayan et al. 2007). Some focus on planing at re-
active time scales or continuously online (Finzi, Ingrand,
and Muscettola 2004; Chien et al. 2000). The Human-Aware
Task Planner (HATP), combined with SHARY, executes
human-robot tasks and replans as needed (Alili et al. 2009;
Clodic et al. 2009). The TPOPExec system generalizes plans
and at every time point will try to execute the first action of
a subplan consistent with the current state, thus minimizing
the need for replanning (Muise, Beck, and McIlraith 2013).
These systems generally focus on planning, execution with
plan repair, and/or responding to disturbances that aren’t ex-
plicitly modeled as human intent. We differ in that we rea-
son explicitly over the possible choices a human is likely to
make, and adapt accordingly.

The Chaski executive performs fast online task realloca-
tion for human-robot teams with temporal constraints (Shah,
Conrad, and Williams 2009). Chaski is capable of inferring
if an agent - human or otherwise - is stuck, and will re-
allocate tasks for the other agents appropriately to maintain
plan consistency. Chaski focuses on the dynamic task as-
signment problem, while we take a different approach and
focus instead on plan recognition and adaptation by reason-
ing over explicit choices in the plan.

Drake is an executive capable of executing temporally
flexible plans with choice (such as TPNs), scheduling and
making choices online with low latency and using minimal
space overhead (Conrad, Shah, and Williams 2009). It re-
sponds dynamically to temporal disturbances, both in terms
of scheduling, and also in terms of making discrete choices
that are guaranteed to be feasible given those temporal dis-
turbances. This is accomplished by fusing ideas from tem-
poral planning and from the ATMS. We borrow many tech-
niques from Drake in this work, described shortly.

Many approaches to plan recognition have been proposed,
just a few of which are (Kautz and Allen 1986; Bui 2003;
Avrahami-Zilberbrand, Kaminka, and Zarosim 2005; Gold-
man, Geib, and Miller 1999). Most of these approaches,
however, perform intent recognition non-interactively. That
is, they do not attempt to interact with the human whose in-
tent is being recognized. Our approach differs in that we per-
form execution while concurrently monitoring the human.

Figure 2: Kitchen example. Part A. shows the plan annotated
with labeled causal links. Part B shows the resulting execu-
tion if Alice chooses xA1 = mug.

Approach in a Nutshell
Consider the grounded example shown in Figure 1 on the
next page, in which Alice is making breakfast for herself
with the help of her trusty robot. The left half of the plan
depicts the team either making coffee (for which Alice uses
a mug) or getting some juice (for which Alice uses a glass),
while the right half depicts either making a bagel with cream
cheese or getting some cereal and milk. Alice is running late
for work, so she imposes an overall temporal constraint that
both her food and drink must be ready within 7 minutes.

Consider just the first half of the plan, in which the team
prepares a beverage - either coffee or juice. There are three
decisions - at first, Alice choose to either get a mug or a
glass for her beverage. Shortly thereafter and in parallel, the
robot chooses to either fetch the coffee grounds or juice from
the refrigerator. Finally once all the necessary supplies have
been retrieved, Alice will either make coffee and pour it into
her mug, or pour the juice into her glass, depending on her
preferred beverage this morning.

Key to our approach is noting that these three choices
- two uncontrollable made by Alice and one controllable
made by the robot - are not independent. Rather, they are
tightly coupled through state constraints in this example, and
more generally through temporal constraints as well. For ex-
ample, if the robot chooses to get the juice out of the refrig-
erator, Alice will not be able to make coffee in her second
choice since she won’t have the coffee grounds. Such in-
terrelationships are illustrated in Figure 2a., where we have
defined three variables, xA1

, xR, and xA2
, to represent the

different choices. We’ve also annotated the plan with labeled
causal links, denoted by dotted arcs and labeled with the en-
vironment under which they hold. These causal links capture
precondition state requirements, and their environments im-
ply constraints over feasible choice assignments.

Consider the example execution depicted in Figure 2b., in
which Alice chooses to get the mug instead of the glass for
her choice (i.e., xA1

= mug). Alice will therefore have a
mug (necessary for pouring coffee into the mug in her sec-

491



Figure 1: A plan network for making breakfast. Circles denote events, double circles denote controllable choices (made by
the robot), and shaded double circles denote uncontrollable choices (made by Alice). Yellow boxes denote activities for Alice,
while blue boxes are targeted at the robot. Note that each activity is represented with a start and end event, but illustrated here
as a box for compactness. All unlabeled temporal constraints are [0,∞] ordering constraints.

ond choice), but will not have a glass (necessary for pouring
juice into the glass). The top-most causal link, (have mug)
contingent upon xA1

= mug, will hold, yet the causal link
(have glass) contingent upon xA1

= glass will not hold.
Thus, Alice cannot choose xA2

= juice, since the pour
juice action would have a failed precondition. In this way,
the robot infers that Alice’s intent must be to make coffee
(i.e., xA2 = coffee) since she picked up a mug and not a
glass.

Similar reasoning allows the robot to adapt to Alice’s in-
tent. Given that Alice is making coffee, she’ll require the
coffee grounds - illustrated by the causal link (have grounds)
contingent upon xR = grounds. Since this is the only
causal link justifying said precondition, the robot infers that
it must choose xR = grounds in order for the plan to be
complete. Thus, the robot adapts by getting the grounds in-
stead of the juice, resulting in the final execution depicted in
Figure 2b.

If we step back and consider the larger plan shown in
Figure 1, we note that Alice cannot both make coffee and
make a bagel because she would run out of time. The mini-
mum time required to make coffee and toast a bagel is more
than 7 minutes. Thus, should Alice choose to grab a mug at
the beginning, her intent must be not only to make coffee,
but also to choose the less time-consuming cereal option so
she’ll arrive at work on time. By similar causal link analysis,
the robot will adapt by getting milk for her cereal instead of
cream cheese for a bagel.

Consider one final case, in which Alice at first chooses
xA1

= glass. She’ll have enough time later for either a
bagel or cereal. However, suppose while pouring her juice,
an unexpected disturbance occurs: the toaster oven breaks.
In this case, a causal link justifying her making a bagel has
been dynamically violated at run time. Alice’s only option,
therefore would be to make cereal. Pike would detect this
unanticipated change in world state, and instantaneously in-
fer Alice’s refined intent and adapt accordingly.

We have just illustrated how a single algorithm, based on
labeled constraint propagation, concurrently achieves plan
recognition and adaptation given state and temporal con-
straints as well as disturbances. We note that in this spe-

cific example, Alice’s intent and the robot’s adaptations were
completely determined after she picked up the mug. Such
is not generally the case however - often, there may still be
multiple (though fewer) consistent options for future choices
after constraint propagation. In these cases, further deci-
sions, either by human or robot, are necessary to hone in
on a single intent and adaptation scheme.

Problem Statement
As illustrated above, Pike takes in a contingent plan, as well
as sensory inputs in the form of recognizing Alice’s choices
(ex., picking up mug vs. glass) and state estimates (for de-
tecting unanticipated disturbances). It outputs, in real time,
decisions for the robot, as well as a schedule for its actions
such that the plan is expected to succeed. This section dis-
cusses these inputs and outputs in greater depth.

Pike’s input contingent plan format is the Temporal Plan-
ning Network under Uncertainty (TPNU), which has roots in
the Simple Temporal Network (STN) (Effinger et al. 2009;
Dechter, Meiri, and Pearl 1991). STNs uses set-bounded,
simple temporal constraints to relate events, which represent
instantaneous time points (Dechter, Meiri, and Pearl 1991).
A simple temporal constraint [a, b] between events ex and ey
implies that tey − tex ∈ [a, b]. An extension to the STN is
the TPN, or Temporal Planning Network, which adds choice
events between different threads of execution as well as exe-
cutable activities (Kim, Williams, and Abramson 2001). The
TPNU further builds off the TPN, introducing uncontrol-
lable choice variables made by the environment (in our case,
the human), not by the executive (Effinger et al. 2009). TP-
NUs and TPNs are thus contingent plan representations that
compactly encode many possible candidate subplans. Figure
1 shows a TPNU, and Figure 2b shows a candidate subplan.

Each activity in a TPNU has an associated start and end
event, as well as an action. For our purposes, these actions
are grounded PDDL operators (Fox and Long 2003). Both
the start and end events are treated as having preconditions
and effects, as determined by the “at start” and “at end” con-
ditions and effects defined by the PDDL operator.

Given all the assignments to discrete choices in the
TPNU, as well as a schedule of when all event should be

492



executed, we have a subplan with no ambiguity. This sub-
plan is said to be consistent if the schedule satisfies all of the
simple temporal constraints, and complete if the precondi-
tions of all events are satisfied when the event is executed.

We are now equipped to define Pike’s problem statement.
Pike takes as input: 1.) a TPNU, 2.) the world initial and
goal states (sets of PDDL predicates), 3.) a continual stream
of state estimates (sets of predicates), and 4.) a continual
stream of time assignments and outcomes to the uncontrol-
lable choices in the TPNU.

Given this input, Pike outputs 1.) a stream of choice as-
signments to the TPNU’s controllable variables, and 2.) a
dispatch of the TPNU’s events, such that there is at least
one complete and consistent candidate subplan possible af-
ter each of Pike’s choices.

Approach
Our approach is as follows. First, we infer ordering con-
straints over events in the plan from its temporal constraints.
This is accomplished by computing a labeled all-pairs short-
est path (APSP) on the contingent plan. The resulting table
allows us to efficiently query the shortest temporal distance
between any two events, given a partial set of choices. We
use a labeled value set (LVS), to be introduced shortly, to
store this information compactly.

Next, using these ordering relations, we extract a minimal,
dominant set of labeled causal links from the plan, again
using an LVS. We also find threats in the plan, and infer
constraints that resolve them.

Finally, once all the causal links and threat resolutions are
extracted, they are encoded into an ATMS-based knowledge
base. This involves constraint propagation, and results in a
precomputed and compactly recorded database of candidate
subplans that could possibly be complete and consistent dur-
ing execution.

Online, the executive uses this knowledge base to sched-
ule events and make choices in real time. As execution un-
folds, large swaths of candidate subplans are pruned out
based on choices made or unexpected disturbances.

Offline Compilation
We now present the offline compilation algorithm, which
take as input a temporally-flexible plan with choice (i.e.,
a TPNU), the initial and goal world states, and outputs an
ATMS-based knowledge base suitable for fast online execu-
tion. An overview is provided in Algorithm 1, and pertinent
piece are discussed in the following sections.

Labeled APSP
To describe the labeled APSP, we first introduce relevant
background borrowed from ATMSs and the Drake execu-
tive. We associate a discrete variable with each choice in the
contingent plan. An environment is a set of assignments to
these variables, denoted for example as {xA1

= mug, xR =
grounds}. We say that an environment φa subsumes another
environment φb if all assignments in φa are also contained
in φb (De Kleer 1986). A complete environment assigns a

Algorithm 1: Offline compilation
Input: TPNU plan, initial and goal states
Output: Knowledge base, dispatchable plan

1 Initialize L, T as empty sets
2 Convert TPNU plan to labeled distance graph G
3 dei,ej ← compute labeled APSP of G
4 D,C← compute dispatchable form, temporal conflicts
5 foreach precondition p of each event ec in plan do
6 L, T ← GETCAUSALLINKSANDTHREATS(p, ec)
7 Add L, T to L, T
8 end
9 kb← ENCODEINATMS(L,T,C)

10 return (D, kb)

value to all variables, and hence corresponds to a specific
candidate subplan where all choice are made.

An environment φ that is not complete intuitively rep-
resents a set of candidate subplans - namely, all the candi-
date subplans that are subsumed by φ. For example, {xA1

=
mug} can be thought of as representing {xA1

= mug, xR =
grounds, ...} and many more. In this way, environments are
used to compactly represent large swaths of candidate sub-
plans. They are used extensively in our offline and online
algorithms for efficient reasoning.

We next briefly describe the labeled value set (LVS),
which builds off the concept of subsumption and environ-
ments and was introduced by Drake (Conrad, Shah, and
Williams 2009). An LVS intuitively represents the “tight-
est” values for some condition as a function of the envi-
ronment (Conrad 2010). For example, suppose we wish to
encode the constraint x < a, for some value of a that is
environment-dependent. We could represent a by the LVS
{(2, {x = 1, y = 2}), (3, {x = 1}), (6, {})}. We may then
query it under different environments with the Q operator.
For example, we may ask Q({x = 1, y = 2}), meaning
“what is the smallest value for a where x < a, over all en-
vironments represented by x = 1, y = 2?” We could say
that x < 3, since {x = 1} subsumes {x = 1, y = 2}, but
the LVS also permits the tighter bound x < 2 under this
environment. If, however, we query the LVS for the tightest
bound on x over all environments represented by x = 1, the
LVS can only guarantee x < 3.

A labeled value (ai, φi) dominates another labeled value
(aj , φj) under relation R (ex., such as <) if ai R aj and
φi subsumes φj . For example, with R as <, we can say
(1, {x = 1}) dominates (2, {x = 1, y = 2}). Intuitively,
this means that we have derived a “tighter” bound on a
value that subsumes all of the weaker bounds. However,
(1, {x = 1, y = 2}) does not dominate (2, {x = 1}) since
{x = 1, y = 2} does not subsume {x = 1}. Such domina-
tion rules come into play when adding values to LVSs - only
dominant pairs are added, thereby maintaining minimality
(Conrad 2010).

The labeled APSP algorithm we use is similar to the one
described in (Conrad 2010). Namely, it is a generalized ver-
sion of the Floyd Warshall APSP algorithm that, instead of

493



performing operations on real numbers, performs them on
labeled value sets. The output is a table dei,ej , where each
entry is an LVS representing the shortest temporal distance
between the two events (which may be queried under differ-
ent environments).

Labeled Causal Links & Extraction
After computing the labeled APSP, we then proceed to ex-
tract labeled causal links.

Causal links have been used in a number of AI systems,
ranging from partial order planners to execution monitoring
systems (McAllester and Rosenblatt 1991; Veloso, Pollack,
and Cox 1998; Lemai and Ingrand 2004; Levine 2012). In-
tuitively, a causal link from A to B encodes that activity
A produces some effect that activity B requires to execute.
Additionally, A must precede B and there may be no other
event A′ that also produces B’s requirement (or negates it)
between A and B. This leads to the concept of a threat: an
activity C is said to threaten a causal link if it negates B’s
precondition and could occur between A and B.

We extend causal links to contingent, temporally-flexible
plans, resulting in labeled causal links. Because they are
crucial to reasoning about plan completeness, a key part of
Pike’s offline compilation stage is to extract these labeled
causal links from the plan.

Suppose we have a plan in which event ep1 produces a
state predicate p consumed by a later-occurring event, ec.
Then, there is a causal link from ep to ec. Further suppose
that ep1 ’s execution environment is {x = 1} (that is, ep1 will
only be executed if x = 1), and that ec’s execution environ-
ment is {y = 1}. The causal link is contingent upon the pro-
ducer event’s environment. If the executive chooses x = 2,
then ep1 will not be executed, so the causal link is neces-
sarily inactive. The executive may not additionally choose
y = 2, because ec would have a violated precondition. It
must pick some y 6= 1 so that ec is not executed (and its pre-
condition p will not be required to hold). By similar logic,
suppose that the executive chooses {y = 2} initially. In this
case, the consuming event ec will not be executed, hence its
requirement for p is nonexistent. The executive may there-
fore choose either x = 1 or x = 2 consistently. These two
cases introduce the core intuition behind labeled causal link
analysis: For a plan to be consistent, there must be at least
one active causal link for each precondition of every active
event. Otherwise, some precondition will not be met and the
plan will fail.

Previous work generally considers a single causal link for
each precondition of each activity in the plan. Contingent
plans, however, require multiple labeled causal links, since
different producers may execute in different environments
and may both justify a precondition under different contexts.
Continuing with the above example, suppose that we have
another event ep2 that produces p, but has execution environ-
ment {x = 2}. There are now two labeled causal links that
justify ec’s precondition: one from ep1 if x = 1, and another
from ep2 if x = 2. Similar reasoning to the above applies,
but with a key difference: if the executive chooses y = 1 and
ec is hence activated, then the executive may now choose ei-
ther x = 1 or x = 2 (but not, for example, x = 3). We

Figure 3: Labeled causal links and threats for different plans.
There are three actions: (make-p) produces p as an effect,
(not-p) negates p, and (require-p) requires p as a
precondition. Labeled causal links are shown as dotted lines
connecting producers to consumer events, and are labeled
with the predicate and environment under which they apply.

call the set of all labeled causal links for a particular event’s
precondition an L-set, denoted L. Each L-set is associated
with an environment: namely, that of the consumer ec. If the
environment for ec holds, the L-set is activated and at least
one causal link therein must be activated. This is equivalent
to the implication φL ⇒

∨
i φli .

Figure 3 illustrates several examples of labeled causal
links. It also demonstrates a key second property of labeled
causal links: dominance. Note that in Figure 3A., there is a
single causal link for the later-occurring producer, despite
the existence of an earlier (make-p) action. This is because
the later (make-p) action will always execute whenever the
earlier one does, and is guaranteed to occur afterwards. We
say that a causal link from ep1 to ec with label φ1 dominates
another causal link ep2 to ec with label φ2 if: 1.) ep1 oc-
curs after ep2 , and 2.) φ1 subsumes φ2. The later-occurring
causal link in part Figure 3B. is not dominant, however, be-
cause it’s environment does not subsume the earlier link’s
environment. In this case, the executive could choose either
x = 1 or x = 2. We note however that the x = 1 choice is
still useful as a contingency for responding to unanticipated
disturbances; should p unexpectedly disappear and the first
causal link be violated before the choice occurs, the execu-
tive can recover by forcing x = 1 to re-assert p.

While not required for correctness, Pike extracts only a
minimal, dominant set of causal links from the plan. For
large problems, this is important for performance. Elimi-
nating unnecessary links significantly decreases the size of
the generated ATMS knowledge base, leading to much faster

494



propagation and online reasoning.
Figure 3C. illustrates an example threat, now generalized

to contingent temporal plans. In this example, if the execu-
tive chooses x = 2 then ¬p will be asserted - thus threat-
ening the earlier causal link. In this case, the only way to
resolve this discrepancy is for the executive to also choose
y = 1, which will provide a restorative action and re-assert
p. Thus, threats are additionally contingent upon choices
made in the plan. During compilation, Pike records the threat
resolution x = 2⇒ y = 1.

We may now present the labeled causal link extraction
process; pseudocode is shown in Algorithms 1 and 2.

Let deb→ea denote the shortest path (an LVS) from eb to
ea as computed previously by the labeled APSP, and φa, φb
denote the execution environments of events ea and eb, re-
spectively. We say that ea precedes eb, denoted ea ≺ eb, if
the query Q(φa ∪ φb) < 0 for deb→ea . In other words, if
the shortest temporal distance from eb to ea is negative in
all environments where both ea and eb hold, ea ≺ eb. This
is a direct extension to the ordering constraint criterion pre-
sented for STNs, but extended to the labeled case (Conrad,
Shah, and Williams 2009). We define the succession rela-
tion � similarly; if ea ≺ eb, then eb � ea. In general, it is
possible that neither ea ≺ eb nor eb ≺ ea. This happens if
the plan’s temporal constraints are loose enough to permit
different orderings that are both consistent, so that a single
order cannot be determined a priori.

Precedence constraints are used to ensure that producers
occur before consumers. Offline compilation continues by
computing the L-sets and threat resolutions for every pre-
condition of every event in the plan. Pseudocode for extract-
ing these given a single precondition p of a consumer ec
is shown in Algorithm 2. We use an LVS with dominance
relation � to extract the minimal set of dominant labeled
causal links. Lines 3-8 add every event ep preceding ec that
produces either p or ¬p to the this LVS (which will main-
tain only the latest-occurring, dominant ones). Should it be
encountered that ep produces ¬p and neither ep ≺ ec nor
ec ≺ ep, the compilation process cannot determine before-
hand if ep is a threat. Pike will thus fail.

At this stage, the LVS contains all dominant events epi
producing p or ¬p. Those producing p will become labeled
causal links in Lines 13-15, and those producing ¬p are
threats that are resolved in Lines 9-12. Each threat eT is re-
solved by finding the set of all other events eRi

in the LVS
that succeed eT and resolve the threat by reasserting p. If
eT is executed (i.e., if φT holds), then at least one of the
resolvers must also hold - resulting in the threat resolution
propositional constraint φT ⇒

∨
i φRi .

Once an L-set with threat resolutions has been computed
for all preconditions, the labeled causal link extraction pro-
cess is complete.

Encoding causal links in an ATMS
The final stage of offline compilation is to encode the labeled
causal links’ corresponding constraints into an ATMS-based
knowledge base. This ATMS will allow the online executive
to quickly make fast queries regarding choice feasibility.

Algorithm 2: GETCAUSALLINKSANDTHREATS

Input: A precondition p for an event ec
Output: An L-set L and threat list T

1 ξ ← new labeled value set with relation � over events
2 L, T ← empty sets
3 foreach event ep producing p or ¬p as effect do
4 if ep produce ¬p and neither ep ≺ ec nor ec ≺ ep

then
5 return ERROR
6 end
7 Add (ep, ENV(ep)) to ξ if ep ≺ ec
8 end
9 foreach (eT , φT ) producing ¬p in ξ do

10 Find all (eRi
, φRi

) ∈ ξ where eRi
produces p,

eT ≺ eRi
, and φRi

∪ φT 6=⊥
11 Add threat resolution (φT ⇒

∨
φRi

) to T
12 end
13 foreach (ep, φp) ∈ ξ producing p do
14 Add labeled causal link from ep to ec over p, with

environment φp, to L
15 end
16 return L and T

The Assumption-based Truth Maintenance System, or
ATMS, is a popular knowledge base that allows a problem
solver to efficiently reason about facts without prematurely
committing to them (De Kleer 1986). The ATMS introduces
assumptions - facts whose certainty is not known and may
be changed by the problem solver with little overhead.

The encoding process is illustrated in Figure 4. It begins
by making a special ATMS node, Consistent, which holds
if and only if the executed plan is complete and consistent.
This Consistent node will be constantly queried during
online execution under different environments representing
different possible choices that may be made.

The assumptions for the ATMS encoding consist of vari-
able assignments of the form xi = vi, for all choice variables
and their domains. Mutex constraints are added so that only
one value for each variable is chosen (represented in Figure
4 by the left-most ⊥ contradiction nodes).

The remainder of the nodes encode labeled causal links
and threat resolutions. The key idea is that for each activated
L-set, at least one labeled causal link therein must be acti-
vated, and all threat resolution implications must hold true.

Taking the example in Figure 4A., we see that there are
two labeled causal links: l1 with environment φ1 = {},
and the l2 with environment φ2 = {y = 1}. These are
represented by φ1 and φ2 nodes in Figure 4B. We see that
the l1 and l2 nodes are also connected to a Holds assump-
tion. This represents the case when causal links may be vi-
olated via unexpected disturbances. Should this occur, the
executive would tie the corresponding Holds assumption to
a contradiction node (example shown with a dotted line in
Figure 4B.), thereby ensuring that l1 is necessarily FALSE.
Note that each of the links is connected to a Links node
disjunctively, meaning that at least one of those links must

495



Figure 4: Example encoding of labeled causal links into an
ATMS. Following the graphical notation in (Forbus 1993),
assumptions are drawn as rectangles, and fact nodes as cir-
cles. Arrows represent justifications, where multiple tails are
joined conjunctively. Multiple incoming arrows to a node
represent a disjunction of those justifications. The ⊥ nodes
represent contradictions - if they are justified by some envi-
ronment, that environment becomes a no-good.

be active for Links to be TRUE. Finally, we encode the fact
that this L-set need not be active - i.e., the executive could
pick z = 2, meaning that the (require-p) action is not ac-
tive. This is represented by the ¬φL node, where φL rep-
resents the environment of the L-set, or namely that of the
consumer event (here {z = 1}). We wish for the implica-
tion φL ⇒ Links ∧ Threats to hold - i.e., at least one
causal link and all threat resolutions must be active, if the
L-set is active. To encode this, we convert the implication to
¬φL ∨ (Links ∧ Threats), and use the following to derive
which assumptions to connect disjunctively to ¬φL:

¬
∧
i

(xi = vik)︸ ︷︷ ︸
φL

⇔
∨
i

(xi 6= vik)⇔
∨
i

∨
l 6=k

xi = vil

For example, if we had variables x and y each with do-
main {1, 2, 3} and φL were {x = 1, y = 2}, we could rep-
resent ¬φL as ¬(x = 1 ∧ y = 2) as (x = 2 ∨ x = 3 ∨ y =
1∨ y = 3). In Figure 4, this is simply z = 2. The threat res-
olutions, which also involve implications due to their form
φT ⇒

∨
i φRi , use a similar encoding for ¬φT .

Finally, temporal conflicts must be encoded into the
ATMS. Pike extracts temporal conflicts using the same ap-
proach as Drake; namely, by finding environments in which
negative cycles appear in the APSP (Conrad, Shah, and
Williams 2009). For each conflict environment, we justify
the contradiction node ⊥ conjunctively with each of the en-

vironment’s assignments to ensure that it becomes a no-good
in the ATMS.

This completes the offline compilation process. Now that
an ATMS-based knowledge base has been produced, it will
be used for fast online execution.

Online Execution

The online execution algorithm is responsible for scheduling
events and assigning values to controllable choices. It is sim-
ilar in spirit to the version presented in the Drake executive
(Conrad 2010). Simplified pseudocode is shown in Algo-
rithm 3. The algorithm uses labeled execution windows for
scheduling events. Additionally, controllable choices will be
made only if the ATMS is capable of committing to them.
For example, if the Consistent node could hold when the
x = 2 assumption holds, then the executive would not com-
mit to x = 2. In this way, the executive will greedily make
decisions, possibly pruning out future options, so long as at
least one candidate subplan that is complete and consistent
remains possible.

When the executive makes a choice (or when the human
makes an uncontrollable decision), the ATMS commits to
this decision xi = vi by connecting all xi 6= vi to ⊥.
This has the effect of forcing the choice. Similarly, should
a causal link be violated, the corresponding Holds assump-
tion is tied to ⊥.

This completes Pike’s algorithmic description. We con-
tinue by providing some experimental results in simulation
and on a hardware testbed.

Algorithm 3: ONLINEEXECUTION

Input: A dispatchable TPNU D, knowledge base kb,
streams of uncontrollable choice assignments U
and state estimates S

Output: Stream of controllable choice assignments,
scheduled event times

1 Q ← all events in D
2 INITTIMEWINDOWS()
3 while Q 6= ∅ do
4 t← CURRENTTIME()
5 e← some event in Q
6 if COULDCOMMITTOEVENT(e, t, kb) then
7 COMMITTOEVENT(e, kb)
8 Remove now-inconsistent ei from Q
9 PROPAGATETIMEWINDOWS(e, t)

10 ACTIVATECAUSALLINKS(e)
11 end
12 COMMITUNCONTROLLABLECHOICES(U , kb)
13 lvio ← GETVIOLATEDCAUSALLINKS(S)
14 COMMITASVIOLATED(lvio, kb)
15 if NOCANDIDATESUBPLANSLEFT?(kb) then
16 return FAILURE
17 end
18 end
19 return SUCCESS

496



100 101 102 103 10410−3

10−2

10−1

100

101

102

103
Ti

m
e

(s
)

Offline Compilation Time

100 101 102 103 104

Number of Candidate Subplans

10−3

10−2

10−1

100

101

Ti
m

e
(s

)

Worst Online Commit Latency

Figure 5: Top: compilation time for randomly-generated,
structured TPNU’s and corresponding PDDL domains. Bot-
tom: slowest time for the ATMS to commit to a decision
during online execution.

Results
We have tested Pike both in simulation and on hardware. Our
results show that Pike is able to dispatch plans and usually
make decisions at reactive timescales.

Figure 5 shows experimental data for Pike, as run on
structured, randomly-generated TPNU’s with associated
PDDL domains. Each point represents an individual prob-
lem instance. To generate these problems, TPNU’s with ran-
dom choice, parallel, and sequential structures were gener-
ated. Causal links and threats were then randomly gener-
ated for randomly-generated action preconditions, and used
to define corresponding PDDL domains.

The top plot shows offline compilation time for these
problems as a function of the number of candidate sub-
plans (which grows roughly, though not always, exponen-
tially with the number of TPNU choice nodes). Theoreti-
cally, this offline compilation may take exponential time, as
the labeled APSP is not polynomially bounded (unlike its
unlabeled counterpart). The sharp line at the top is a result
of our 10 minute per test time limit - these instances would
have run for longer.

An additional computational complexity lies in our use of
theHolds assumptions for causal links - each of which adds
an assumption to the ATMS. A plan with N choices (each

Figure 6: Integration on a household kitchen scenario.

with a domain of size d) and L causal links will result in a
total ofNd+LATMS assumptions. Since the ATMS may be
forced to enumerate all environments over all assumptions,
the worst case is a state space explosion often dominated by
L. This is why it is crucial from a performance standpoint
to extract only a minimal, dominant set of causal links - it
drastically reduces L, and the size of the ATMS problem.

The bottom plot shows the highest latency for the ATMS
knowledge base to commit to a decision, for those randomly-
generated problems that were feasible. This is a worst-case
estimate, as the mean commit time was often much faster.
As execution unfolds and the ATMS prunes more candidate
subplans, committing becomes much easier.

In additional to these simulated tests, we have also im-
plemented1 the the first half of the “breakfast” domain in
Figure 1, or namely the “beverage” domain shown in Figure
2. A picture of our testbed can be seen in Figure 6.

Our integration uses a computer vision system to track the
locations of the various objects (mug, glass, coffee grounds,
and orange juice), which the Barrett WAM arm may then
manipulate. We have also implemented a state estimator that
outputs the current world state and a simple activity recog-
nizer. If the activity recognizer sees the mug moving with-
out the robot’s intervention, it infers that the human must be
executing the (get mug) task and signals to Pike that the cor-
responding uncontrollable choice has been made. The demo
proceeds as described earlier in this paper. Namely, if the hu-
man picks up the mug, the robot will offer coffee grounds.
If the human picks up the glass, the robot will offer juice.

Conclusions & Future Work
We have introduced Pike, an executive for human-robot
teams that achieves plan recognition and adaptation concur-
rently through a single set of algorithms. We believe Pike
will be widely applicable to a number of domains.

Pike’s task representation has proven useful for simul-
taneous recognition and adaptation. The TPNU can en-
code many different types of contingencies: recovery ac-

1A video showcasing this integration can be seen at
http://people.csail.mit.edu/sjlevine/ICAPS14/Kitchen.mov

497



tions (ex., if mug is dropped, pick it up), choice of agent,
faster/slower action alternatives to achieve temporal con-
straints, and more. Pike’s only requirement is that failures
must be addressable by future contingencies. However, the
TPNU does have one major limitation: flexibility outside of
these contingencies. Pike will be unable to adapt should the
robot or human stray beyond the TPNU’s available contin-
gencies. Should this happen, Pike would immediately detect
failure. In the future, we plan to experiment with integrat-
ing Pike with a generative planner for added robustness. Ad-
ditionally, we plan to develop probabilistic and continuous
state-space variants of Pike.

Acknowledgments
We thank Pedro Santana, Peng Yu, David Wang, Andreas
Hofmann, Enrique Fernandez, Ameya Shroff, Frank Yaul,
and Scott Smith for many insightful discussions. We are in-
debted to Pedro Santana for implementing the computer vi-
sion system, as well as to Patrick Conrad and David Wang
for their work implementing Drake. This work has been gra-
ciously funded under Boeing grant MIT-BA-GTA-1.

References
Alili, S.; Warnier, M.; Ali, M.; and Alami, R. 2009. Plan-
ning and plan-execution for human-robot cooperative task
achievement. In 19th International Conference on Auto-
mated Planning and Scheduling.
Ambros-Ingerson, J. A., and Steel, S. 1988. Integrating
planning, execution and monitoring. In AAAI, volume 88,
21–26.
Avrahami-Zilberbrand, D.; Kaminka, G.; and Zarosim, H.
2005. Fast and complete symbolic plan recognition: Allow-
ing for duration, interleaved execution, and lossy observa-
tions. In Proc. of the AAAI Workshop on Modeling Others
from Observations, MOO.
Ayan, N. F.; Kuter, U.; Yaman, F.; and Goldman, R. P. 2007.
Hotride: Hierarchical ordered task replanning in dynamic
environments. In Proceedings of the 3rd Workshop on Plan-
ning and Plan Execution for Real-World Systems (held in
conjunction with ICAPS 2007), volume 2.
Bui, H. H. 2003. A general model for online probabilistic
plan recognition. In IJCAI, volume 3, 1309–1315. Citeseer.
Carberry, S. 2001. Techniques for plan recognition. User
Modeling and User-Adapted Interaction 11(1-2):31–48.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In AIPS, 300–
307.
Clodic, A.; Cao, H.; Alili, S.; Montreuil, V.; Alami, R.; and
Chatila, R. 2009. Shary: a supervision system adapted to
human-robot interaction. In Experimental Robotics, 229–
238. Springer.
Conrad, P. R.; Shah, J. A.; and Williams, B. C. 2009. Flexi-
ble execution of plans with choice.
Conrad, P. R. 2010. Flexible execution of plans with choice
and uncertainty. Master’s thesis, Massachusetts Institute of
Technology.

De Kleer, J. 1986. An assumption-based tms. Artificial
intelligence 28(2):127–162.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1):61–95.
Effinger, R. T.; Williams, B. C.; Kelly, G.; and Sheehy, M.
2009. Dynamic controllability of temporally-flexible reac-
tive programs. In ICAPS.
Finzi, A.; Ingrand, F.; and Muscettola, N. 2004. Model-
based executive control through reactive planning for au-
tonomous rovers. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, volume 1, 879–884. IEEE.
Forbus, K. D. 1993. Building Problems Solvers, volume 1.
MIT press.
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to pddl
for expressing temporal planning domains. J. Artif. Intell.
Res.(JAIR) 20:61–124.
Goldman, R. P.; Geib, C. W.; and Miller, C. A. 1999. A
new model of plan recognition. In Proceedings of the Fif-
teenth conference on Uncertainty in artificial intelligence,
245–254. Morgan Kaufmann Publishers Inc.
Haigh, K. Z., and Veloso, M. M. 1998. Interleaving plan-
ning and robot execution for asynchronous user requests. In
Autonomous agents, 79–95. Springer.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In AAAI, volume 86, 32–37.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In IJCAI, 487–493.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal plan-
ning and execution in robotics domains. In AAAI, volume 4,
617–622.
Levine, S. J. 2012. Monitoring the execution of temporal
plans for robotic systems. Master’s thesis, Massachusetts
Institute of Technology.
McAllester, D., and Rosenblatt, D. 1991. Systematic non-
linear planning.
Muise, C.; Beck, J. C.; and McIlraith, S. A. 2013. Flexible
execution of partial order plans with temporal constraints. In
Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, 2328–2335. AAAI Press.
Shah, J. A.; Conrad, P. R.; and Williams, B. C. 2009. Fast
distributed multi-agent plan execution with dynamic task as-
signment and scheduling. In ICAPS.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution.
Veloso, M. M.; Pollack, M. E.; and Cox, M. T. 1998.
Rationale-based monitoring for planning in dynamic envi-
ronments. In AIPS, 171–180.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of
Experimental & Theoretical Artificial Intelligence 11(1):23–
45.

498




