
Path Planning for Dexterous Mobility

Dirk Ruiken and Michael W. Lanighan and Roderic A. Grupen
Laboratory for Perceptual Robotics

School of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003, USA
{ruiken, lanighan, grupen}@cs.umass.edu

Abstract
In order to overcome a large variety of run-time con-
straints, robots are being designed to be more resource-
ful by incorporating more sensory and motor options
for any given task. The added flexibility provides a ba-
sis for dexterous problem solving, but challenges plan-
ners by increasing the complexity of search. Moreover,
the cost of functionally equivalent options can vary dra-
matically. In the worst case, naive approaches to plan-
ning avoid expensive actions until inexpensive options
are explored exhaustively leading to poor overall search
performance. We present a dexterous robot that intro-
duces multiple types of locomotor actions with signif-
icant differences in cost and situational value and ap-
ply standard search techniques to demonstrate the ad-
ditional challenges that arise in the context of dexter-
ous mobility. Results highlight incentives, opportuni-
ties, and impact for overcoming these challenges. Addi-
tionally, we present a prototype for a path planner that
uses environmental features to define an efficient set of
subgoals for dexterous motion planning.

Introduction
Mobile manipulators may have to deal with a large variety
of tasks and terrains in unstructured environments. State-of-
the-art robots are often designed with excess degrees of free-
dom and with redundant sensors leading to the potential for
sensory and motor flexibility. However, applications of these
new machines require more than the potential for flexibility.
In seminal work by Nikolai Bernstein, dexterity was defined
as “the ability to solve a motor problem correctly, quickly,
rationally, and resourcefully” (Bernstein 1996). The senso-
rimotor potential for dexterity poses challenges for plan-
ners because of high dimensional action spaces as well as
dramatic variations in the cost of alternative actions. In the
worst case, the large difference between costs can result in
exhaustive exploration of inexpensive actions before more
costly actions are considered. This leads to generally poor
search performance.

To explore this issue, we focus on path planning for dex-
terous mobility and present a dexterous robot that introduces
multiple types of locomotor actions with significant differ-
ences in costs and situational values. Although dexterity has

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been traditionally concerned with manual tasks, “it’s not un-
reasonable to apply [dexterity] to locomotion” (Ma and Dol-
lar 2011).

A classical planner is implemented to support navigation
in an environment with various types of obstacles. Experi-
ments are limited to static environments that are completely
known a priori. A traditional A* planner is used to highlight
the challenges arising in this application. We also present a
first version of a hierarchical planner which uses a sparse set
of subgoals in order to alleviate these problems.

The rest of the paper is organized as follows: first we pro-
vide details on the uBot-6 mobile manipulator, its postural
modes, and the path planning algorithms. Simulation results
are presented and used to demonstrate the challenges facing
planning in this context as well as display the performance
of the hierarchical planner. The paper concludes with an out-
look into future work.

Robot Platform
The study employs uBot-6, a toddler-sized mobile manipu-
lator under developement at the Laboratory for Perceptual
Robotics at the University of Massachusetts Amherst. It has
13 degrees of freedom (DOF): two wheels, trunk rotation,
two 4-DOF arms, and a 2-DOF head. uBot-6 provides multi-
ple postural modes that support redundant types of mobility
control with vastly different costs and value. The robot can
balance on two wheels, it can “scoot” in a prone posture,
and it can knuckle walk like a chimpanzee (Figure 1 left to
right).

Figure 1: uBot-6 in several postural modes: balancing (left),
prone scooting (center), knuckle-walking (right).

Balancing is very energy efficient and can be used on
even ground. A small footprint and safety due to low input

509

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling



impedance of the balancer make mobility in this postural
mode well suited for navigation around humans. Differen-
tial steering allows turning in place and navigation in tight
spaces.

Prone scooting: by using the base wheels as well as pas-
sive wheels on the elbows, the robot can scoot in an Ack-
ermann steering configuration. Arm motions are used for
steering. While in this postural mode, the robot body can
assume different body heights with implications in the min-
imum turn radius and power consumption. Two example
body postures and their respective minimum turn radii can
be seen in Figure 2. Scooting enables the robot to move un-
der overhangs and with greater stability, but at the expense
of energy relative to the balancing posture.

Figure 2: Comparison of turn radii for uBot-6 while prone
scooting dependent on low body height: 1.2 m (left) and high
body height: 0.68 m (right).

For knuckle-walking mobility the robot uses its base
wheels and hands to walk. It provides uBot with the abil-
ity to traverse irregular terrain. However, this ability comes
at the cost of higher energy consumption and lower speed
compared to balancing or scooting.

uBot-6 can transition between its postural modes by fol-
lowing the paths in the postural transition graph (Figure 3).
The postural modes, controllers, and costs of postural transi-
tions are described in detail in (Kuindersma et al. 2009) and
(Ruiken, Lanighan, and Grupen 2013). Compared to loco-
motion, transitions from one mode to another are relatively
costly— in fact, they are an order of magnitude more expen-
sive in terms of time and energy. As just two postural modes
are sufficient to demonstrate the arising challenges for plan-
ners, for the experiments in this paper we use only balancing
and prone scooting postural modes.

Cost Modeling

All mobility actions and postural mode transitions of the
robot have been modeled with respect to time and energy
based on empirical data. In this study, minimum-time plans
are considered. In general, especially for mobile robots, the
power consumption and probability of success of actions
might be considered as well.

Table 1 shows the required time for driving in various
postural modes and transitions between postural modes. Ex-
periments use nominal velocities for driving actions though
more detailed cost models and velocity constraints can be
found in (Ruiken, Lanighan, and Grupen 2013). Prone scoot-
ing allows higher maximum drive velocities than balancing.

Figure 3: Postural modes and inter-modal transitions

Table 1: Cost with respect to time for driving and transition-
ing between postural modes.

Action Cost (Time)
Driving: Balancing 2.0 s

m
Driving: Prone scooting 1.6 s

m
Transition: Balancing to low prone 19.0 s
Transition: Low prone to balancing 18.3 s

Path Planning
A navigation task of a mobile robot requires searching for a
path in the environment using a set of actions with associ-
ated costs. Possibly the most well-known search algorithm
is A* (Hart, Nilsson, and Raphael 1968), which finds an op-
timal path by combining actual and heuristic cost. While A*
is very efficient, the size of the search space as well as time
limitations often makes it infeasible to find a solution. To ad-
dress this problem many anytime variations such as ARA*
(Likhachev, Gordon, and Thrun 2003) have been developed
which are able to quickly find a suboptimal solution and then
use the remaining time to refine it. Another limitation of
A* in real world settings is its inability to efficiently adjust
to changes in dynamic environments. Efficient incremental
variants of A* such as D* (Stentz and Mellon 1993) are able
to repair existing solutions for a fraction of the cost of a com-
plete replan. Both anytime and repair capabilities have been
combined in algorithms like AD* (Likhachev et al. 2005).

The ability to change postural modes increases flexibility
and resourcefulness, but also introduces a significant penalty
for changing modes even though it can lead to obvious and
efficient path plans. Heuristic planners will still find optimal
solutions, but unless guided by very sophisticated heuristic
functions, will avoid expensive actions such as mode transi-
tions until inexpensive options are explored exhaustively.

Other planning approaches for dexterous robots have been
attempted. Notably, motion primitives have been used with
probabilistic road-maps (Hauser et al. 2008; Hauser and
Latombe 2010). A*-like approaches using metrics such as
power consumption, time, etc. are more commonly used for
wheeled robots (Likhachev and Ferguson 2009). We utilize

510



a heuristic based planner to showcase the challenges facing
planners that exploit dexterity in a mobility domain.

Dexterous mobility on the uBot-6 introduces only a small
number of transitions, but it is already difficult to create an
adequate heuristic. The difficulty of finding suitable heuris-
tics in similar domains has also been noted by (Hauser et al.
2008). We demonstrate the strong impact of dexterity and
large variance in action costs on path planning performance
by using a classical A* search with a state lattice on a simu-
lated uBot-6. Additionally, we present the prototype of a hi-
erarchical A* that utilizes environmental features to define
efficient subgoals.

Classical A*
We use a standard A* search as a representative of classic
heuristic search. We refrain from using any of its aforemen-
tioned variants as we are dealing with fully known static en-
vironments in our experiments. We are using a state lattice
(Pivtoraiko and Kelly 2005) as a discretized representation
of our state space. Each node is a discretization of a robot
configuration with x, y location and heading θ in a postu-
ral mode m. Connections between states represent feasible
paths and are constructed from the actions available to the
robot. Each action can either be a short locomotion prim-
itive or a postural mode transition. The connections in the
state lattice are generated from feasible actions and therefore
a found path will also be feasible making this representation
well suited for path planning.

The action space of each lattice state consists of all loco-
motion and transition actions that are feasible given the cur-
rent robot pose and configuration. For each postural mode,
a set of actions with different drive distances and turn radii
is available. The minimal turn radius Rmin varies for the
different postural modes. Upright balancing is the most ver-
satile mode and allows turning in place through differential
steering (Rmin = 0m). Prone scooting has restrictions on
the minimal turn radius with Rmin = 1.2m for low body
height. Each action results in a trajectory from the current
robot pose to another lattice state. An action is added to
the action space of a state if no point along the trajectory
is in collision with the environment. Depending on the pos-
tural mode, collision checks are performed in different col-
lision maps corresponding to the respective body height and
robot footprint. Additionally, all transitions to other postural
modes are included if the transition actions can be executed
collision free.

We extend a proven heuristic to explore the problems aris-
ing from the dramatic cost differences of actions. The heuris-
tic is based on pre-computed values stored in a heuristic
look-up table (Knepper and Kelly 2006), which allows quick
retrieval of heuristic values during search. As the entire state
space—despite being discretized—is very large, it is not
practical to pre-compute and store heuristic values for all
states. Instead, similar to (Likhachev and Ferguson 2009),
we pre-compute heuristic values for a simplified state space
based on just position and postural mode (x, y,m). This re-
laxation corresponds to the state space of a holonomic robot.
Contrary to our non-holonomic robot, this relaxed model
allows movement in any direction independently of head-

ing. Using Dijkstra’s search (Dijkstra 1959) starting from
the goal we label states with the minimal cost they can be
reached with. Movement in 2D uses Euclidean straight-line
distance weighted with movement costs in the correspond-
ing postural mode. Transition costs are the same as used in
the actual search.

Feature driven Hierarchical A*
The second search algorithm we use is a hierarchical plan-
ner which employs A* on both abstract and low levels. The
global planner finds an abstract path in a sparse set of sub-
goals which are sampled around features detected in the en-
vironment. The features used here are volumetric edges with
discontinuities in depth as well as the frontier of explored
space. While vertical edges (corners) and the frontier of un-
explored territory promise discovery of new features through
changed viewpoints in 2D, horizontal edges indicate places
in which the transition into a different postural mode can
both reveal new features and potentially indicate changed
terrain constraints.

The availability and cost of transitions between neighbor-
ing subgoals is determined by a local planner. We use the
described A* with state lattice. As the features are all de-
tected visually, the paths between subgoals can be found
very quickly even with a simple heuristic based on straight
line distance. To avoid long searches when transitions are
not available, the search is bound to a maximum search
cost dependent on the heuristic. Transitions between postu-
ral modes only happen at subgoals and thus do not impede
local search.

In contrast to existing A* based hierarchical planners like
HPA* (Botea, Müller, and Schaeffer 2004), the abstract ver-
sion of the search space is not just a grid with reduced res-
olution, but instead is dependent on features in the environ-
ment which are linked both to exploration and constraints on
postural modes.

Experiments and Results
Dexterous mobility can be useful in a variety of situations.
For example, a household helper with dexterous mobility
will not be hindered by objects laying in its path and is ca-
pable of fetching a box that has been stored under the bed.
In search and rescue settings a robot with dexterous mobility
may overcome a wider variety of environmental obstacles.

In order to use the right combination of postural modes
in such situations, we can use a planner. But dramatically
different action costs pose challenges to planners as they
rather explore inexpensive actions exhaustively before using
vastly expensive alternatives. We use three similar example
environments of varying difficulty to showcase the utility of
dexterity in mobility and also highlight the challenges that
arise for planners from it.

Imagine a search and rescue setting. In three scenarios the
robot has to move from location A in one room through an
angled hallway to location B in another room. In the first
scenario (Figure 4(a)) the hallway is unobstructed and the
robot can stay in balancing postural mode all the way. In
the second scenario (Figure 4(b)), both entrance and exit of

511



the hallway are obstructed by an obstacle which prevents the
robot from passing through upright. After changing its pos-
tural mode, the hallway can be traversed by prone scooting.
The third scenario (Figure 4(c)) is identical to the second
scenario, but the hallway is more narrow. Due to relatively
large minimum turn radii while prone scooting, the corner
can only be taken while balancing. Thus the robot has to
scoot to enter and exit the hallway, but needs to be balancing
to take the obstructed corner.

For each scenario, obstacle maps are provided for balanc-
ing and prone scooting postural modes. Both maps can be
considered as being dilated such that we can treat the robot
as a point. As we are not using a 3D simulation environment,
an additional map provides the location of vertical and hori-
zontal edges needed for feature extraction.

(a) (b)

(c) (d)

Figure 4: Scenarios 1 - 3 are shown in (a) - (c) respec-
tively. The paths found are shown in blue. Cells shaded or-
ange were expanded in search. In (b) and (c) the hallway
separating A and B is obstructed with low-hanging obsta-
cles preventing balancing mobility (black-yellow shaded ar-
eas). Additionally, in scenario 3, rubble narrows the passage
throught the hallway. Fig. (d) shows the abstract and refined
path found by the hierarchical planner for scenario 3.

Figure 4 shows the solutions found by the two algorithms
for each scenario and illustrates the state space expanded. A
roll-out of the plan found by A* for scenario 3 can be seen
in Figure 5. Table 2 shows the search time and the num-
ber of expanded states for the two algorithms in each sce-
nario. As expected, the scenario 1 and 2 pose no problem
to the A* search as the costs are reflected very well by the
heuristic. But in scenario 3 we see a large negative effect
when the heuristic is not accurate enough. In this case turn-
ing the corner is not possible while prone scooting due to
non-holonomic constraints. As the used heuristic is a holo-
nomic approximation, in this case it is not accurate enough.
As a result all less expensive actions are exhaustively tried
before the necessary transitions between postural modes are
considered. By reducing the state space using environmen-

tal features, the hierarchical planner yields a substantial im-
provement to this search time in scenario 3 though the found
paths are not optimal.

Figure 5: Roll-out of solution shown in Figure 4(c).

Table 2: Search results for A* and hierarchical A* with
sparse subgoals (HA*) over the three scenarios

Scenario Alg. Search time Expanded states
1 A* 0.21 s 7327
2 A* 0.51 s 22850
3 A* 192.73 s 4798315
1 HA* 1.82 s 28
2 HA* 6.54 s 73
3 HA* 13.01 s 144

Conclusion and Future Work
We presented the dexterous mobility domain as an instance
of planning for dexterous systems. We have demonstrated
on a simple example problem how heuristic search—which
underlies many state of the art techniques—is challenged
by dramatic differences in action costs. While these issues
can partially be overcome with more accurate heuristic mod-
els of the problem, as robots become more dexterous these
heuristics will become increasingly difficult to model ac-
curately enough. We introduced a hierarchical search algo-
rithm that might alleviate some of the arising problems from
dramatically different action costs in dexterous mobility by
using a sparse search space built from environmental fea-
tures.

Future work encompasses extending dexterous mobility
to more postural modes. We plan to extend the hierarchical
planner to partially observable and dynamic environments.
As the waypoints are already based on features which also
provide potential exploration of unknown terrain, one strat-
egy is to include the expected information gain to guide the
search algorithm more efficiently. To this end, we plan on
investigating symbolic planners (Dornhege et al. 2009) with
our sparse feature representation.

Acknowledgment
The authors gratefully acknowledge the support of NASA-
GCT-NNX12AR16A and ONR-MURI-N000140710749 for
this work.

512



References
Bernstein, N. A. 1996. On dexterity and its development.
In Latash, M. L., and Turvey, M., eds., Dexterity and its de-
velopment. Mahwah, NJ: Lawrence Erlbaum Associates. 1–
237.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near opti-
mal hierarchical path-finding. Journal of game development
1(1):7–28.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1):269–271.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner,
M.; and Nebel, B. 2009. Semantic attachments for
domain-independent planning systems. In Proceedings of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS), 114–121. AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Hauser, K., and Latombe, J.-C. 2010. Multi-modal motion
planning in non-expansive spaces. The International Jour-
nal of Robotics Research 29(7):897–915.
Hauser, K.; Bretl, T.; Harada, K.; and Latombe, J.-C. 2008.
Using motion primitives in probabilistic sample-based plan-
ning for humanoid robots. In Algorithmic Foundation of
Robotics VII. Springer. 507–522.
Knepper, R. A., and Kelly, A. 2006. High performance
state lattice planning using heuristic look-up tables. In IROS,
3375–3380.
Kuindersma, S.; Hannigan, E.; Ruiken, D.; and Grupen, R.
2009. Dexterous mobility with the ubot-5 mobile manipula-
tor. In Advanced Robotics, 2009. ICAR 2009. International
Conference on, 1–7.
Likhachev, M., and Ferguson, D. 2009. Planning long dy-
namically feasible maneuvers for autonomous vehicles. The
International Journal of Robotics Research 28(8):933–945.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic a*: An anytime, replan-
ning algorithm. Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS) 262–271.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. Ara*: Any-
time a* with provable bounds on sub-optimality. Advances
in Neural Information Processing Systems (NIPS) 16.
Ma, R. R., and Dollar, A. M. 2011. On dexterity and dexter-
ous manipulation. In Advanced Robotics (ICAR), 2011 15th
International Conference on, 1–7. IEEE.
Pivtoraiko, M., and Kelly, A. 2005. Generating near min-
imal spanning control sets for constrained motion planning
in discrete state spaces. In Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Confer-
ence on, 3231–3237. IEEE.
Ruiken, D.; Lanighan, M. W.; and Grupen, R. A. 2013.
Postural modes and control for dexterous mobile manipu-
lation: the umass ubot concept. In Humanoid Robots (Hu-
manoids), 2013 13th IEEE-RAS International Conference
on, 721–726. IEEE.

Stentz, A., and Mellon, I. C. 1993. Optimal and efficient
path planning for unknown and dynamic environments. In-
ternational Journal of Robotics and Automation 10:89–100.

513




