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Abstract

In this paper, we apply planning-based reasoning to orches-
trate the data analysis process automatically, with a focus on
two applications: early detection of health complications in
critical care, and detection of anomalous behaviors of net-
work hosts in enterprise networks. Our system uses expert
knowledge and AI planning to reason about possibly incom-
plete, noisy, or inconsistent observations, derived from data
by deploying an open set of analytics, to generate plausi-
ble and consistent hypotheses about the state of the world.
From these hypotheses, relevant actions are triggered leading
to the deployment of additional analytics, or adaptation of
existing analytics, that produce new observations for further
reasoning. Planning-based reasoning is enabled by knowl-
edge models obtained from domain experts that describe en-
tities in the world, their states, and relationship to observa-
tions. To address the associated knowledge engineering chal-
lenges, we propose a modeling language named LTS++ and
build an Integrated Development Environment. We also de-
velop a process that provides support and guidance to do-
main experts, with no planning expertise, in defining and
constructing models. We use this modeling process to cap-
ture knowledge for the two applications and to collect user
feedback. Furthermore, we conduct empirical evaluation to
demonstrate the feasibility of our approach and the benefits
of using planning-based reasoning in these applications, at
large real-world scales. Specifically, in the network monitor-
ing scenario, we show that the system can dynamically deploy
and manage analytics for the effective detection of anomalies
and malicious behaviors with lead times of over 15 minutes,
in an enterprise network with over 2 million hosts (entities).

Introduction
While big data technologies (e.g., Hadoop, stream comput-
ing) are addressing the systems aspects of the data overload
problem that is experienced in many domains, the interpre-
tation of the big data analytic results for decision making re-
mains a significant challenge. In this paper, we address this
challenge while focusing on early detection problems in two
problem domains: the early detection of complications in
computer networks and the early detection of complications
in intensive care units (ICUs). Our approach uses domain
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knowledge to establish the correspondence between obser-
vations about monitored entities (patients or hosts) and their
plausible states, coupled with planning-based mechanisms
to generate hypotheses about the entity state from noisy, in-
complete, inconsistent, time-varying observation sequences,
and then use these hypotheses to drive analysis decisions.
We develop tools and methodologies for knowledge elic-
itation from experts (physicians or network analysts) such
that these models can be authored without coding effort or
knowledge of AI planning.

A patient in typical ICU settings is connected to several
monitoring devices that measure different physiological at-
tributes such as the patient’s blood pressure, heart rate, and
temperature. The analysis of these raw streams of data re-
sults in semantically meaningful observations about the pa-
tient. For example, given the patient’s heart rate, their res-
piration rate and their body temperature, which are mea-
sured continuously, and also their white blood cell count
obtained from blood analysis, the Systemic Inflammatory
Response Syndrome (SIRS) score (integer that takes values
between 0 and 4) can be computed as a meaningful observa-
tion about the patient’s health. Observations can also include
other measurements provided by physicians such as their as-
sessment of patient health or results of lab tests. Similarly,
in network monitoring applications, several raw streams of
data are available about individual hosts. These include Do-
main Name Service (DNS) queries, Netflow records, Fire-
wall alerts, Dynamic Host Control Protocol (DHCP) re-
quests, etc. These streams can be analyzed to produce a vari-
ety of meaningful observations about host behavior (normal,
anomalous, infected) such that hosts behaving suspiciously
can be identified in order to protect the network.

Current systems for patient or network host monitoring
typically support the deployment of a predefined set of an-
alytics on a pre-selected set of raw data sources and pro-
vide little support in terms of adaptive analysis. Recently
developed big data platforms (Blount et al. 2010) provide
increasing support for scalability, and dynamic adaptation
of analysis using extensible sources and analytics. However,
in the absence of additional automation, it becomes the re-
sponsibility of end-users (analysts and physicians) to decide
which analytics to apply when and to which data sources.
To address this problem, we propose an automated system
that reasons about observations produced by such analytics,
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and generates hypotheses about monitored entities based on
these observations. Our system then groups similar hypothe-
ses and recommends or initiates actions that can include de-
ploying additional analytics (or adapting current analytics)
automatically in order to collect additional observations that
augment previously incomplete knowledge.

Currently, the primary method to generate hypotheses and
evaluate their plausibility is the judgment of the domain ex-
pert (physicians or analysts) responsible for monitoring the
entity. While model-based diagnosis methods can determine
whether observations are explainable by a model (e.g., (Cas-
sandras and Lafortune 1999; Sampath et al. 1995)), we take
a different approach, based on automated AI planning, fol-
lowing the work of Sohrabi et al. 2013. In particular, we
address two important problems to make the use of AI plan-
ning for our application possible: data transformation prob-
lem, and knowledge engineering problem. To address the
data transformation problem, we tailored for each appli-
cation several data transformation approaches. To address
the knowledge engineering problem we propose a model-
ing language, LTS++, derived from LTS (Labeled Transi-
tion System) (Magee and Kramer 2006), for defining mod-
els for hypothesis generation, and associating observation
types. We also propose a process to help provide guidance
to the domain expert, which often have no planning exper-
tise, to specify the model. In addition, we developed a web-
based tool that enables the specification of the LTS++ model
and associated observations. Given the LTS++ model and
the provided observation trace translated to a planning lan-
guage, hypotheses are generated by running a planner capa-
ble of producing a plan set. Actions are then chosen directly
based on the set of generated hypotheses using rules defined
in LTS++, without an additional planning stage following
the hypothesis generation stage.

We have tested this reasoning approach in our two appli-
cations. In both cases, the LTS++ modeling provides a natu-
ral and concise way to represent domain knowledge describ-
ing the different states in which an entity (host or patient)
might be. Our experimental results, while preliminary, show
the impact of the use of AI planning technology and in par-
ticular demonstrate the ability of our approach to accurately
infer the state of entities from real-world observations.

Architecture
The architecture of the system we developed for data anal-
ysis automation via planning-based reasoning in both inten-
sive care and network monitoring applications is shown in
Figure 1. The system monitors the world consisting of En-
tities. The system receives raw data streams from Sensors,
and executes actions via Actuators. The entities can repre-
sent individual patients, or hosts, or other objects. The set of
available sensors and actuators may vary by application, and
may change after initial deployment. Actuators may recom-
mend actions to be performed by people or other systems.
For example, the system can recommend a lab test that, if
performed, would return results to the system via sensors.

Analytic Platforms provide distributed execution run-
times for big data analytics. Online analytics are deployed
on a stream computing platform (IBM InfoSphere Streams,
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Figure 1: System architecture

in our implementation). Offline analytics are deployed on
a Map-Reduce platform, for example, Apache Hadoop, and
composed into workflows using Apache Pig or Oozie. Ana-
lytics can access Data Stores, to store or read historical data
and results of processing. Selected analytic results are for-
warded to Automated Hypothesis Exploration via Observa-
tion Streams, where each message carries timestamp, obser-
vation type and entity reference.

The Analytics Management subsystem is responsible for
composing and executing analytics in order to achieve anal-
ysis goals. The Analytics Planner selects and composes ana-
lytics necessary to achieve the goal, using semantic descrip-
tions of analytics, their input requirements and composition
patterns described in the Analytic Patterns repository. The
planner may compose analytic workflows that span across
multiple analytic platforms, and the Orchestrator provides
necessary coordination between platforms, and monitors the
execution of analytics. The Analytics Management subsys-
tem can be implemented, for example, using a classical AI
planner to compose analytics (Bouillet et al. 2009).

The Automated Hypothesis Exploration subsystem in-
terprets observation streams received from analytic plat-
forms, generates and consolidates hypotheses, and selects
actions. The first step in this process, Hypothesis Genera-
tion, generates hypotheses about the current state of entities
by reasoning about new observations, in view of prior ob-
servations, and using Hypothesis Models defined by domain
experts. Next, Hypothesis Consolidation groups similar hy-
potheses. Finally, Action Selection makes decision about ac-
tions based on hypothesized state of entities. The selected
actions may be forwarded to actuators or used to initiate
new data analysis via Analytics Management. For example,
analytics can be used to find supporting observations for a
hypothesis using historical data captured in Data Store.

These architectural components together form a cycle that
continuously processes sensor data, generates hypotheses,
investigates hypotheses via additional analysis, and recom-
mends new actions, with support of the Knowledge man-
agement and representation infrastructure. Presentation and
Interaction and Knowledge Engineering Tools, including the
LTS++ IDE, allow the end-users to interact with the system.

Hypothesis Generation via Planning
In this section, we formally define the hypothesis generation
problem and describe its relationship to planning.



Following (Sohrabi, Udrea, and Riabov 2013), we define
the dynamical system as Σ = (F,A, I), where F is a finite
set of fluent symbols, A is a set of planning actions with
preconditions and effects that describes actions that account
for the possible transitions of the states as well as the dis-
card actions that address unreliable observations, and I is a
clause over F that defines the initial state. The instances of
the discard action add transitions to the system that account
for leaving an observation unexplained. This ensures that all
observations are taken into account, but an instance of the
discard action for a particular observation indicates that it
is not explained. An observation formula ϕ is a sequence
of fluents in F we refer to as trace. Note, ϕ can in general
be expressed as an Linear Temporal Logic (LTL) formula
(Emerson 1990), however, for our application we consider
observations to be totally ordered.

Definition 1 (Hypothesis) Given a trace ϕ, and the system de-
scription Σ = (F,A, I), where F is a finite set of fluent symbols,
A is a set of planning actions, and I is a clause over F that defines
the initial state, a hypothesis α is a sequence of actions in A such
that the hypothesis α satisfies the trace ϕ in the system Σ.

We also define a notion of plausibility of a hypothesis. A
hypothesis α is at least as plausible as hypothesis α′, stated
as α � α′, where � is reflexive and transitive plausibility
relation, if one or more of the following statements hold: α
can explain more observations than α′, α is a shorter hy-
pothesis, α has minimum number of designated “unlikely”
or “bad” actions. The third criteria is similar to the notion of
minimum number of “faulty” actions in a diagnostic setting,
based on having an optimistic view on what can go wrong.

Definition 2 (Relationship to Planning) Given a plausibility re-
lation �, α is a hypothesis for a system Σ = (F,A, I), and
a trace ϕ if and only if α is a plan for the planning problem
P = (F,A′, I, ϕ) where A′ is the set A with the addition of posi-
tive action costs that accounts for the plausibility relation �. Fur-
thermore, given two hypotheses α and α′, α � α′ (is at least as
plausible as) if and only if both α and α′ are plans for the planning
problem P , and cost(α) ≤ cost(α′).

Hence, we can use AI planning to compute hypotheses,
moreover, the most plausible hypothesis is the minimum
cost plan. However, it is often not enough to just find one
single optimal plan and instead we must find a set of min-
imum cost plans, or a set of most plausible hypotheses. To
compute this set, we use the techniques proposed in (Riabov,
Sohrabi, and Udrea 2014) to find a set of high-quality plans
in order to drive the hypothesis exploration process.

From Theory to Practice
In the previous section, we established a correspondence be-
tween the generation of hypotheses and the generation of
plans. This correspondences allows us to use AI planning
to generate hypotheses. However, using planning presents
at least four challenges we address in this section: 1) how
to describe the planning problem from non-experts in plan-
ning; 2) how to obtain the observations from raw data; 3)
how to make use of the generated hypotheses; 4) how to in-
teract with the domain experts and present the results.

Model Description
In order to allow the domain experts define the domain
knowledge we propose a language called LTS++, derived
from LTS (Labeled Transition System) (Magee and Kramer
2006). We then translate the knowledge expressed in the
LTS++ language and a given set of observations into a plan-
ning problem. In our experiments, we used one fixed en-
coding of the planning domain, (i.e., description of plan-
ning actions), but varied the planning problem (i.e., initial
state, goal state, and variables) based on the given LTS++
model and observations. Note, in our fixed planning domain,
we have actions for explaining or discarding observations as
well as transitioning from one state to another. We also en-
code the notion of plausibility as actions costs. In particular,
we assign a high cost to the discard action in order to en-
courage explaining more observations.

We also propose a process that further helps the domain
experts in creating a model. Figure 2 shows our 9-step cre-
ation process for an LTS++ model. The arrows are intended
to indicate the most typical transitions between steps. This
process is meant to help provide guidance to the new users
in developing an LTS++ model. While this process is geared
towards our application, we believe that it also provides in-
sight and inspiration into creation of a practical planning
problem. Next, we will first describe the basic elements in
the description of a model in LTS++.
Entity: the domain expert needs to identify the entity which
is what the system monitors. This depends on the objective
of the hypotheses generator, the available data, and the avail-
able actions. The entity could be a patient or a host or other
objects in the application.
States: the domain expert needs to identify the possible
states of the entity (different from a planning state). States
are not directly observable but can be hypothesized. The
states of patient for example could be Delayed Cerebral Is-
chemia (DCI), SuspectedDCI, Infection, Precomplication or
Highrisk. States could also have types such as for example,
unlikely, or “bad” states. This maps to the notion of faulty
or unlikely planning actions as mentioned earlier.
Observations: the domain experts need to identify a set of
observation types that the system needs to reason about.
Since observations are received from analytics as a result
of analyzing raw data, the available data and analytics may
limit the space of observations. Heart Rate Variability Low
(OHRVL, Figure 3), is an example of an observation.
State Transitions: the domain expert has to describe pos-
sible transitions between states. An example transition is
going from state Infection to Highrisk. This transition re-
flects an improvement in patient state, without describing
the cause of this transition. An example of a transition sys-
tem in given in Figure 7.
Association between States and Observations: the domain
expert has to associate observations to states meaning that
this observation can be explained by this state. Note, this
association can be many-to-many as observations could be
ambiguous or indicative of more than one state, and each
state can be associated with multiple observations. The ob-
servation OHRVL is an example of an ambiguous observation
because it can be associated with multiple states.
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Figure 2: Process for LTS++ model creation

Association between States and Actions: LTS++ models
consisting of elements above are used to automatically gen-
erate hypotheses, i.e., plausible sequences of state transitions
explaining a received sequence of observations. To spec-
ify how the system should act upon generated hypotheses,
the domain expert needs to identify actionable states, and
specify actions (different from planning actions) triggered
by those states. Since observations can be ambiguous, miss-
ing, noisy or otherwise unreliable, more than one hypothesis
may need to be generated and investigated, possibly trig-
gering multiple actions simultaneously. To resolve potential
conflicts, the expert may also define mutual exclusion rules
for actions. More details are given in the next subsection.

Figure 3 top part shows part of a LTS++ model description
for our healthcare application. The states are shown in blue.
The observations are specified within the curly brackets and
are shown in green. Multiple observations can be separated
by whitespace or a comma. The state types are specified
within angle brackets. The transitions between states are
specified using arrows. Multiple transitions between states
can be specified using a vertical bar. The starting state is
specified in the last line. Actions are associated with states
in a separate configuration file and are not shown.

Consider the following trace for the model partly shown
in Figure 3: HH1, SIRS0, SIRS2. This denotes a patient with
a Hunt and Hess (a grading system used to classify the sever-
ity of subarachnoid hemorrhage) score of 1, followed by
SIRS (measure of the inflammatory response of the body)
score of 0 and 2. The following are the top four most plausi-
ble hypotheses. Figure 4 also shows these hypotheses in our
tool. Note, we are showing here only the sequence of state
transitions in each hypothesis. admitted→ lowrisk→ highrisk
or admitted → lowrisk → highrisk → precomplication or admit-
ted → lowrisk → highrisk → lowrisk → highrisk or admitted →
lowrisk. Although the current state of the patient is unknown,
the generated hypotheses indicate that it is one of highrisk,
precomplication or lowrisk with highrisk being most plausible.

Selecting Actions Based on Hypotheses
We use planning to find a set H of up to k distinct most
plausible hypotheses given a trace of observations ϕ for an
entity. The resulting set H is used to select actions. Unlike
planning actions, which only serve as means of using a plan-
ning algorithm for hypothesis generation by establishing a
correspondence between plans and hypotheses, the actions
we discuss here on have direct impact on the system, and
are carried out by Analytics Management or Actuators.

Actions are initiated based on changes in current state of
the entity. The current state is computed as follows. Each

hypothesis α ∈ H defines a non-empty sequence of valid
state transitions according to the LTS++ model. The last
state s(α) in α represents the last state of the entity inferred
from the observation trace.

Observations are received continuously, and the system
generates a new set of hypotheses when a new observation
arrives. During each such round, actions are selected based
on the current last state. For each state s, knowledge engi-
neering tools allow defining the set of actions u(s) and a set
of exit actions ū(s). Actions from u(s) are selected when
state s first becomes current in one of hypotheses generated
for the entity. Actions from ū(s) are selected when state s is
no longer current for any of the hypotheses.

In practice, some actions may interfere with other actions,
and hence are mutually exclusive. To address this, for each
action u, a set of conflicting actions uc(u) is defined, and
during action selection current states are evaluated in order
of plausibility of corresponding hypotheses. Actions that are
in conflict with previously selected actions are not selected.

Data Transformation
As shown in Figure 1, the inputs to our system are raw data
points sensed in the physical world. Within these data points
are often buried nuggets of information that need to be ex-
tracted for further reasoning and decision making. In prac-
tice, the sensing process often introduces noise that com-
plicates this information extraction process. For instance, in
critical care, a badly placed electrocardiogram lead will of-
ten produce an electrical signal that masks critical aspects of
the electrical activity of the heart that is meant to be mea-
sured. To address these issues, we have tailored for each
application several data transformation approaches that we
describe briefly in this section. Note that this is an impor-
tant problem we need to solve before applying AI planning.
Data transformation problem will only grow in importance
as more AI planning techniques are in use in real-world ap-
plications that require data processing.

In network anomaly detection applications, the transfor-
mation of raw data into information is done by windowing
raw data events and extracting statistics form these windows
such as event counts, sums, minimal values, maximal values,
averages, and medians. The stream of aggregated data values
then become the input of network anomaly detection engine,
which takes these input values and outputs observations.

Whether an analytic runs in offline mode or online mode,
it receives raw data and produces observations. For exam-
ple, a volumetric-based DNS anomaly detector can run of-
fline on a dataset of DNS requests to detect abnormal hosts,
which issue an unexpectedly high number of DNS requests
for a certain time window. These hosts can be added into a
candidate list of preinfected hosts and relevant observations
are stored for further processing and reasoning. On the other
hand, a volumetric-based Netflow anomaly detection can run
online and receive a stream of aggregated values (e.g., num-
ber of Netflow requests per host per hour) as its input and
output an observation whether hosts are malicious.

In the critical care application, the input data consists of
both events and waveform data streams. Events or lab results
such as clinical assessments are sometimes entered manu-

285



Figure 3: LTS++ IDE

ally by clinicians in the clinical information system. Conse-
quently, they are quite error prone since the primary respon-
sibility of these clinicians is to provide healthcare in these
intense environments and not to enter data into these com-
plex clinical systems. Waveform data sensing is inherently
noisy despite all the advances in sensing technology that
this area has seen in the last couple of decades. The trans-
formation of such waveform data streams into observations
requires sophisticated signal processing and feature extrac-
tion techniques. It results in observations that are also noisy,
thus stressing the importance of being able to reason in the
presence of unreliable observations.

LTS++ Integrated Development Environment
LTS++ Integrated Development Environment (IDE) is a
web-based tool that helps the domain experts to create model
descriptions by describing LTS++ models and to generate
hypotheses. LTS++ IDE consists of an LTS++ editor, graph-
ical view of the transition system, specification of the trace,
and generation of hypotheses. The tool automatically gener-
ates planning problems from the LTS++ specification and
entered trace. The generated hypotheses are the result of
running our planner and presenting the result from top-most
plausible hypothesis to the least plausible hypothesis.

Figure 3 shows the LTS++ IDE. The top part is the lan-
guage editor, which allows syntax highlighting and the bot-
tom part is the automatically generated transition graph,
which can be useful for debugging purposes. The IDE also
features error detection with respect to the LTS++ syntax.
The errors and warning signs are shown below the text editor
and can also be used for debugging the model description.

Figure 4: Top 4 hypotheses for the intensive care example

Observations can be entered by clicking on the “Next: edit
trace” from the LTS++ IDE main page. Once the trace selec-
tion is complete, the hypotheses can be generated by click-
ing on “Generate hypotheses”. The hypotheses are presented
to the user 10 per page, and users can navigate through these
pages. Note, the trace editor is intended mainly for testing
purposes, and in operation the system will read observations
automatically from an input queue.

Fig. 4 shows the top 4 automatically generated hypotheses
for a sample trace [OHH1 OSIRS0 OSIRS2]. Each hypoth-
esis is shown as a sequence of states (shown in rectangles)
matched to observed event sequence. The explained obser-
vations are shown in green ovals and are connected to the
state that explained them by dashed green lines. The unex-
plained observations are shown in purple ovals. The arrows
between the observations show the sequence of observations
in the trace. Each hypothesis is associated with a cost. The
lower the cost value, the more plausible is the hypothesis.

Experimental Results
Our experimental evaluation consists of two parts. In the first
part, we provide a quantitative evaluation of the proposed
system for a network anomaly detection application. The
second part presents a qualitative evaluation of the system
for the early detection of complications in intensive care.

Network Anomaly Detection
We implement a network anomaly detection system running
on 18 months of real-world network data collected from an
enterprise network. Our system works with 2M hosts, where
40K hosts are internal hosts of our network and the rest are
external hosts. The input network datasets include Netflow,
DNS, and Firewall. The Netflow dataset includes the “time
stamp” when the flow starts, source IP, and destination IP.
The Firewall dataset includes the “time stamp” when the
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Figure 5: Host State Transition Model

firewall alert was issued, host IP that causes the alert, and
the alert level. The DNS dataset includes the “time stamp”
of the DNS request, DNS client IP, and the requested URL.

To represent different states of network hosts, we design
a host state transition model as shown in Figure 5. Specif-
ically, a host may be in one of five states: Normal, Pre-
Infected (host that communicates with Infected or Exploit
hosts), Anomalous (host with abnormal activity but with un-
clear evidence to conclude that it is in Infected or Exploit
state), Infected (host with behavior indicative of infection),
and Exploit (infected host that performs abnormal activities
against other hosts). We then encode our host state transition
model in the LTS++ language.

The raw incoming network data rate is 75K mes-
sages/second (i.e., incoming rate per detector is 5K mes-
sages/second) and messages are processed by network
anomaly detectors in Table 1, which send the observations to
the LTS++ servers. These observations are associated with
different states of the host transition model as specified in
Table 1. For instance, a source performing a port scan is
likely in Exploit state, while a destination being port scanned
is likely in Pre-Infected state. Our network anomaly detec-
tors are written in Stream Processing Language (SPL) and
run on IBM InfoSphere Streams, a platform for big data
stream computing. Each detector focuses on specific fea-
tures derived from one of three above datasets to detect net-
work anomalies. The first six detectors in Table 1 are de-
ployed at system startup to identify well-known patterns of
Infected, Exploit or Pre-Infected behavior. Additional an-
alytics - such as expensive anomaly detection on Netflow
(e.g., analytic 7 in Table 1) are triggered by the LTS++ server
for deeper analysis of suspicious hosts. We use three metrics
to evaluate our system: (1) Early Detection: How early the
system can put hosts in Pre-Infected state in advance be-
fore they are detected as Exploit, (2) Workload Dynamics:
number of hosts analyzed per hour, (3) Analysis Adaptation
Time: how long it takes for the system to deploy new analyt-
ics on suspicious hosts. We deploy the system on a cluster
of 6 nodes and each run is for 24 hours of network data. We
verify the results with multiple system runs for consistency.

For our experiments, we set the server’s limit on number
of hypotheses to 5. We find that the number of plans gen-
erated by our servers is from 100 to 2600 per minute and
the LTS++ server receives from 100 to 10K observations
per minute. Figure 6(a) shows that about 80% of hosts were
labeled Pre-Infected with a lead time of one hour before
they are detected as Exploit. For 5% of Exploit hosts, this
lead time can be up to 10 hours. These results confirm that
our system can provide early network anomaly even with a
simple state transition model, and with a small number of

Detector Name Dataset Src Dst
1 Port scan vertical1 Netflow E P
2 Port scan horizontal2 Netflow E P
3 Distributed port scan3 Netflow E P
4 Malicious URL DNS P -
5 Firewall high alert Firewall I -
6 Firewall low alert Firewall P -
7 High volume at src Netflow A -

Table 1: Implemented Network Anomaly Detectors

anomaly detectors. Note that our current detectors can de-
tect around 40% of Exploit hosts, and this can be improved
with other detectors. Figure 6(b) shows that the number of
analyzed hosts per hour by the system varies from 4,000
to 34,000. In practice, the number of active network hosts
varies over time and that contributes to this fluctuation. This
result confirms that our system works well with dynamic
workloads at large scale. Figure 6(c) shows that about 80%
of deployments of new analytics happen within 3 seconds
and about 90% of deployments happen within 5 seconds.
This means our system can produce hypotheses and trigger
relevant actions in a timely fashion.

In summary, our system efficiently combines clues from
multiple sources, quickly generates hypotheses, and dynam-
ically deploys actions to detect network anomalies at large-
scale. Moving forward, we plan to: extend our set of detector
analytics, improve the host state transition model to capture
other host behaviors, and deploy on the live network.

Qualitative Evaluation With Intensive Care Application
In 2003, critical care physicians have reported that they have
to handle over 200 potentially temporal variables per pa-
tient to provide care (Imhoff et al. 2003). It is believed
that this number has at least doubled if not tripled in the
last decade. While big data analytic platforms are currently
used to provide solutions to this data overload problem in
critical care (Blount et al. 2010), the analysis complexity
remains overwhelming. To provide situational awareness,
domain experts need to work with IT analysts to decide
on which data sources to tap into, what questions/analysis
to ask/perform on the data, how to best use and tune ex-
isting analytics/systems/platforms to perform that analysis,
when/how to abandon one investigation path and advance
on another, how to best correlate information from multiple
investigation paths, how to find evidence in support of hy-
potheses and how to rank them, how to act on the evidence.
All of these operations need to be done in context with the
current state of their patients.

Using the techniques described in this paper, we have de-
veloped an advanced clinical decision support system that
addresses a subset of these challenges and helps bring situ-
ational awareness to the bedside. This system estimates the
current state of patients from observations produced by the
analysis of patient monitoring data such as electrocardio-
grams (ECG), discrete values of heart rate, and respiration

1a host being scanned by another host for multiple ports
2scan against a group of hosts for a single port
3a host being scanned by group of hosts for a single port
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Figure 6: Our system provides network anomaly detection in a timely fashion and at large-scale.

Figure 7: Patient State Transition Model

rates. The system ingests these observations in real-time and
reasons on them to hypothesize patient states that are in-
dicative of secondary complications. Accurate state estima-
tions opens the door for strategic planning of analytic actions
and recommendations in anticipation of complications. This
approach promises to help transforming critical care mon-
itoring from being reactive to patient problems to becom-
ing more proactive by flagging abnormal patient states as
early as possible to clinicians. Figure 7 represents a reason-
ing model for subarachnoid hemorrhage patients in neuro-
logical intensive care that we have implemented in LTS++.
Part of the LTS++ encoding of this model is shown in Fig 3.

While formal user studies are needed to assess the effec-
tiveness of the language and the tool we have designed, we
have received informal feedback from medical professional
on the expressiveness of the language. Overall, the language
has been found to be extremely simple and intuitive. Beyond
the model, the concepts such as states or observations were
found to be natural. They bridge well the gap between the
complexity of the underlying planning-based reasoning and
the knowledge of the domain experts. During working ses-
sions with physicians, we have found this representation ap-
proach to mimic how physicians think about their patients.
In some instances, we were asked to provide an explicit abil-
ity for the system to allow patients to be simultaneously in
more than one state. For instance, a patient could very well
be developing both an infection and be in an ischemic state.
We expect the current model to evolve into a set of models
that can be composed to address this challenge.

The directed graph shown in Figure 7 represents the dif-

ferent states that a patient may be in. As a patient navigates
through this graph, there are essentially three types of states
that he or she may visit: (1) Green states that represent good
states not associated with any potential complications; (2)
Orange states that represent warning states indicative of a
deterioration of health; (3) Red states that represent either
complication states or bad outcome states including death.

Upon arrival in critical care, patients are triaged either as
low risk or high risk patients mainly based on the results of
health assessment scales like the Hunt and Hess scale or the
Glasgow Coma scale. These scales are the results of physical
exams assessing severity of the injury, including the patient’s
level of consciousness and the strength of their headaches.
From the low risk state, a patient may be discharged from
the ICU. From the high risk state, a patient may enter a
pre-complication state defined as a state where a general de-
terioration of health becomes noticeable. At this point, the
patient may develop specific complications. The rest of this
model focuses on three complications that are quite common
in neurological ICUs. The first one is sepsis which is a blood
infection typically acquired in hospitals and with a mortality
rate up to 40%. The second one is delayed cerebral ischemia
(DCI) which is a condition with an equally high mortality
rate often the result of an abnormal blood flow in the brain
that can lead to tissue death and irreversible damages. The
last one is infarction which is often related to DCI.

For each of these complications, a suspected state follows
the pre-complication state. These suspected states are en-
tered when the patient is evaluated to be similar to histor-
ical patients that developed the same complication accord-
ing to a similarity metric learning scheme proposed in (Sun
et al. 2010). The suspected states are followed by the cor-
responding early complication states (pre-infection, pre-dci
and pre-infarction). In these states, the patient has devel-
oped the complication but clinical symptoms for it are not
visually apparent. The complications may have been con-
firmed with lab tests, angiograms or CT scans. Following
these early complication states are the complication states
where physical symptoms are visible and if left untreated,
the patient may end up in the death state.

We have begun testing the efficacy of this model retro-
spectively on a real critical care patient data set consist-
ing of 8 patients, 6 of which did develop complications. Of
these 6 patients, 2 of them had DCI complications while the
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remaining 4 patients suffered from hospital-acquired infec-
tions. For these experiments, time series of body temperature
and respiration rate sampled at 0.5 Hz were used together
with Electrocardiogram waveforms sampled at 240 Hz. Ob-
servations were generated by replaying the data of these pa-
tients though a stream computing system equipped with an-
alytics able to compute several Heart Rate Variability (HRV)
metrics from Electrocardiograms and the Systemic Inflam-
matory Response Syndrome (SIRS) score from heart rate,
respiration rate, body temperature and white blood cell count
measurements. HRV metrics are known to evaluate the state
of the autonomic nervous system which is highly correlated
to early onset of complications in neuro-ICUs (Schmidt et
al. 2014). The SIRS score is a measure of the inflammatory
response of the body. It is known to be associated with in-
fections like sepsis. In addition, the results of several clinical
tests typically performed upon admission were also used to
generate observations that were fed to the reasoning engine.

It is important to note that the validity of these early ex-
periments are hindered by both our inability to actuate and
change the physiological trajectory of our retrospective pa-
tients and also by the interventions that were taken by clin-
icians on these patients while they were in the ICU. These
interventions clearly affect the physiological readings and
the observations that we are producing retrospectively. Nev-
ertheless, we are obtaining interesting results demonstrating
the effectiveness of this simple model. For instance, while all
patients did visit precomplication and sometimes suspected
complication states, they did so at very different rates. Pa-
tients suffering from complications are more often found to
be in the suspected states while patients who did not suffer
from complications spent the majority of their time between
the low/high grade states and precomplication states.

We are currently in the process of refining this model
with domain experts to add more states, more observations
from more analytics and performing more experiments on a
much larger data set. We hope to be able to test this system
prospectively in a live environment to be able to assess the
efficacy of this approach to patient monitoring.

Related Work
Network anomaly detection is becoming central to effec-
tive network monitoring due to the advancements in net-
work infrastructures and technologies, as well as the in-
crease in volume and sophistication of network attacks. Al-
though numerous network anomaly detection solutions have
been proposed (Bhuyan, Bhattacharyya, and Kalita 2014;
Chandola, Banerjee, and Kumara 2009), they have failed
to fully resolve issues with dynamic adaptation of analysis,
linking anomalies with domain relevant events, and operat-
ing at large-scale. First, many solutions use rule-based ap-
proaches where rules are either manually created or learned
from previously labeled data, and these rules are both hard
to adapt and insufficient to capture new anomalies. Second,
current solutions often use a single network source (e.g., ei-
ther DNS data or Netflow data, but not both) and remain un-
able to efficiently leverage evidence from multiple sources
to discover anomalies. In this paper, we propose and imple-
ment a system that provides an automatic and adaptive solu-

tion towards large-scale network anomaly detection. Specif-
ically, our system first quickly blends clues about behavior
of hosts from different network sources. Then, the system
effectively utilizes a reasoning tool that uses these clues to
generate hypotheses about the state of individual hosts and
the network, and then adaptively deploys further investiga-
tion analytics on suspicious hosts.

In medical informatics, a rich body of literature reports
on the clinical decision support system (CDSS) that are de-
fined by Robert Hayward from the Centre for Health Evi-
dence as “systems [that] link health observations with health
knowledge to influence health choices by clinicians for im-
proved health care”. The healthcare application presented in
this paper relates to CDSS systems applied to critical care.
There are several CDSS developed for critical care. A no-
table example is BioStream (Bar-Or et al. 2004), a system
for real-time analysis and interpretation of physiological sig-
nals. Also in (Blount et al. 2010), the authors developed an
open platform for streaming analytics of critical care patient
physiological data intended to help physicians detect in real-
time patient complications. While these systems intend to
provide knowledge to physicians to help them in their deci-
sion making process, they are all purely data driven. None
of them make use of domain knowledge to reason on physi-
ological data streams and hypothesize on patient states.

Our approach in using AI planning to generate hypothe-
ses is related to several approaches in the diagnosis litera-
ture (e.g., (Sohrabi, Baier, and McIlraith 2010; Bauer et al.
2011)), but is most closely related to (Sohrabi, Udrea, and
Riabov 2013) as we also need to deal with incomplete and
inconsistent knowledge. However, we also tackle two im-
portant problems, not previously addressed, knowledge en-
gineering, and data transformation, making it possible to ap-
ply AI planning to our data-intensive applications.

Conclusions
In this paper, we apply planning-based reasoning for data
analysis focusing on the early detection problem. To this
end, we introduced a novel system architecture for large-
scale analysis automation. The distinguishing characteris-
tic of this architecture is its ability to analyze observations,
generate hypotheses and launch new analytics or initiate ac-
tions based on the hypotheses, while making use of domain
knowledge expressed in an easy to specify language, LTS++.
The main contributions of this paper are: (1) building a sys-
tem that automates data analysis by reasoning about unreli-
able observations using AI planning and expert knowledge
(2) applying data transformation techniques to obtain obser-
vations, and input to our system by analyzing the raw data;
(3) developing a model description language that captures
the expert knowledge and a web-based tool that implements
our approach and allows interaction with the proposed sys-
tem, and (4) evaluating the system on real-world problems
from different domains to showcase the resulting scale, la-
tency, and improved monitoring accuracy achieved by this
automation. We also performed an informal user study on
the approach and use of LTS++. Initial feedback received
from domain experts indicates that LTS++ provides a natu-
ral and concise way to capture domain knowledge.
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