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Abstract
Deterministic planning is the de facto standard in deployed
multi-modal journey planning systems. However, in reality,
transportation networks feature many types of uncertainty, in-
cluding variations of the arrival and the departure times of
public transport vehicles. Under uncertainty, deterministic
plans could result in missed connections, leading to an arrival
time much worse than originally planned.
We contribute an empirical study using transportation net-
work data from three European cities. We show that, in
the presence of uncertainty, contingent plans can often pro-
vide significant savings in terms of travel time. We view
our results as important because they advocate adopting
uncertainty-aware multi-modal journey plans, shifting from
the current practice based on using deterministic planning.

Introduction
Multi-modal journeys in a city allow to combine, as part of
the same trip, multiple transportation modes, such as buses,
trams, subways and trains. Multi-modal journey planning
has attracted a substantial interest in recent years. Increasing
levels of congestion and pollution justify in part the need for
adopting, on a larger scale, multi-modal transport.

In deployed multi-modal journey planning systems, the
standard practice is to compute journey plans under deter-
ministic assumptions. However, in reality, transportation
networks feature many types of uncertainty, such as vari-
ations of the arrival and the departure times of scheduled
public transport. These can cause undesireable failures in a
journey, such as missed connections, which can further neg-
atively impact the total travel time.

Stochastic multi-modal planning has recently been in-
troduced as a way of hedging the risks associated with
missed connections (Botea, Nikolova, and Berlingerio 2013;
Nonner 2012; Nonner and Laumanns 2014). Unlike deter-
ministic plans, that typically are totally ordered sequential
plans, stochastic plans are in fact policies that can include
multiple options in the same state. Even if a connection is
missed out, alternative options included in the policy may al-
low to continue the trip and arrive at the destination within a
reasonable time. For example, Botea, Nikolova, and Berlin-
gerio (2013) use contingent plans (Peot and Smith 1992)
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where all options (branches) in a given state are prioritized,
and each branch has a given probability of being followed at
the execution time.

In principle, potential advantages of a contingent plan
(policy) over a deterministic plan are not difficult to point
out, as discussed in the next section. An important ques-
tion is whether contingent plans would make any significant
difference in a real transportation network.

We contribute an experimental study with data from the
transportation networks of three European cities. Our results
demonstrate that contingent plans can significantly improve
the arrival time in transportation networks that feature un-
certainty. They also give more accurate apriori indications
of the actual arrival time. The main findings are consistent
across the cities, despite differences in size and transport
modes available. Our study shows a limitation in the stan-
dard, de facto practice of using deterministic planning. It
provides evidence that supports adopting uncertainty-aware
multi-modal journey planning in practice.

Contingent vs Sequential Journey Plans
In this section we illustrate potential differences between
contingent and sequential journey plans in the presence of
uncertainty. For simplicity, we consider just the arrival time
as the plan quality metric, and discuss differences in terms
of worst-case and best-case arrival times.

Aspects covered in this section are not new on their own.
However, it is important to articulate potential differences
upfront, to set the background to our experimental study.

Consider the example illustrated in Figure 1, where a user
wants to travel from A to B. As shown in Table 1, there are
three ways to complete the journey. Each of these can be
seen as a separate sequential plan. In plan 1, it is uncertain
whether the connection at stop C will succeed, due to the
variations in the arrival and departure times of routes 38 and
40, illustrated in Figure 1.

The best policy is a combination of the sequential plans 1
and 3, as follows. Take bus 38 from A to C. If it’s possible
to catch bus 40 that departs at 11:21, take it from C to E, and
then walk to B. Otherwise, walk to stop D, take bus 90 at
11:30, get off at stop F , and walk to B. The arrival time is
∼12:10pm (best case) or ∼12:20pm (worst case).

This policy is an example of a contingent plan (Peot and
Smith 1992). A contingent plan can be viewed as a tree of
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Figure 1: A toy example with bus links and walking links.

Seq. Steps Remarks
plan
1 11:00 – Bus 38 to C

11:21 – Bus 40 to E Uncertain connection in C
12pm – Walk to B Arrive at around 12:10

2 11:00 – Bus 38 to C
11:51 – Bus 40 to E
12:30 – Walk to B Arrive at around 12:40

3 11:00 – Bus 38 to C
11:20 – Walk to D
11:30 – Bus 90 to F
12:15 – Walk to B Arrive at around 12:20

Table 1: Sequential plans in the example.

pathways from the origin to the destination. In this work, a
contingent plan includes both priorities and probabilities as-
sociated with the options available in a state. In the example,
the contingent plan contains a branching point at location C.
The option of taking bus 40 that departs at around 11:21am
has the highest priority. Walking to stop D is the backup,
lower-priority option. The probability p of following the
first option can be computed from the distributions of two
random variables (Botea, Nikolova, and Berlingerio 2013).
One variable models the arrival time of the traveller at stop
C, which in our example coincides with the arrival time of
bus 38. The other variable is the departure time of bus 40.
The probability of taking the backup option is 1− p.

As sequential plans are restricted to one unique trajectory
each, no sequential plan is capable of matching the perfor-
mance of the best policy in the running example. For in-
stance, while plan 3 matches the worst-case arrival of the
policy, it is weaker than the policy in terms of the best case
arrival time. The sequential plan 2 is weaker in terms of both
worst-case and best-case arrival times.

Plan 1 is weaker in terms of the worst-case arrival. But
what is the worst-case arrival time of the sequential plan
1 anyways? To answer this question, we note that, in the
case of a missed connection, sequential plans have the im-
plicit backup option of waiting for the next trip on the same
route. Hence, in the sequential plan 1, in the worst case, the
user will wait for the next trip on route 40, which arrives at
around 11:51. As this implicit backup option of plan 1 is
essentially equivalent to plan 2, we conclude that the worst-

case arrival time for plan 1 is about 12:40pm.
More generally, a sequential plan can be optimal if it is

both safe (i.e., all actions in the sequence will be applicable
with probability 1) and fast (i.e., the arrival time is optimal).
On the other hand, as shown in the example, there can ex-
ist states where one option is good (i.e., providing a good
arrival time) but uncertain, whereas another option is safe
but slower. These are cases where sequential plans lose their
ability to implement an optimal policy, and where contingent
plans can make a difference, as illustrated in our example.

The Tools
In our study, we use Docit (Botea et al. 2014; Nonner, Botea,
and Laumanns 2014), an existing research prototype. Docit
provides functions such as journey plan computation, plan
execution monitoring, and replanning. We are not aware of
any other multi-modal journey advisor that reasons about
uncertainty. The Docit components that are the most rel-
evant to our study are the Dija multi-modal journey plan-
ner (Botea, Nikolova, and Berlingerio 2013), and a simula-
tor for plan execution.

Dija computes contingent plans with AO* (Nilsson 1968;
1980) search. The cost metric is a linear combination be-
tween the travel time and the number of legs in a journey. It
optimizes plans based on a combination of two criteria. The
main criterion is the worst-case cost (i.e., the largest cost
along all possible pathways in a contingent plan). This is a
key criterion in those cases where meeting a deadline (e.g.,
arrive in time for an important meeting) is important. Ties
are broken by preferring plans with a better expected cost.
The expected cost is the weighted sum of costs across all
pathways in a contingent plan, each weight being the prob-
ability of taking that particular pathway (Botea, Nikolova,
and Berlingerio 2013).

The simulator takes as input a network snapshot1 n, a plan
p, a state s in the plan, and a stochastic time t (a probabil-
ity distribution). It simulates the rest of the plan, starting
from state s and from time t, given the network snapshot
n. The simulation is a recursive procedure that returns both
the worst-case and the expected arrival time. The recursions
simulate forward the travel along each pathway, and propa-
gate the arrival times from the leaves all the way up.

For instance, when simulating the worst-case arrival time,
for every journey leg (i.e., transition in the plan) considered
in the simulation, the simulator takes the quickest way of
completing that leg that is certain to be applicable. In other
words, for a leg involving a public transport vehicle (e.g.,
bus), the simulator takes the earliest trip that is certain to
catch. As mentioned previously, the probability of catching
a trip in a state s′ depends on the departure time of the bus at
state s′, which is taken from the network snapshot, and the
arrival time of the user at state s′. This arrival time is t when
s′ = s, and it is provided by the simulation of the previous
step in subsequent states s′. In the example, when simulat-

1The snapshot is a knowledge base with all information avail-
able about a given transportation network. It can include stops,
routes, trips with arrival and departure times provided for each stop
along the route, bike stations, car parking lots, and road map data.
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Figure 2: Top: σ2 = 1600; bottom: σ2 = 6400. Sequential plans (“Det”) vs contingent plans (“Non-det”). Instances ordered
increasingly on the worst-case arrival time of sequential plans.

ing the leg from C to E starting at 11:20am, the earliest trip
safe to catch is the one departing from C at around 12:00.
This is why the worst-case arrival time for sequential plan
1 is actually 12:40, 30 minutes later than indicated by the
deterministic plan.

In the bottom-up propagation of arrival times, the worst-
case arrival time associated with a non-leaf state is set to the
best of the worst-case arrival times of its children.

In Docit, the main purpose of the simulator is to decide
whether a given journey plan is still valid when new in-
formation about the transportation network is loaded (e.g.,
when real time updates on arrival and departure times are
available). This allows, for example, to detect a subset of
active journeys that get invalidated by an event, such as a
disruption on a tram line (Botea et al. 2014). Replanning can
be performed only for the subset of the invalidated plans.

In this work, we use the simulator to evaluate differences
between plans computed under deterministic assumptions
(i.e., no uncertainty in the network snapshot), and plans
computed by taking uncertainty into account. The results
are discussed in the next section.

Experiments
We used data from three European cities, Montpellier,
Dublin, and Rome. Our Dublin Bus data contain 4,739
stops, 120 routes, and 7,308 trips per day. The road network
has 301,638 nodes and 319,846 segments. In Montpellier,
scheduled public transport includes buses and trams. There
are 1,297 stops, 36 routes and 3,988 trips per day in our data.
The road network has 152,949 nodes and 161,768 links. In
Rome, buses, trams, subways and light trains sum up to 391
routes. There are 39,422 trips per day, and 8,896 stops. The
road map contains 522,529 nodes and 566,400 segments.

City DP ASM ASP DP ASM ASP
σ2 = 1600 σ2 = 6400

Dub 30.48% 28.95 25.77% 41.75% 29.04 24.23%
Rom 23.85% 16.71 18.08% 32.70% 18.10 18.35%
Mon 14.56% 17.05 22.43% 23.75% 18.67 22.93%

Table 2: Contingent vs deterministic plans: key statistics
with worst-case travel time. DP = percentage of cases when
differences occur. ASM = average savings per trip, in min-
utes, when differences occur. ASP = average savings per
trip, as a percentage of the trip time, when differences occur.

The original data is deterministic. This was extended with
a stochastic noise assigned to the original deterministic ar-
rival and departure times. More specifically, for each city
we use three distinct network snapshots, one deterministic
(i.e., the original snapshot), and two with different levels of
stochastic noise. The noise follows a Normal distribution,
truncated to a confidence interval of 99.7%. One snapshot
has the variance set to σ2 = 1600 seconds, equal roughly
to ±2 minutes around the original deterministic arrival or
departure times. In the other snapshot, we set σ2 = 6400
(equal roughly to ±4 minutes).

We generated 3,000 journey plan requests (instances) for
each city, with 1,000 for each of the following departure
times: 8am, 11am and 6pm. The origins and the destina-
tions are picked at random. Trips are constrained to no more
than 20 minutes of walking, and at most 5 legs (segments)
per trip. For space reasons, we restrict our attention to 11am
data, a representative subset of the results.

To obtain a deterministic, sequential plan, we have run
Dija (Botea, Nikolova, and Berlingerio 2013) with a de-

270



terministic network snapshot. Uncertainty-aware plans are
computed with Dija using a non-deterministic snapshot.
Both kinds of plans are simulated in a snapshot with uncer-
tainty, and both the worst-case arrival time and the expected
arrival time are measured.

Worst-case arrival time. Figure 2 compares determinis-
tic and uncertainty-aware plans, in terms of simulated worst-
case arrival time, for Montpellier, Dublin and Rome. The
“main curve” shows the deterministic-plan data.

Depending on how “det” and “non-det” values compare,
we distinguish three behaviours in this figure. First off,
in a majority of cases, ranging from 58.25% in Dublin,
σ2 = 6400 to 85.44% in Montpellier, σ2 = 1600, “non-det”
points fall on the “main curve”, indicating instances where
both simulated times coincide. Secondly, in most remain-
ing cases, “non-det” points fall underneath the main curve,
corresponding to cases where contingent plans have a better
simulated time. Table 2, discussed later, shows exact per-
centages and other key statistics corresponding to this be-
haviour. Thirdly, in just a few cases, deterministic plans have
a better arrival time. Part of the explanation is that the Dija
planner optimizes plans on a linear combination of the num-
ber of journey legs (segments) and the arrival time. In a few
cases, the optimal contingent plan has a longer arrival time,
and fewer legs than the corresponding deterministic plan.

We conclude from Figure 2 that uncertainty-aware plans
can often help arrive at the destination earlier.

Table 2 shows key statistics of the comparison. Header
DP shows the percentage of “Non-det” dots not placed on
the main curve in Figure 2. As expected, increasing the level
of uncertainty increases the DP value. Remarkably, ASM
and ASP remain stable when σ2 varies.

Furthermore, it appears that DP, ASM and ASP depend
on the “density“ of the trips in a city (number of trips rel-
ative to the size of the network). For instance, in the data
we used, Dublin has a smaller number of trips than Rome,
which increases the DP, the ASM and the ASP values in the
former city. A similar tendency is observed when varying
the number of trips in a given city. In a different experiment,
we have used a larger number of trips, obtained by com-
bining trips from different days and, in the case of Dublin,
including a few tram and train lines in addition to the ex-
isting bus routes. More trips in use reduce DP, ASM and
ASP. For instance, increasing the number of trips per day in
Dublin from 7,308 to 21,056 reduces DP to 32.45%, ASM
to 18.18 minutes and ASP to 15.71% (σ2 = 6400). In Mont-
pellier, an increase from 3,988 to 5,985 trips per day results
in DP = 16%,ASM = 13.02,ASP = 16.36% (σ2 = 6400).

Expected arrival time. On this metric, differences be-
tween contingent and deterministic plans are smaller, and
they go in both directions. This is consistent with the plan-
ner’s optimization strategy: the worst-case cost is the main
criterion, and the expected cost is used for tie-breaking.

For example, in the case of Dublin, σ2 = 1600, 11.52%
cases favour contingent plans. When this happens, the aver-
age savings in terms of expected arrival time are 12.32 min-
utes, or 13.08% of the expected trip duration. 7.76% cases
are in favour of deterministic plans, with average time sav-
ings per trip equal to 10.95 mins (13.29%). For σ2 = 6400,

16.12% cases are in favour of contingent plans, and 11.19%
cases favour deterministic plans. Average savings per trip
are similar to the previous case. In Rome, σ2 = 1600,
7.03% cases show an advantage for contingent plans, and
7.49% cases favour deterministic plans. When σ2 = 6400,
the numbers change to 12.63% and 8.53%. In Montpellier,
σ2 = 1600, 3.35% cases favour contingent plans and 4.51%
cases favour deterministic plans. Setting the variance σ2 to
6400 changes these values to 6.16% and 5.51% respectively.

Dynamic deterministic replanning (DDR). We have im-
plemented a strategy that performs, in every state, a deter-
ministic replanning, but simulates the first leg of each plan
under a snapshot with uncertainty. We have measured the
simulated worst-case arrival time. DDR is better than deter-
ministic planning, but not as good as contingent planning.
For example, when comparing DDR to contingent plans, the
percentage of cases favourable to contingent plans varies
from 4.80% (Montpellier, σ2 = 1600) to 19.24% (Dublin,
σ2 = 6400). The percentage of cases favourable to DDR is
smaller, varying between 0.20% and 2.33%.

Search time. As expected, the search time increases with
σ2. Interestingly, a reduced trip frequency (as in our Dublin
data) makes a search more difficult. We attribute this to the
following effect on the accurracy of the admissible heuristic
estimation for the travel time. Less frequent trips result in
more waiting in a trip. At the same time, the travel time ad-
missible heuristic (Botea, Nikolova, and Berlingerio 2013)
ignores any waiting time. Thus, the more waiting in a trip,
the less accurrate the heuristic.

A max limit of 30,000 expanded nodes was set in experi-
ments. With the most difficult uncertainty level (σ2 = 6400),
Dublin instances are solved in 90.2% cases, Rome instances
are solved in 98% cases, and the Montpellier success rate
is 99.3%. (The 8am, σ2 = 6400 subset shows a reduction
of the Dublin success rate to 76.7%.) In successful cases,
the average search times in seconds, measured on a 2.7GHz
Ubuntu machine, are: 0.05 (σ2 = 0), 0.30 (σ2 = 1600) and
0.64 (σ2 = 6400) for Dublin; 0.01, 0.08 and 0.18 for Rome;
and 0.004, 0.02 and 0.05 for Montpellier. A more detailed
discussion is beyond the scope of this paper.

Conclusion
We have presented a focused empirical study comparing
standard, deterministic plans with uncertainty-aware contin-
gent plans. We have found that, often, contingent plans can
provide a better worst-case arrival time, which is important
in cases when a deadline must be observed (e.g., arrive at
the airport in time). Our study provides evidence in favour
of switching from deterministic to contingent planning.

In future work, we plan to consider the possibility of miss-
ing a bus because the bus is too crowded, and to focus on
specific origin and destination areas.
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