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Abstract

This paper introduces a monitoring problem with lim-
ited energy resources and soft constraints on priorities
employing a fleet of unmanned aerial vehicles (UAVs).
This monitoring problem is a generalization of applica-
tion cases ranging from surveillance of open-air events
to monitoring crime scenes or disaster sites. In order
to compute solutions, we propose an insertion heuristic
with a negotiation mechanism for energy resources. The
solution quality of the heuristic method is compared to
cases where an optimal solution is known resulting in an
average deviation of approximately 4%. By using this
approach, we are able to plan routes for real-world sce-
narios which are currently unsolvable by general prob-
lem solvers in acceptable time. Moreover, the run-time
is within seconds for such scenarios. Therefore, the
method can be applied to dynamic environments, where
re-planning during the mission is required.

Introduction
This paper presents a problem called continuous monitoring
problem with inter-depot routes and priorities (CMPIDP).
The goal of the problem is to provide a fleet of vehicles with
routes to periodically survey points of interest. Vehicles have
a limited energy capacity that can be renewed at multiple sta-
tions. The problem aims at maximizing the number of visits
to the points and minimizing the delays between the visits.

This monitoring problem arises in many real-life scenar-
ios such as aerial continuous surveillance of a disaster scene,
a concert or a potential crime location. Our monitoring so-
lution is based on a fleet of small-scale unmanned aerial ve-
hicles that are affordable and man-portable. However, the
size and design of these drones impose a number of real-life
constraints. In contrast to ground robots, micro-UAVs have
a maximal traveling time shorter than their average mission.
The number of spare batteries is typically limited. Addition-
ally, a fleet can be heterogeneous, i.e. vehicles have different
velocities and battery capacities.

As an example, let us consider a scenario where a team of
rescuers arrives at the location during or after a disaster, e.g.
an earthquake or a forest fire. Needless to say that any in-
formation about the situation is essential. Often it cannot be
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Figure 1: Exploration of an area by UAVs. Picture points and
stations are marked as white and filled circles, respectively.

gained from the ground, aerial surveillance is needed. Flight
paths for such surveillance have to be computed within five
minutes, when the fleet is preparing to take off.

Micro UAVs have a limited flight height and cannot carry
wide-angle lens cameras due to the weight. As a result, a
single picture of the whole area cannot be taken in one shot.
The way to resolve this problem is to split the area into
rectangles. UAVs take a picture of each rectangle and trans-
mit this data to the ground station, where received pictures
are stitched together into an overview image of high resolu-
tion. Locations where photos will be taken are called picture
points. The main intention of the aerial exploration is to al-
ways have the up-to-date information for every rectangle.
Therefore, UAVs have to visit points as often as possible.

Fig. 1 illustrates fire-fighters training at a factory1. The in-
put for the route planning algorithm is presented at the bot-
tom of the figure. The image at the top is a partial screenshot
of the user interface during the exploration. The background
picture from Google Earth

TM
(Layer 1) was used to define an

1More information and videos about our project can be found
at http://uav.lakeside-labs.com/
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Figure 2: Number of visits depending on priority.

area of interest. During the initial flights, a high-resolution
overview image was placed on top (Layer 2). The updates
of the overview image are displayed in higher contrast on
Layer 3. The black polygonal paths on Layer 3 are the routes
which the UAVs have followed so far in their latest flights.

In rescue missions, different subareas can have different
importance. For instance, the most important subareas are
territories on the edge of a forest fire or those that most likely
have people in need of help. These subareas should be vis-
ited more often. Fig. 2 depicts picture points with different
expectations on the number of visits based on their impor-
tance. The greater the number of visits, the larger the circle.

The Operational Research (OR) community has consid-
ered a few related problems, e.g. the periodic vehicle rout-
ing problem with intermediate facilities (Angelelli and Sper-
anza 2002) or the vehicle routing problem with multiple time
windows and multiple visits (Favaretto, Moretti, and Pelle-
grini 2007). At the same time, some research has been done
on patrolling problems with ground robots, e.g. (Almeida et
al. 2004), (Stranders et al. 2013), and with areal vehicles,
e.g. (Park, Kim, and Jeong 2012), (Yu, Karaman, and Rus
2014). However, these works cannot be directly applied to
the monitoring problem with micro UAVs, due to the lack of
some essential constraints. The problem of patrolling does
not limit battery capacity. The aforementioned OR problems
optimize purchased fuel or traveled time instead of gathered
information over time.

The monitoring problem described in this paper is a vari-
ation of the vehicle routing problem, which is NP-hard.
Due to the problem complexity, exact algorithms could not
provide solutions in acceptable time. Therefore, our goal
was to develop a heuristic for the CMPIDP that uses all
available information and is fast enough to react to a num-
ber of environmental changes. The developed method is
inspired by Solomon’s insertion heuristic (IH) (Solomon
1987), the inter-depot insertion heuristic (IDIH) (Mersheeva
and Friedrich 2013) and negotiation mechanisms (Almeida
et al. 2004). Our new approach, IDIH with battery reserva-
tions (IDIH-Reserve), constructs several routes simultane-
ously by iteratively adding points to a partial solution. In

addition, a negotiation mechanism is employed to deal with
limited energy resources.

The performance of our method is evaluated in a number
of experiments. The first study shows that the IDIH-Reserve
returns near-optimal solutions for the scenarios where the
optimum can be computed. The average deviation is approx-
imately 4%. Since the optimum cannot be found for real-life
instances, other evaluations were carried out. First, the pro-
posed method was compared with the IDIH approach on the
CMPID instances, i.e. instances with limited resources, fixed
mission time and without priorities. The IDIH-Reserve sig-
nificantly outperforms the IDIH and, thus, demonstrates not
only a better efficiency but also its adaptability to related
problems. Then the proposed heuristic was evaluated on the
patrolling task problem that, similar to the CMPIDP, mini-
mizes the average delay between visits of points and vari-
ance of delays. However, in contrast to the monitoring prob-
lem, patrolling assumes unlimited battery capacities. More-
over, for this study, we generated instances tailored in favor
of patrolling. Even under these discriminating conditions the
IDIH-Reserve is only 11% worse than the optimal patrolling
solutions regarding the average delay between visits.

The computational time of our method is linear in the
number of points, vehicles and visits. Our largest instances
(800 points) could be solved within seconds, thus allowing
the efficient re-computation of solutions in case of failures
and changing environments.

Further we give a formal problem definition followed by
a discussion of related work. Then we present our solution
method and show its properties by a thorough evaluation.

Problem Description
Input: The area is represented as a complete, weighted graph
G = (N,E), where N is the set of nodes, E is the set of
edges connecting the nodes. The set of nodes N includes a
set of base stations Nb and a set of picture points Np. Every
edge ei,j ∈ E has its weight di,j that is a distance between
nodes i and j that are connected by this edge. In the presence
of obstacles, this weight equals the length of the shortest
path between the nodes.

Every picture point p ∈ Np has two properties:

• priority prp denotes the importance of point p, i.e. the
lower the priority value, the less important this point is;

• time difference lvtp between the last visit of point p and
the start of the mission indicates how long the point re-
mained unvisited before the monitoring started. We intro-
duced lvtp for re-planning scenarios, where lvtp and other
problem parameters are updated before the re-planning
starts. lvtp is equal to zero for all points, if none of them
have been visited before. If only some points have no pre-
vious observations, their lvtp is assigned to the maximal
lvtp value of the visited points.

Every base station b ∈ Nb is characterized by the number
of batteries nBatb,t for vehicles of type t ∈ T . The total
number of batteries of type t is denoted as nBatt.

Every vehicle v ∈ V is characterized by its type tv ∈ T ,
initial remaining battery capacity inRemCapv and initial
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location inLocv ∈ N . The initial location can be either a
base station or a picture point.

Vehicles of type t ∈ T have a certain average speed spt,
battery capacity batCapt given as the maximal flight time
in time units, service time servTt (e.g. to take a photo at a
picture point) and time to change the battery tChBatt.

Output: A solution to the problem is a sequence of routes
for each vehicle v ∈ V , i.e. Rv = (Rv,1, ..., Rv,nRv ), where
nRv is the number of routes of vehicle v. Every route is
a sequence of nodes Rv,y = (rv,y,1, ..., rv,y,k), where k is
the number of visits made by vehicle v; rv,y,2, ..., rv,y,k−1
are picture points. Nodes rv,y,1 and rv,y,k are base stations
except for the first point of the first route, which equals the
initial location of a vehicle, i.e. rv,1,1 = inLocv .

A feasible solution must fulfill the following require-
ments: (1) the flight time of each route does not exceed the
battery capacity; (2) each node is visited by at most one ve-
hicle at a time; (3) a vehicle can change its battery only at
the base stations with available spare batteries of the corre-
sponding type; (4) at the end of the mission all drones must
be at the stations.

Additional computations: The travel time of y-th route of
vehicle v is a sum of two values, the time needed to travel
between its way points and the total service time:

time(Rv,y) =

[
k−1∑
ε=1

drv,y,ε,rv,y,ε+1
/sptv

]
+(k−2)·servTtv .

Arrival time at ε-th point in route Rv,y is a sum of the
travel time of the preceding routes, the total time spent on
battery changing, and the travel time within route Rv,y until
ε-th point:

art(ε, Rv,y) =

y−1∑
y′=1

time(Rv,y′) + (y − 1) · tChBattv+

(
ε−1∑
ε′=1

drv,y,ε′ ,rv,y,ε′+1
/sptv + (ε− 2) · servTtv

)
.

During route construction, current mission time cmtv of
vehicle v is defined as the time when the vehicle finishes
observing its last point in the current partial solution.

For every vehicle v, its total mission time mtv , i.e. the
maximal possible mission duration with the batteries it used,
is calculated as follows:
mtv = nChangev·(batCaptv+tChBattv )+inRemCapv,

where nChangev is the number of times a vehicle has
changed its battery.

Objective: The optimization goal is to maximize the num-
ber of up-to-date observations with the given batteries. The
ideal solution would be if all points were observed all the
time. However, due to the limited number of vehicles and
large number of points, this solution is not possible in the
real world. In this case, the problem requires a solution with
maximal number of visits and minimal delays between them.
In addition, points with higher priorities have to be observed
more often than points with lower priorities.

The aforementioned requirements for an optimal solution
are incorporated in the goal function that is minimized. For

time

Summands:          first (Ap)          second (Bp)          third (Cp)

Monitoring
starts

Last vehicle
finishes its

mission

maxv∈V(mtv)artOnVisp,p...artO1,p0lvtp

Figure 3: Visual interpretation of penalties for point p.

a feasible solution x, it is computed as follows:

f(x) =
∑
p∈Np

[
Ap +Bp + Cp

]
.

The three summands are illustrated in Fig. 3. The first
summandAp of the function penalizes the time until the first
visit of point p. If the point was observed before the moni-
toring started (lvtp > 0), then lvtp is also penalized.

Ap =
(

(lvtp + artO1,p) · prp
)2
,

where artO1,p is the first arrival time at point p.
The second summand Bp summarizes penalties between

all visits to the point, where nV isp is the number of visits:

Bp =

nV isp−1∑
z=1

(
(artOz+1,p − artOz,p) · prp

)2
.

where artO1,p, ..., artOnV isp,p are arrival times for all vis-
its to point p sorted in ascending order.

Finally, the last summand Cp penalizes the time from the
last observation until the overall mission is finished:

Cp =
(

(maxv∈V (mtv)+bpenalty−artOnV isp,p) ·prp
)2
,

where bpenalty is the sum of penalties for all non-employed
batteries and equals their total capacity. If all batteries are
utilized, bpenalty = 0.

This goal function minimizes the delays between visits of
each point. At the same time, it keeps the delays proportional
to the priorities of the points.

Related Work
Several related problems exist in the area of Operational Re-
search. One of the most well-known problems in this domain
is the vehicle routing problem (VRP) where vehicles have to
deliver a required amount of goods to each customer and
return to a station. The amount of goods that a vehicle can
carry is limited. Typically the total travel time is minimized.

In (Angelelli and Speranza 2002) authors studied a peri-
odic VRP with intermediate facilities. It is a variant of the
multi-depot VRP where vehicles can renew their capacity
at replenishment facilities. Periodicity is defined as follows:
given a set of time units (e.g. days or hours), each target
point has a set of possible visit schedules (e.g. a point should
be visited either on Monday and Thursday or on Tuesday
and Friday). At the end of each time unit vehicles return
to their depots. The goal is to select a schedule for each
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customer and construct a set of routes so that the total dis-
tance traveled is minimized. Angelelli and Speranza solved
the problem by insertion heuristics and tabu search.

The paper (Favaretto, Moretti, and Pellegrini 2007) de-
scribes the VRP with multiple time windows where each
customer has a required number of visits and a set of time
windows when it can be serviced. The planning horizon is
split into sub-periods and every route must start and end
within one sub-period. The goal is to minimize the weighted
sum of waiting time, travel time and fixed cost of every vehi-
cle in use. An ant colony optimization algorithm is applied.

Related problems were also described in the field of
robotics. (Machado et al. 2003) introduced the patrolling
task, where robots repetitively visit given points. The plan-
ning horizon is typically infinite. In most papers, the capac-
ity constraint is neglected, as typical missions do not out-
last the energy capacity of the robots. Commonly the av-
erage delay between visits is minimized. One solving ap-
proach constructs a TSP-route and places the robots along
it (Almeida et al. 2004), (Elmaliach, Agmon, and Kaminka
2009). Another approach is to split the area into clusters, one
for each vehicle, and solve a TSP for each cluster (Ahmadi
and Stone 2006), (Smith and Rus 2010). Other methods in-
clude negotiation-based algorithms (Almeida et al. 2004),
(Poulet, Corruble, and Seghrouchni 2012), reinforcement
learning and Markov decision process (Santana et al. 2004),
(Huynh, Enright, and Frazzoli 2010), divide-and-conquer al-
gorithms (Stranders et al. 2013), an ant-like algorithm (Can-
nata and Sgorbissa 2011).

(Park, Kim, and Jeong 2012) studied an unmanned vehicle
monitoring problem with priorities that minimizes the pos-
sibility of enemy infiltration within the fixed time horizon.
This problem was solved by simulated annealing.

Only few works on patrolling problems consider capacity
renewal, typically with infinite amount of fuel in replenish-
ment facilities. The problem formulated in (Las Fargeas et
al. 2012), where every point has a deadline for every visit,
aims at minimizing the cost of purchased fuel. The authors
suggested a divide-and-conquer algorithm. A UAV routing
problem in (Stump and Michael 2011) was modeled as VRP
with multiple time windows and multiple visits. This prob-
lem minimizes total travel cost and was solved by an adapted
Lagrangian branch-cut-and-price approach.

The major difference between the CMPIDP and all previ-
ously described problems is the limited number of vehicles
as well as energy resources. Due to a number of reasons, in
many application cases, infinite recharging of vehicles is not
feasible. Therefore, it is of high importance to utilize avail-
able resources with maximal information gain.

Papers (Mersheeva and Friedrich 2012) and (Mersheeva
and Friedrich 2013) study two similar problems without pri-
orities and with fixed mission time, i.e. (1) the continuous
monitoring problem (CMP) and (2) CMP with inter-depot
routes (CMPID). The first problem was solved by variable
neighborhood search (VNS) with either an insertion heuris-
tic or a modified savings algorithm. The second paper ap-
plied VNS with an inter-depot insertion heuristic (IDIH).

To summarize, the state of the art in AI and OR communi-
ties considers several related problems. However, the impor-

tant problem of monitoring with limited energy resources is
not sufficiently covered. The aim of this paper is to fill this
gap and to draw more attention to this significant problem.

Solution Method
The IDIH-Reserve heuristic suggested in this paper is based
on the insertion heuristic (Solomon 1987), and negotiation
mechanisms (Almeida et al. 2004).

Solomon’s insertion heuristic was proposed for the VRP
with time windows. It constructs one route at a time by in-
serting one point after the other until all points have been
visited. At each step, a point to insert is selected by an evalu-
ation function, e.g. time of arrival at a point. It should reflect
the optimization criteria of a problem but is not equal to it.

Due to several significant differences between the prob-
lems, Solomon’s method cannot be applied for the CMPIDP.
First of all, in the CMPIDP, a fleet of vehicles is heteroge-
neous, and every vehicle can make multiple trips. Therefore,
the IDIH-Reserve constructs routes for all vehicles in paral-
lel. Secondly, in the CMPIDP, every point is visited multi-
ple times and has no time windows. To cope with the larger
search space, we insert points only at the end of a vehicle’s
last route. Finally, in the CMPIDP, vehicles can make mul-
tiple trips, limited by the number of batteries. For limited
resources, the IDIH-Reserve has a negotiation mechanism.

The main steps of the IDIH-Reserve are shown in Algo-
rithm 1. The heuristic first creates a route for every vehicle
v by adding its initial location inLocv as the first element
(Line 2). Then it assigns batteries to vehicles with a reserva-
tion mechanism that is described later. Afterwards the main
loop in Lines 3–25 inserts points to the solution one at a
time. It terminates when no point-vehicle pair is selected for
insertion (Line 19), i.e. no new insertion is possible. Before
the termination the algorithm adds the final base stations.

The reservation procedure RESERVEBATTERIES(v) per-
forms a negotiation between the vehicles to ensure that all
available batteries are shared by the whole fleet. Vehicle v
is assigned one battery from each station that 1) is reachable
by v and 2) has a non-reserved battery of the corresponding
type. If vehicle v is unable to reserve a battery, it will not be
able to continue its mission after it uses all energy capacity
on board. Therefore, to receive a battery for the next flight, it
initiates a negotiation for vehicles of the same type. During
the negotiation such vehicles offer every reserved battery for
which the following conditions are fulfilled. First, an offer-
ing vehicle must have more than one reserved battery. Sec-
ondly, it offers every battery that is at a station reachable by
the initiating vehicle v. Then vehicle v selects the best offer
that is a battery located at the closest station. In case of ties,
offering vehicles with more reserved batteries are preferred.

The main loop starts by initializing the variables. Point
bPoint will be added to the last route of vehicle bV ehicle.
Their value of the evaluation function is minV alue. If re-
quired, vehicle bV ehicle will renew its capacity at station
bStation. Otherwise, bStation equals null.

The for-loop iterates through all possible combinations
of vehicles and points to select a feasible combination with
the minimal evaluation value. Infeasible combinations are
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Algorithm 1: IDIH-Reserve
input : problem description
output: a set of routes R = {Rv|v ∈ V }

1 for v ∈ V do
2 Rv,1.ADD(inLocv); RESERVEBATTERIES(v);
3 repeat
4 bV ehicle← null; bPoint← null;
5 bStation← null; minV alue←∞;

6 for v ∈ V , p ∈ Np do
7 if p 6= lastPoint(v) then
8 if NEEDBATCHANGE(v,Rv ,p) then
9 st←COMPUTESTATION(v,Rv, p);

10 if st 6= null and NOCOLLISION(v,Rv, p)
and g(p, v) < minV alue then

11 bV ehicle← v; bPoint← p;
12 bStation← st;
13 minV alue← g(p, v);
14 else
15 if NOCOLLISION(v,Rv, p) and

g(p, v) < minV alue then
16 bV ehicle← v; bPoint← p;
17 bStation← null;
18 minV alue← g(p, v);
19 if bV ehicle = null then
20 ADDFINALDEPOTS(); return R;
21 if bStation 6= null then
22 RbV ehicle.INITIALIZENEWROUTE(bStation);
23 RbV ehicle,last.ADD(bPoint);
24 UPDATERESERVATIONS(bV ehicle, bStation);
25 until false;

not considered due to two conditions. First, the algorithm
avoids loops at the same point (Line 7). Second, the con-
straint NEEDBATCHANGE(v,Rv, p) checks if the vehicle v
must change its battery before visiting point p to avoid ex-
ceeding maximal flight time. The change is required if 1)
the vehicle v cannot reach any station after the visit or 2) it
cannot change its battery in any of the reachable stations.

If a battery change is needed, an intermediate station is se-
lected by COMPUTESTATION(v,Rv, p). The selected station
must be reachable, closest to the point p and have a battery
reserved by vehicle v. If there is no such station, the function
returns null and this point-vehicle pair is not considered.

After analyzing the need for a battery change, the point-
vehicle pair is examined for collision avoidance. For this,
function NOCOLLISION(v,Rv, p) checks if no other vehicle
visits point p at the same time as vehicle v. Then the value
of the evaluation function is computed for the point-vehicle
pair. If it is lower than the best value, the pair is selected.

As mentioned, the evaluation function reflects the opti-
mization criterion but is not equal to it (Solomon 1987). This
function measures the quality of a partial solution. The goal
function, on the contrary, evaluates the complete solution
and, therefore, cannot be used for constructing the routes.

The evaluation function of the IDIH-Reserve is based on
the following four parameters:

• distance from the current vehicle position to the point,
thus, minimizing traveling distance;

• arrival time of the vehicle at the point, which gives pref-

erence to the vehicle with the shortest mission;
• time of the last visit to select the longest waiting point;
• number of visits of the point to evenly distribute observa-

tions among all points.
The time-based parameters increase with the planning

horizon, whereas the other two criteria almost do not
change. To eliminate this difference, we introduce rela-
tive time parameters, which relate to other time-dependent
measures. Relative arrival time ∆art(v, p) is computed as
art(v, p)−minv′∈V [cmtv′ ], the difference between the ac-
tual arrival time art(v, p) and minimal current mission time
among all vehicles (see Fig. 4). Relative last visit time ∆τp
equals τp−minp′∈P [τp′ ], the difference between the last
visit time τp and the minimal last visit time among all points
(see Fig. 5).

0

time
v1

v2

Δart(v1,p) 

Δart(v2,p) minv'∈V(cmtv')

current mission 
time cmtv

arrival time 
art(v,p)

Figure 4: Illustration of the relative arrival time ∆art(v, p)
for vehicles v1 and v2.

0
timep1

p2

Δτp2

Δτp1minp'∈Np(τp')

p3

last visit 
time τp

previous 
visit time

Δτp3 = 0

Figure 5: Illustration of the last visit time ∆τp for points p1,
p2 and p3.

The evaluation function is computed as follows:
g(p, v) =α1 · d(v, p) + α2 ·∆art(v, p) + α3 ·∆τp/(prp)β

+ α4 · scale · nV isp/(prp)β ;

0 ≤ α1, α2, α3, α4, β ≤ 1;α1 + α2 + α3 + α4 = 1,

where d(v, p) is the distance that vehicle v has to travel
to point p, nV isp is the number of visits made at point p.
Weight coefficients α1, α2, α3 and α4 define the influence
of the mentioned parameters on the final decision. Coeffi-
cient scale transforms the number of visits to the same or-
der of magnitude as the other parameters. Coefficient β de-
termines the impact of priorities. Increasing β enhances the
preference for points with higher priorities. The next section
suggests the best performing values for these coefficients.

Finally, if a point-vehicle pair was selected, the heuris-
tic performs insertion and updates the battery reservations
for the selected vehicle. If a battery change is required, be-
fore adding the point, the vehicle terminates its last route at
bestStation, and starts a new one from there (Line 22).

UPDATERESERVATIONS(bestV ehicle, bestStation) is a
procedure similar to RESERVEBATTERIES(v) with the only
difference that all previous reservations of bestVehicle must
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be canceled before making new ones. Since the vehicle
bestV ehiclewill use a battery from the station bestStation,
one battery is removed from this station.

The IDIH-Reserve can be applied to a related problem
without priorities and with a fixed mission time (CMPID)
with minor changes. Given the maximal mission time mt,
the IDIH-Reserve terminates vehicles’ routes as soon as they
reach this limit. If there are not enough batteries for all ve-
hicles to fly until mt, the batteries should be used s.t. the
maximal number of vehicles (maxNV eht) of type t can fly
untilmt. For that, the IDIH-Reserve first estimates the num-
ber maxNV eht for each type t as nBatt/rNBatt, where
nBatt is the total number of batteries of type t, rNBatt
is the number of batteries required for a UAV to cover the
mission time. Then the heuristic performs its basic steps
with just one change. The first maxNV eht vehicles, which
started their second route, are allowed to change the batter-
ies. The others stop traveling after exhausting their initial
on-board energy capacity.

Computational Results
This section starts with a description of the used test in-
stances and then proceeds with results of the following stud-
ies: selection of coefficients values for the proposed heuris-
tic, comparison with optimum, and evaluation using the
larger instances. All tests were performed on Intel Core i5
2.50 GHz system with 8GB RAM running Windows 7.

Test instances. To conduct a thorough evaluation of our
method, four sets of instances2 were generated: 10 small op-
timum instances, 12 patrolling, 48 life and 60 random sce-
narios. Fig. 6 depicts examples of the instances.
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Figure 6: Examples of instances from the four test sets.

Optimum instances are small instances where it is feasible
to compute an optimal solution. This set consists of 10 in-
stances with 6 points and 2 stations. Their coordinates were

2All sets are available online at http://uav.lakeside-
labs.com/publications/test-data/planning/

selected randomly in the interval [0, 12]. All points are split
into two clusters so that the first and the second clusters have
priorities 1 and 2, respectively.

Every optimum scenario has 5 batteries and 2 vehicles.
Due to the problem complexity, these vehicles are homoge-
neous. In contrast, instances of other sets have a heteroge-
neous fleet. The batteries are randomly allocated at the sta-
tions. Their capacity is sufficient for several overview im-
ages. The vehicles have average speed, battery change time,
and service time equal to 1. Their initial location and remain-
ing energy capacity as well as the delay lvtp of the points are
selected randomly.

Since an optimum cannot be found for common real-life
scenarios, the IDIH-Reserve solutions are compared with
the optimal solutions for the patrolling task. It is a related
problem that relaxes some constraints, thus, providing a
lower-bound for the CMPIDP optimum. The vehicles are
homogeneous with unlimited battery capacity. The goal of
patrolling is to compute a set of routes for a fleet of vehicles
to repeatedly visit a set of points with minimal average delay.
The patrolling instances are generated so that the TSP-based
strategy by (Almeida et al. 2004) is optimal:

1. Placing the points The points are placed in a grid with
20 m step size. The total number of points is within 45–
375. Each point has the same priority, and the parameter
lvtp is equal to zero.

2. Placing the stations The first station is placed at the left-
most bottom point with coordinates (0, 0). The remaining
four stations are placed along the optimal TSP route with
equal distances between them. Fig. 7 shows an example
of a TSP-route and the corresponding stations.
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Figure 7: An example of a TSP route for generating the pa-
trolling instances.

3. Generating vehicles and batteries One vehicle is initially
located in each station. The vehicles are homogeneous
and move with the average speed 1 m/s. Since patrolling
ignores battery capacity limitation, this constraint is re-
laxed as follows. The battery capacity is equal to the travel
time between the stations. The service time and the time
to change the battery are equal and set to 0 s.

4. Setting the planning horizon The IDIH-Reserve was de-
veloped for the problem with limited number of energy
resources. The patrolling strategy, on the contrary, does
not set any upper bound on the planning horizon. For a
fair comparison, the mission time is set to several values:
the travel time of the TSP route multiplied by 2, 4, 6 or 8.
The third set (life scenarios) represents several scenarios

that we observed in practice. To generate these instances,
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first, the size of an area that can be covered by one picture is
derived from the flight altitude and camera resolution. Then
the minimal number of points is spread equally over the area
of interest as described in (Quaritsch et al. 2010). The num-
ber of points in these scenarios ranges from 46 to 441.

The picture points of the random scenarios are placed
randomly with coordinates in the following intervals:
[−300, 300] for 200–300 points, [−400, 400] for 301–600
points, [−500, 500] for 601–800 points.

The remaining parameters of the life and random scenar-
ios are generated as follows. Three or six base stations are
randomly allocated with coordinates in the mentioned inter-
vals. Each scenario has 4, 7 or 8 vehicles of 2, 3 or 4 types,
respectively. The number of batteries is chosen s.t. the area
can be covered 3 or 6 times. The batteries are either assigned
to the stations randomly or distributed among them evenly.
Depending on the type, the maximal flight time with one
battery is either 1200 s or 2400 s. For simplicity all vehicles
have the same average speed of 2.5 m/s. Their initial loca-
tion and remaining energy capacity, as well as the delay lvtp
of the points are generated randomly.

The life and random instances include 3 priority levels.
To assign them, the area is split into either 3 clusters (for
scenarios with up to 200 points) or 6 clusters. All points in
a cluster have the same priority from the set {1, 2, 3}. For
the instances with 6 clusters each priority level has to be
assigned to exactly two clusters.

Selection of the coefficients values. Typically, parame-
ter tuning results in noticeable improvements. In the follow-
ing, we describe the process of selecting the best-performing
coefficients for the IDIH-Reserve heuristic for both the
CMPIDP and CMPID problems. For this process we fo-
cused on life and random instances. In order to avoid over-
fitting, every third instance was excluded. To select val-
ues of the coefficients for the CMPID, several values of
the mission time were used. Tuning of coefficients is typi-
cally performed by comparing the performance of a heuris-
tic with all possible combinations of coefficient values from
a fixed domain. All coefficients (except scale) took val-
ues from the interval [0, 1] with step 0.1. scale was set
to 100. The performance of a combination on an instance
was measured by the cost deviation from the best obtained
solution on this instance. The best combination has mini-
mal average and minimal maximal deviation among all in-
stances: for the CMPID α1=0.4,α2=0.5,α3=0.1,α4=0;
for the CMPIDP α1=0.2,α2=0.6,α3=0.1,α4=0,β=0.7
for instances with less than 100 points and α1=0.3,α2=0.4,
α3=0.2,α4=0,β=0.7, otherwise.

Comparison with optimum. In order to solve our life in-
stances in acceptable time we have to apply heuristics which
may result in non-optimal solutions. Therefore, we evaluate
how far from optimum the proposed heuristic can get. For
this evaluation we used the optimum instances. To compute
the optimum, the CMPIDP problem was modeled in MiniZ-
inc3 and solved by Gecode4.

The achieved solution costs are reported in Table 1. They

3see http://www.minizinc.org/
4see http://www.gecode.org/

Table 1: Comparison with optimum
Instance Optimal IDIH-Reserve

Nr. cost cost deviation in %
1 30364 30884 1.71
2 23441 23961 2.22
3 17267 17983 4.15
4 19073 19497 2.22
5 18378 19156 4.23
6 23795 24239 1.87
7 25038 26074 4.14
8 19348 20426 5.57
9 23158 26322 13.66
10 20111 20335 1.11

show that the proposed heuristic is on average only 4.09 %
and at most 13.66 % worse than the optimum. Moreover, the
heuristic requires less than a second to solve each instance
instead of minutes or hours required by the solver.

Solving the CMPIDP. In the presence of priorities, ar-
eas of higher importance should be visited more often. Our
study shows that the IDIH-Reserve provides such solutions
with an update frequency proportional to the priority level.

The life and random instances were solved twice. In the
first run, average delays for each of the three priorities were
determined. The second run ignored the priority information
and, thus, all points were equally important.

Fig. 8 demonstrates the results of the study. Average visit
frequencies of the first run are shown as percentages of the
visit frequency of the second run. These charts also show the
variations among the measurements.
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Figure 8: The average delay of each priority in the first run.

As expected, delays of the first run are approximately pro-
portional to the priorities, i.e. around 60, 100 and 170 % for
low, medium and high priorities, respectively. Moreover, de-
lays of the medium priority are close to the delays of the sec-
ond run. This means that delays between visits are not sig-
nificantly affected by use of priorities. It was observed that,
as the number of points increases, delays within one priority
level deviate more. This is an expected consequence of the
increasing complexity of the problem. Moreover, there was
no significant difference between the performance on the life
and random scenarios.

The computational time increases linearly with the num-
ber of points, vehicles and visits. The upper bound on
the number of visits is maxCap/minTrT ime, where
maxCap is the maximal total capacity of all batteries of
the same type, minTrT ime is the minimal travel time be-
tween two points. Then the complexity of the heuristic is
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O(|Np| · |Nv| ·maxCap/minTrT ime). According to the
evaluation results, even the largest instances are solved in
seconds, e.g. the instances with 800 points are solved at most
in 10.69 s. These results show that the IDIH-Reserve heuris-
tic can be used in time-critical applications.

Solving the CMPID. Comparison with a CMPID method
allows to evaluate how efficiently the IDIH-Reserve exploits
limited energy resources. The used CMPID method is the
IDIH heuristic (Mersheeva and Friedrich 2013).

The study was conducted on the life and random in-
stances. They were extended by adding the fixed mission
timemt equal to 0.75·mtbase,mtbase or 1.5·mtbase.mtbase
is the maximal possible mission time if all UAVs of the same
type use the available batteries evenly. Performance of the
methods is evaluated by the goal function of the CMPID.

The results for the mission time 0.75 ·mtbase are shown
in Fig. 9. Results with other mission time values are sim-
ilar and, therefore, omitted. The X-axis depicts percentage
of instances that were solved by the IDIH-Reserve with the
corresponding improvement over IDIH (Y-axis). The IDIH-
Reserve outperformed the IDIH on almost all instances with
up to 87.6 % improvement. The improvement is significant
regardless of the instance parameters.
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Figure 9: Comparison of the IDIH and IDIH-Reserve on life
(black) and random (gray) instances with mtbase · 0.75.

There are two major reasons for such significant improve-
ment. First, due to a reservation policy in the IDIH-Reserve,
all vehicles have a spare battery at every step. In contrast, the
IDIH can extend a vehicle’s route relying on the last battery
at a station that can be taken by another drone at the next
step. In this case, the first vehicle has to finish its mission
as soon as its battery is discharged. This might happen at
any time during the mission leading to a non-optimal use of
batteries. The second reason is that the evaluation function
includes relative time-based parameters that do not increase
with the mission time unlike absolute parameters.

Solving the patrolling task problem. The TSP-based pa-
trolling strategy and the tailored patrolling instances guar-
antee solutions with equal and minimal delays between con-
secutive visits. We employ these instances as stress tests to
evaluate the solutions of our more general method.

The performance of the IDIH-Reserve and the TSP-based
strategy is compared regarding the average delay between
the visits. The box plot in Fig. 10 shows the results achieved
by the IDIH-Reserve for the smallest and largest instances.
The bold lines depict the delays of the TSP-based strategy.
As expected due to the setup of the study, our heuristic devi-
ates from the patrolling solution. In particular, this deviation
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Figure 10: Average delays for the patrolling instances.

increases only linearly with the number of visits. The aver-
age delay is only 10.72 % above the optimum on the largest
scenario with 8 rounds corresponding to 4 hours mission
time.

Conclusion
This paper introduced the continuous monitoring problem
with limited energy resources and priorities (CMPIDP). This
problem arises in many real-life scenarios such as continu-
ous aerial surveillance of a disaster site or a crime scene.

The CMPIDP is a variation of a well-known NP-hard
problem. Therefore, we proposed a heuristic approach,
the inter-depot insertion heuristic with reservations (IDIH-
Reserve) to solve this problem.

The IDIH-Reserve heuristic was extensively evaluated in
several studies. First, the algorithm is on average only 4 %
and at most 14 % far from optimum for cases where an opti-
mum was computable.

Second, the approach achieves good results for the real-
life CMPIDP instances in short time, e.g. in less than 11 s for
the largest instance with 800 points. Moreover, the method
is linear in the number of points, vehicles and visits.

In a further study we evaluated IDIH-Reserve for solving
a related problem (CMPID) with fixed mission time and no
priorities. Our results show that IDIH-Reserve significantly
outperforms the original method developed for CMPID.

Because the optima for real-life instances are not known
and alternative methods for comparison are not available,
the final study compares the performance of the proposed
heuristic with the optimal solutions of the patrolling prob-
lem. The used instances were generated by relaxing the
essential energy constraints. Even though these instances
are favorable for patrolling, the average delay of the IDIH-
Reserve solutions deviates by only 11% from the optimum
for the largest scenarios.

We envision several directions for future work. First, the
proposed approach can be enhanced further with dynami-
cally adjusted coefficients. Another direction is to consider
moving charging stations and different types of service that
can be performed at points of interest by different vehicles.
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