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Abstract

Almost every planner needs good heuristics to be efficient.
Heuristic planning has experienced an impressive progress
over the last years thanks to the emergence of more and more
powerful estimators. However, this progress has not been
translated to multi-agent planning (MAP) due to the difficulty
of applying classical heuristics in distributed environments.
The application of local search heuristics in each agent has
been the most widely adopted approach in MAP but there ex-
ist some recent attempts to use global heuristics. In this paper
we show that the success of global heuristics in MAP depends
on a proper selection of heuristics for a distributed environ-
ment as well as on their adequate combination.

Introduction
Cooperative Multi-Agent Planning (MAP) extends classical
planning by introducing a set of individual entities or agents
that plan together in a shared deterministic environment to
solve a common set of goals. Agents in cooperative MAP
address two basic tasks, synthesize individual plans and co-
ordinate them to build a joint plan that solves the MAP task.

The various existing MAP approaches can be classified
according to the planning and coordination models they use.
Some approaches perform a pre-planning distribution of the
MAP task. MAPR (Borrajo 2013) allocates the task goals
to the participating agents, which in turn individually in-
voke LAMA (Richter and Westphal 2010) to solve their as-
signed subtasks. The work in (Crosby, Rovatsos, and Pet-
rick 2013) automatically decomposes single-agent tasks into
MAP problems, which are then locally solved through a cen-
tralized heuristic planner.

Other MAP techniques put the focus on plan merging.
Planning First (Nissim, Brafman, and Domshlak 2010) is
one of the first planners based on MA-STRIPS (Brafman
and Domshlak 2008), a minimalistic multi-agent extension
of the STRIPS model. Agents in Planning First individually
synthesize plans through a state-based planner. The resulting
local plans are then coordinated through a distributed Con-
straint Satisfaction Problem.

A third group of approaches directly apply multi-agent
search, interleaving planning and coordination. MA-A*
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(Nissim and Brafman 2012) is also a MA-STRIPS-based
approach that performs a distributed A* search, guiding
the procedure through admissible local heuristic functions.
The work in (Bonisoli et al. 2014) formulates a privacy-
preserving MAP model by adapting MA-A*.

Most of the aforementioned MAP approaches resort to
heuristic search at some point during the planning process,
applying local heuristic search to each participating agent.
Since agents usually have a limited knowledge of the task,
the quality of local estimates diminish in comparison to the
global heuristics applied in single-agent planning tasks.

A global heuristic in MAP is the application of a heuristic
estimate to the MAP task carried out by several agents which
have a different knowledge of the task and, possibly, privacy
requirements. The design of global estimators for coopera-
tive MAP is a challenging task (Nissim and Brafman 2012)
which has been seldom studied. Exceptions are the work in
(Štolba and Komenda 2014), which introduces a distributed
version of some well-known relaxation-based heuristics, and
the application of a landmark-based global heuristic in the
GPP planner (Maliah, Shani, and Stern 2014).

The focus of the present work is to analyze the benefits
of global heuristics in MAP and to study how the combina-
tion of these functions can noticeably improve the efficiency
of cooperative MAP systems. For our purposes, we take
FMAP as our framework (Torreño, Onaindia, and Sapena
2014). FMAP is a fully-distributed forward-chaining multi-
agent POP approach that preserves agents’ privacy. Specifi-
cally, this paper presents the following contributions:

• Formalization of two distributed heuristic functions:
hDTG (Torreño, Onaindia, and Sapena 2014), a varia-
tion of the Context-Enhanced Additive heuristic (Helmert
and Geffner 2008) based on Domain Transition Graphs
(Helmert 2004); and hLand, a privacy-preserving version
of the landmark extraction algorithm introduced in (Hoff-
mann, Porteous, and Sebastia 2004).

• MH-FMAP, a novel multi-heuristic MAP approach that
combines hDTG and hLand orthogonally, notably im-
proving the performance of FMAP.

This paper is organized as follows: after presenting some
related work and the key notions of FMAP, we introduce the
formalization of hDTG, the design of hLand and the com-
bination of both heuristics into MH-FMAP. The experimen-
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tal results evaluate the two heuristics and the multi-heuristic
approach on various domains adapted from the International
Planning Competition1 (IPC) to a multi-agent context and
compares the results with the ones obtained with GPPP.

Related Work
Many of the existing MAP frameworks apply some form of
heuristic search to guide the planning process. The use of
global heuristics in MAP is, however, less frequent due to
the inherent features of MAP scenarios, which introduce ad-
ditional requirements and make it an arduous task:
• The data of a MAP task are usually distributed across the

agents; unlike single-agent planning, in MAP it does not
exist an entity that centralizes the information of the task.
Hence, a communication protocol among the agents is re-
quired to compute global heuristic estimates.

• Most MAP models deal with agents’ privacy. The com-
munication protocol must thus guarantee that agents are
able to calculate heuristic estimates without revealing sen-
sitive private information.
In some works, the features of the planning model force

the application of a local heuristic search scheme, in which
an agent calculates the heuristic value of a plan based on
its local information. In (Borrajo 2013), goals are allocated
to the agents, which then solve their problems iteratively,
communicating the solution of an agent to the next agent.
Thus, the heuristic functions defined in LAMA, namely hFF
(Hoffmann and Nebel 2001) and hLand (Richter and West-
phal 2010), are applied from a local standpoint.

Local search heuristics have also been used in other MAP
approaches, even though their planning model is suitable
to accommodate distributed functions. The work in (Nis-
sim and Brafman 2012) presents MA-A*, a multi-agent de-
sign of the well-known A* algorithm. Authors test differ-
ent configurations of the planner with two optimal heuristic
functions, Merge&Shrink (Helmert, Haslum, and Hoffmann
2007) and LM-Cut (Helmert and Domshlak 2009). These
functions are however applied locally by each agent.

Authors in (Štolba and Komenda 2013) introduce a multi-
agent design of the hFF heuristic. This adaptation, based on
the use of distributed Relaxed Planning Graphs (dis-RPGs)
(Zhang, Nguyen, and Kowalczyk 2007), yields the same re-
sults as the original single-agent design of hFF (Hoffmann
and Nebel 2001). However, the construction and exploration
of a dis-RPG entails many communications between agents,
resulting in a computationally expensive approach.

In (Štolba and Komenda 2014), authors present the dis-
tributed design of several relaxation heuristics, namely hadd,
hmax and a relaxed version of hFF . In this work, authors re-
place the dis-RPG by an exploration queue, a more compact
structure that significantly reduces the need of communica-
tions among agents. The distributed version of hFF , how-
ever, does not yield the same results as the original single-
agent version.

Finally, in (Maliah, Shani, and Stern 2014), authors de-
sign a distributed version of a privacy-preserving landmarks

1http://ipc.icaps-conference.org

extraction algorithm for MAP, resulting in a planner named
GPPP. Authors show that the Landmarks Graph used in
GPPP improves the performance of the MA-STRIPS-based
planner MAFS (Nissim and Brafman 2014). In GPPP, the
heuristic value of the plan is calculated as the sum of the
local heuristic estimates computed by each agent.

Multi-Agent Planning Task Formalization
In this section we present the formalization of a MAP task
as used in the FMAP framework (Torreño, Onaindia, and
Sapena 2014). Agents have a limited knowledge of the plan-
ning task, and it is assumed that the information that is not
represented in the agent’s model is unknown to the agent.
The states of the world are defined through a finite set of
state variables, V , each of which is associated to a finite
domain, Dv , of mutually exclusive values that refer to the
objects in the world. Assigning a value d to a variable v ∈ V
generates a fluent, a tuple of the form 〈v, d〉. A state S is
defined as a finite set of fluents.

An action is of the form α = PRE(α) → EFF (α),
where PRE(α) and EFF (α) are finite set of fluents rep-
resenting the preconditions and effects of α, respectively.
Executing an action α in a world state S leads to a new
world state S′ as a result of applying EFF (α) over S. An
effect of the form 〈v, d〉 updates S′ w.r.t. S, replacing the
fluent 〈v, d′〉 ∈ S by 〈v, d〉. Since values in Dv are mu-
tually exclusive, the inclusion of 〈v, d〉 in S′ implies that
∀d′ ∈ Dv, d′ 6= d, 〈v, d′〉 6∈ S′.
Definition 1 A MAP task is a tuple TMAP =
〈AG,V,I,G,A〉. AG = {1, . . . , n} is a finite non-
empty set of agents. V =

⋃
i∈AG Vi, where Vi is the set of

state variables known to an agent i. I =
⋃
i∈AG Ii is a

set of fluents that defines the initial state of TMAP . Since
specialized agents are allowed, they may only know a subset
of I; the initial states of two agents never contradict each
other. G is a set of fluents defining the goals of TMAP .
Finally, A =

⋃
i∈AG Ai is the set of planning actions of

the agents. Ai and Aj of two specialized agents i and j
will be typically disjoint sets; otherwise, Ai and Aj may
overlap. A includes two fictitious actions α0 and αf that do
not belong to any particular agent: α0 represents the initial
state of TMAP , while αf represents the goal state.

The view of an agent i on TMAP is defined as T iMAP =
〈Vi,Ai, Ii,G〉. Vi is the set of state variables known to
agent i; Ai ⊆ A is the set of its capabilities (planning ac-
tions); Ii is the subset of fluents of the initial state I that are
known to agent i, and G is the set of goals, which are known
to all the agents in TMAP . An agent imay also have a partial
view on the domain Dv of a variable v. We define Div ⊆ Dv
as the subset of values of v known to agent i.

Agents interact by sharing information about their state
variables. For a pair of agents i and j, the information they
share is defined as Vij = Vji = Vi ∩ Vj . Additionally,
the set of values of a variable v shared by agents i and j is
defined as Dijv = Div ∩ Djv .

FMAP follows a forward-chaining POP approach which
has been adapted to a multi-agent context.
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Definition 2 A partial-order plan or partial plan is a tuple
Π = 〈∆,OR, CL〉. ∆ = {α|α ∈ A} is the set of actions
in Π. OR is a finite set of ordering constraints (≺) on ∆.

CL is a finite set of causal links of the form α
〈v,d〉→ β, where

α and β are actions in ∆. A causal link α
〈v,d〉→ β enforces

precondition 〈v, d〉 ∈ PRE(β) through an effect 〈v, d〉 ∈
EFF (α).

An empty partial plan is defined as Π0 = 〈∆0, OR0,
CL0〉, whereOR0 and CL0 are empty sets, and ∆0 contains
only the fictitious initial action α0.

The introduction of new actions in a partial plan may trig-
ger the appearance of flaws: preconditions that are not yet
supported in the plan, and threats. A threat over a causal

link α
〈v,d〉→ β is caused by an action γ not ordered w.r.t. α or

β, where (v = d′) ∈ EFF (γ), d′ 6= d. A flaw-free plan is a
threat-free partial plan without unsupported preconditions.

Agents in FMAP jointly refine an initially empty plan un-
til a solution is reached. We define a refinement plan as fol-
lows:

Definition 3 A refinement plan Πr = 〈∆r, ORr, CLr〉
over a partial plan Π = 〈∆, OR, CL〉 is a flaw-free par-
tial plan that extends Π by introducing an action α, result-
ing in ∆r = ∆ ∪ α. All the preconditions in PRE(α)
are supported by existing actions in Π through causal links:
∀p ∈ PRE(α), ∃ β p→ α ∈ CLr, where β ∈ ∆.

For each refinement plan, FMAP computes the frontier
state (Benton, Coles, and Coles 2012), that is, the state that
results from executing the actions in the plan. Frontier states
allow for the application of state-based heuristic functions.

Definition 4 A frontier state FS(Π) over a refinement plan
Π = 〈∆, OR, CL〉 is the set of fluents 〈v, d〉 achieved by
actions α ∈ ∆ | 〈v, d〉 ∈ EFF (α), such that any action
α′ ∈ ∆ that modifies the value of the variable v (〈v, d′〉 ∈
EFF (α′) | d 6= d′) is not applicable from α by following
the orderings and causal links in Π.

A solution plan for TMAP is a refinement plan that
achieves all the goals G of TMAP by including the ficti-
tious final action αf and supporting all its preconditions, i.e.,
∀g ∈ PRE(αf ), ∃ β g→ αf ∈ CL, β ∈ ∆.

Privacy in partial plans Agents in FMAP carry out sev-
eral distributed procedures that require communications. To
keep privacy, only the information that is shared between
the sender and receiver agents is transmitted. To do so, the
sender encodes the information that is not in the view of
the receiver agent. Each variable and value has an associ-
ated unique global identifier, a positive integer that is used
to mask the original variable or value when necessary.

When an agent i refines a plan Π by adding an action α ∈
Ai, it communicates such refinement to the rest of agents. To
preserve privacy, agent i will only communicate to agent j
the fluents in α whose variables are common to both agents.
The information of Π that agent j receives from i configures
its view of that plan. More specifically, given a fluent 〈v, d〉,
where v ∈ Vi and d ∈ Div , FMAP identifies three cases:

• Public fluent: if v ∈ Vij and d ∈ Dijv , the fluent 〈v, d〉
is public to both agents, and thus agent i will share with
agent j all the information regarding 〈v, d〉.

• Private fluent to agent i: if v 6∈ Vij , 〈v, d〉 is pri-
vate to agent i w.r.t. j, and hence agent i will send j
〈gid(v), gid(d)〉, thus replacing v and d by their global
identifiers, gid(v) and gid(d), respectively.

• Partially private fluent to agent i: if v ∈ Vij but d 6∈
Dijv , 〈v, d〉 is partially private to agent i w.r.t. j. Instead of
〈v, d〉, agent i will send j a fluent 〈v, gid(d)〉, thus replac-
ing the value d by its global identifier gid(d).

As well as keeping privacy during planning, encoding
variables and values eases the design of global heuristic
functions and streamlines communications among agents.

FMAP: Multi-Agent Planning Framework
FMAP is a fully-configurable distributed search procedure,
an appropriate testbed for the integration of global heuristic
functions. This section summarizes some of the key aspects
of this MAP framework.

Algorithm 1: FMAP search algorithm for an agent i
openList← Π0

while openList 6= ∅ do
Πb ← extractP lan(openList)
if isSolution(Πb) then

return Πb

RP ← refineP lan(Πb)
for all j ∈ AG, j 6= i do
sendRefinements(j)
RP ← RP ∪ receiveRefinements(j)

for all Πr ∈ RP do
distributedEvaluation(Πr, heuristic)
openList← openList ∪Πr

return No solution

FMAP is a cooperative refinement planning procedure
in which agents jointly explore a multi-agent, plan-space
search tree (see Algorithm 1). Nodes of the tree are partial
plans contributed by one or several agents. The process is
led by an agent that plays the coordinator role (this role is
rotated after each iteration of the procedure).

Agents keep a common openList with the unexplored
refinement plans prioritized according to a search criterion
(by default, FMAP applies a weighted A* search, evaluat-
ing nodes through a function f = g + 2 ∗ h). Agents jointly
choose the best node of openList and then each of them in-
dividually expands the selected plan through an embedded
forward-chaining POP procedure, generating all the possible
refinement plans. Afterwards, agents exchange the plans and
apply a distributed heuristic evaluation of such plans, which
are then inserted in the openList. The procedure ends up
when a solution plan is found, or when openList is empty.

As in most distributed frameworks, communications play
a central role in FMAP. The system is built on top of the Ma-
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gentix22 MAS platform, which provides the basic libraries
to define the agents’ behavior, as well as the communi-
cation infrastructure required by FMAP. Agents communi-
cate by means of the FIPA Agent Communication Language
(O’Brien and Nicol 1998), and communications are man-
aged by the Apache QPid3 message broker.

The communication broker acts as a post office, receiving
the messages from the sender agents and forwarding them
to the receivers. The use of a messaging broker offers some
key advantages for the design of distributed systems since it
allows agents to be launched in different machines, as long
as the broker is accessible from the network. However, when
the workload of messages is relatively high, the broker en-
tails a bottleneck of the system. For this reason, the global
estimators introduced in this paper have been designed and
optimized to minimize the communications among agents.

Global Heuristic Functions
This section formalizes and details the distributed design of
two different heuristic functions as well as a novel multi-
heuristic approach to MAP that combines both functions,
noticeably improving the performance of the FMAP system.

The first heuristic, hDTG, is a variation of the Context-
Enhanced Additive Heuristic (Helmert and Geffner 2008)
that uses Domain Transition Graphs (DTGs) to estimate the
cost of the state variables. The second one, hLand, computes
the Landmarks Graph (LG) of a MAP task, which is later
used to calculate the number of landmarks of the partial
plans. We designed a distributed version of the landmarks
extraction algorithm introduced in (Hoffmann, Porteous, and
Sebastia 2004).

The design of hDTG and hLand in FMAP aims to keep
the number of messages exchanged among the agents as low
as possible. Prior to the search process, we build data struc-
tures, like the DTGs or the LG, which remain immutable
throughout the multi-agent search, thus reducing the com-
munication overload during search. In contrast to other con-
structs, such as dis-RPGs (Zhang, Nguyen, and Kowalczyk
2007), the DTGs and the LG do not need to be re-calculated
during search. The use of static structures makes hDTG and
hLand be more suitable heuristics for fully-distributed sys-
tems than other well-known heuristic functions, such as hFF
(Štolba and Komenda 2013), that requires the generation of
a dis-RPG at each search node.

Besides hDTG and hLand, we also introduce MH-FMAP,
a multi-heuristic adaptation of the FMAP algorithm that al-
ternates both heuristics, successfully improving the overall
performance of the MAP system.

DTG heuristic This is a state-based additive heuristic cal-
culated from the DTGs (Helmert 2004). A DTG is a graph
in which nodes represent values of a particular variable, and
transitions show the changes in the values of such variable
through the actions of the agents. An action of the form
〈v, d0〉 → 〈v, dn〉 induces a transition d0 → dn in the DTG
associated to v.

2http://www.gti-ia.upv.es/sma/tools/magentix2
3http://qpid.apache.org

Similarly to the Context-Enhanced Additive heuristic
(hCEA) (Helmert and Geffner 2008), hDTG builds a relaxed
plan and reuses the side effects of the actions in the relaxed
plan as a basis to estimate the cost of the subsequent sub-
goals. A plan Π of FMAP is always evaluated from its fron-
tier state, FS(Π), but the cost of some of the subgoals can
be estimated in a state different from FS(Π).

Formally, the formulation of hDTG is very close to hCEA.
Given a subgoal g = 〈v, d〉, a state S and an action α ∈ A,
where g ∈ EFF (α), g′ = 〈v, d′〉 ∈ PRE(α), d′ 6= d,
and z = PRE(α) \ {g′}, evaluating g in S with hDTG is
recursively defined as follows:

hDTG(g|S) =


0 if g ∈ S

min
α:(g′,z→g)∈A

(1 + hDTG(g′|S)+∑
x∈z

hDTG(x|S′)) otherwise
(1)

The recursive equation 1 expresses that the precondition
g′, related to the same variable v as the fluent g, is also eval-
uated in S, whereas the rest of preconditions, x = 〈v′, d′〉 ∈
PRE(α), v′ 6= v can be evaluated in a state S′ different
from S.

Following, we describe in detail the hDTG algorithm to
clarify aspects such as the evaluation of a subgoal g, the se-
lection and insertion in the relaxed plan of the action α that
minimizes equation 1 or the selection of the states S′ from
which the preconditions x of equation 1 are evaluated.

Instead of exploring the Causal Graph as hCEA does,
hDTG explores the DTGs. The algorithm maintains a
subGoals list that stores the subgoals of the problem that are
not yet evaluated (this list is initialized as subGoals = G)
and a sideEffects list that maintains the side effects of the
actions added to the relaxed plan (initially, sideEffects =
FS(Π)). The heuristic hDTG builds a relaxed plan by find-
ing in the DTGs the shortest paths between the fluents in
sideEffects and subGoals via the application of the Dijk-
stra algorithm.

We first introduce some notions that are needed for the
hDTG algorithm:
• minPath(v, d0, dn) = {d0, . . . , dn−1, dn} is the short-

est path between 〈v, d0〉 ∈ sideEffects and 〈v, dn〉 ∈
subGoals, where d0 is the initial value of the path and dn
is the final value of the variable or subgoal to be achieved.

• getAction(v, dn−1, dn) is the minimum cost action that
induces a value transition dn−1 → dn.
Subgoals are sorted according to their cost. We define the

cost of a subgoal g = 〈v, dn〉 as follows:
cost(g) = arg min

〈v,d0〉∈sideEffects
|minPath(v, d0, dn)|

The cost of an action α is defined in terms of its precon-
ditions:
cost(α) =

∑
p=〈v,dn〉∈PRE(α)

cost(p)

The hDTG algorithm extracts the subgoal g =
〈v, dn〉 ∈ subGoals that maximizes cost(g). Then,
minPath(v, d0, dn) is applied to all the values d0 such that
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〈v, d0〉 ∈ sideEffects. From all the obtained paths, the al-
gorithm chooses the shortest one, p = {d0, . . . , dn−1, dn}.

Once the shortest path p is known, the algorithm intro-
duces in the relaxed plan the minimum cost action α that
induces each transition in p. That is, given, for instance, the
last value transition in p, dn−1 → dn, the algorithm ap-
plies getAction(v, dn−1, dn), obtaining an action α such
that 〈v, dn−1〉 ∈ PRE(α) and 〈v, dn〉 ∈ EFF (α).

The effects of the action α for each value transition in p
are inserted in the relaxed plan and stored in sideEffects,
and the rest of preconditions of α, 〈v′, d′〉, are inserted in the
subGoals list. Then, a new iteration of hDTG starts with a
new subgoal g ∈ subGoals.

Note that, as stated in equation 1, the cost of all pre-
conditions related to the same variable v is estimated from
the same state as g = 〈v, dn〉 since they are solved in the
same iteration of the process using the path p as a reference.
The cost of the rest of preconditions g′ = 〈v′, d′〉, for vari-
ables v′ 6= v, might be estimated from a state S′ different
from the state of g, depending on the fluent selected from
sideEffects to compute the cost of g′.

The process is completed when all the subgoals in
subGoals are processed. hDTG returns the number of ac-
tions in the relaxed plan as an estimate of the cost of the
plan.

To preserve privacy, each agent i stores its own version
of the DTGs according to its knowledge of the planning
task. Given a state variable v, agent i only keeps the DTG
nodes and transitions that involve the values in Div . The rest
of transitions are replaced by a reference to the agents that
can realize such transition. For instance, given a transition
dn−1 → dn, where Div = {dn−1} and Djv = {dn−1, dn},
agent i maintains a transition dn−1 → j, which indicates
agent i that it must communicate with agent j in order to re-
trieve the cost of the transition. This way, the calculation of
hDTG preserves agents’ privacy.

When minPath is applied in a distributed context, agent
i may have to resort to another agent j to find out the cost
of a subpath that is not visible to i. In turn, agent j may
also require the assistance of another agent k. To prevent an
excessive number of messages among agents, the recursion
depth of requests is limited during the application of hDTG.

Landmarks heuristic This heuristic uses landmarks, flu-
ents that must be satisfied in every solution plan of a MAP
task, as the basis of its calculation.

Agents jointly generate the Landmarks Graph (LG). For-
mally, LG = {N,V }, whereN is a set of nodes (landmarks)
and V is a set of orderings between the nodes. Among the
different types of orderings between landmarks, we use nec-
essary orderings, which are directly inferred with the algo-
rithm presented in (Hoffmann, Porteous, and Sebastia 2004).
A necessary ordering of the form l′ ≤n l indicates that the
landmark l′ should be achieved before l in all the solution
plans for the task. Single landmarks contain only one fluent,
while disjunctive landmarks are composed of a set of fluents,
where one of them must be true in all the solution plans.

Algorithm 2 shows the distributed landmark extraction al-

gorithm. This multi-agent procedure is described from the
point of view of one agent i. In order to ensure privacy, all
the fluents transmitted in Algorithm 2 are encoded as de-
scribed in Subsection Privacy in partial plans. As a result
of the execution of this algorithm, each agent i will obtain
a version of the LG which includes only the landmarks that
are public to i.

Algorithm 2: LG construction algorithm for an agent i
1 N ← ∅, V ← ∅, landmarks← G
2 while landmarks 6= ∅ do
3 l← extractLandmark(landmarks)

4 producersi ← α ∈ Ai | l ∈ EFF (α)

5 candidatesi ← ∩∀α∈producersiPRE(α)

6 disji ← groupNonCommonPrecs(producersi)
7 if isCoordinator(i) then
8 lm← candidatesi, disj ← {disji}
9 for all j ∈ AG, j 6= i do

10 receive({disjj , candidatesj}, j)
11 lm← lm ∩ candidatesj
12 disj ← disj ∪ disjj

13 lm← lm ∪ groupDisjLandmarks(disj)
14 ∀j ∈ AG, j 6= i, send(lm, j)
15 else
16 send({disji, candidatesi}, coordinator)
17 lm← receive(lm, coordinator)

18 for all l′ ∈ lm do
19 if isDisjunctive(l′) ∨ verify(l′) = true then
20 N ← N ∪ l′
21 V ← V ∪ l′ ≤n l
22 landmarks← landmarks ∪ l′

23 Rotate coordinator role
24 for all l′ ≤n l ∈ V do
25 if verify(l′ ≤n l) = false then
26 V ← V \ {l′ ≤n l}

27 return LG = {N,V }

The algorithm is a backwards process that departs from
the goals in G. Given a landmark l, the process finds new
landmarks as the preconditions that are common to all the
actions that yield l as an effect. Once a landmark l′ is in-
ferred from l, a necessary ordering l′ ≤n l is also estab-
lished. Before their inclusion in the LG, all the single land-
marks and necessary orderings must be verified to ensure
their correctness.

An iteration of the Algorithm 2 is conducted by an agent
that plays the role of coordinator (in the following, we ref-
erence in parenthesis the lines of Algorithm 2 in which
each task is performed). Since actions are distributed across
agents, the detection of single landmarks, from the view-
point of an agent i, is described as follows:

• When a landmark l is extracted for its analysis (line 3),
agent i calculates candidatesi as the intersection of the
preconditions of producersi, the actions in Ai that yield
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l as an effect (lines 4-5).
• Agent i masks the fluents in candidatesi according to

its level of privacy w.r.t. the coordinator agent. Then, i
transmits candidatesi to the coordinator agent (line 16),
which applies the intersection of the sets of candidates
received from all the agents in order to compute the actual
set of landmark candidates called lm (line 11).

Agent i groups the preconditions of producersi

that are not in candidatesi according to its
variable in order to generate disjunctive land-
marks (line 6). For instance, let producersi =
{(〈v, dn−1〉, 〈v′, d′〉) → 〈v, dn〉, (〈v, dn−1〉, 〈v′, d′′〉) →
〈v, dn〉}; then candidatesi = {〈v, dn−1〉} and
disji = {(〈v′, d′〉, 〈v′, d′′〉} Agent i sends disji along
with candidatesi to the coordinator agent, which groups
together the disjunctive landmarks received from the agents,
inserts them in the set lm (line 13) and sends lm back to the
agents (lines 14 and 17).

In the next step, agents jointly verify the single landmark
candidates l′ ∈ lm (line 19). The verification of l′ entails
solving a relaxed problem in which the actions α such that
l′ ∈ EFF (α) are excluded. If the goals in G are not satisfied
then l′ is verified as a landmark. If l′ is verified, it is added
to the LG along with a necessary order l′ ≤n l (lines 20-
21). For the verification of landmarks, agents are required to
jointly generate a dis-RPG (Zhang, Nguyen, and Kowalczyk
2007).

Note that, in order to preserve privacy, agent i stores l′ and
the associated ordering l′ ≤n l in its LG only if l′ is public
to i. This way, agents will keep different versions of the LG.

When the extraction and verification of landmarks is com-
pleted, the next step is the verification of the orderings in the
LG (forall loop in lines 24-26). Given an ordering l′ ≤n l,
agents create a dis-RPG excluding the actions α ∈ A |
l′ ∈ PRE(α) ∧ l ∈ EFF (α) in order to validate it.

The LG created in Algorithm 2 is used to calculate the
value of hLand of a refinement plan in FMAP. Given a plan
Π, hLand(Π) returns an estimate of the quality of Π, which
is estimated as follows:

1. The agent i that generates Π checks which landmarks are
satisfied in Π according to its LG (agent i coordinates the
evaluation of Π). A refinement plan Π satisfies a landmark
l iff ∃α ∈ ∆(Π) | l ∈ EFF (α), and ∀l′ ≤n l ∈ N , l′ ∈
EFF (β), where β ∈ ∆(Π) and ∃β ≺ α ∈ OR(Π); that
is, a landmark l is not satisfied unless all its predecessors
in the LG appear in Π as effects of the actions that precede
the action α that has l in its effects.

2. Agent i communicates the verified landmarks to each
agent j, j 6= i, masking the variables and values accord-
ing to the level of privacy with agent j (see subsection
Privacy in partial plans). Then, agent j verifies whether
Π achieves any more landmarks that are not visible in the
LG of the coordinator agent i.

3. Agents mask the new found landmarks and send them
to the coordinator agent i, which computes the value of
hLand(Π) as the number of landmarks that are not satis-
fied in Π.

The communication machinery required for the calcula-
tion of hLand has been integrated into FMAP by reusing the
messages of the original protocol, and thus, its distributed
calculation does not increase the communication overhead.

Multi-heuristic approach Over the last years, one of the
most successful research trends on single-agent state-based
planning emphasizes the combination of heuristic functions.
Recent studies conclude that the combination of multiple
heuristics dramatically improves performance and scalabil-
ity in planning (Röger and Helmert 2010). This conclusion
is backed up by some well-known planning systems, such
as Fast Downward (Helmert 2006) and LAMA (Richter and
Westphal 2010), which successfully apply a multi-heuristic
approach to state-based planning. Up to this date, however,
the multi-heuristic approach has never been tested in MAP.

Algorithm 3: MH-FMAP algorithm for an agent i
openList← Π0, preferredList← ∅
list← true
while openList 6= ∅ do

if list = true then
Πb ← extractP lan(openList)

else
Πb ← extractP lan(preferredList)

list← ¬list
if isSolution(Πb) then

return Πb

RP ← refineP lan(Πb)
for all j ∈ AG, j 6= i do
sendRefinements(j)
RP ← RP ∪ receiveRefinements(j)

for all Πr ∈ RP do
distributedEvaluation(Πr, hDTG)
distributedEvaluation(Πr, hLand)
openList← openList ∪Πr

if hLand(Πr) < hLand(Πb) then
preferredList← preferredList ∪Πr

return No solution

A basic question that arises when modeling a multi-
heuristic approach is how to combine heuristics in order
to maximize the performance of the resulting planner. The
work in (Röger and Helmert 2010) experimentally compares
different heuristic combination methods (sum, weighted
sum, maximum, Pareto and alternation of heuristics), con-
cluding that the alternation of heuristics is by far the most
efficient method.

Our multi-heuristic MAP approach, MH-FMAP, is a
heuristic alternation method. Rather than aggregating the
heuristic values, alternation makes equal use of all the es-
timators, assuming that different heuristics might be useful
in different parts of the search space. The most promising
states are selected according to the currently used heuristic,
completely ignoring all other heuristic estimates (Röger and
Helmert 2010).
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MH-FMAP is inspired by Fast Downward, which com-
bines the FF and Causal Graph heuristics in an orthogonal
way. Fast Downward maintains two open lists per heuris-
tic: one list stores the open nodes and the other one keeps
track of the preferred successors. While authors in (Helmert
2006) defined preferred successors as the ones generated by
the so-called preferred operators, we define them by means
of the landmark-based heuristic:

Definition 5 A refinement plan Πr is a preferred successor
of a plan Π iff hLand(Πr) < hLand(Π).

Algorithm 3 shows the FMAP basic search scheme
adapted to our multi-heuristic approach, MH-FMAP. Agents
now maintain two open lists: the openList maintains the
open nodes of the search tree, ordered by f = g+2∗hDTG,
and the preferredList keeps only the preferred successors,
sorted by hLand. If a plan is a preferred successor, it is in-
troduced in both open lists. Agents extract a base plan from
one of the lists alternatively; if a base plan is stored in both
lists, it is removed from both of them.

The results of the next section prove that MH-FMAP
yields notably superior results than the individual heuristics.

Experimental Results
We executed a wide range of experimental tests in order to
assess the performance of the heuristic strategies presented
in this paper4. Our benchmark includes the STRIPS suites
of 10 different domains from the IPC5, all of them adapted
to a MAP context: Depots, Driverlog, Elevators, Logistics,
MA-Blocksworld, Openstacks, Rovers, Satellite, Woodwork-
ing and Zenotravel. All the tasks were directly adapted from
the STRIPS IPC suites, except for the MA-Blocksworld do-
main (Borrajo 2013), which introduces several arms that can
simultaneously manipulate the blocks (4 agents per task).

The first experiment, shown in Table 1, compares the per-
formance of FMAP with the hDTG heuristic (f = g + 2 ∗
hDTG), the hLand heuristic (f = g + 2 ∗ hLand) and MH-
FMAP, our novel multi-heuristic approach based on the al-
ternation of hDTG and hLand.

Due to the large amount of performed tests (244 plan-
ning tasks), we only display average results. More precisely,
Table 1 summarizes, for each domain, the total number of
solved tasks (Sol columns) and the average results of: search
iterations (#Iter columns), execution time in seconds (Time
columns), and plan quality results in terms of number of ac-
tions (#Act columns) and makespan (MS columns). The re-
sults of hDTG and hLand are relative to the results obtained
with MH-FMAP, considering only the common tasks solved
by both MH-FMAP and the respective single-heuristic ap-
proach. The nx values in Table 1 indicate ”n times as much
as the MH-FMAP result”. Therefore, a value higher than 1x
in #Act, MS, Time or #Iter is a better result for MH-FMAP.

4All the experimental tests were performed on a single machine
with a quad-core Intel Core i7 processor and 8 GB RAM (2 GB
RAM available for the Java VM).

5For more details on the MAP adaptation of the planning do-
mains, please refer to (Torreño, Onaindia, and Sapena 2014).

The Sol columns of hDTG and hLand represent the num-
ber of problems solved by each heuristic, which happens to
coincide, except for the MA-Blocksworld domain, with the
number of common tasks solved by both MH-FMAP and
hDTG and hLand, respectively. The last row of Table 1 dis-
plays the global average results.

MH-FMAP obtains the best coverage results in 9 out of
the 10 tested domains, solving 215 out of 244 tasks (roughly
88% of the tasks). hDTG solves one more problem than MH-
FMAP in the MA-Blocksworld domain and it solves over-
all 191 tasks (78%). Using hLand as a standalone estimator
shows the worst performance, solving 117 tasks (48%).

It is worth noting that MH-FMAP tends to mimic the
behaviour of the best-performing heuristic in most of
the domains: for instance, in Driverlog, Elevators, MA-
Blocksworld or Zenotravel, the results of coverage are much
better with hDTG than with hLand and this is also reflected
in MH-FMAP. However, hLand solves more problems than
hDTG in the Openstacks domain and MH-FMAP equals
the results obtained with hLand. Interestingly, in the do-
mains where hDTG and hLand offer a similar performance
(namely, Depots, Logistics and Woodworking), the synergy
of both estimators in MH-FMAP clearly outperforms the
single-heuristic approaches, even resulting in twice as much
the coverage in the Logistics domain.
hLand takes much less time to evaluate a plan than the

rest of approaches (33 ms per iteration in average, while
MH-FMAP and hDTG take around 200 ms).This is because,
unlike hDTG, the integration of hLand in FMAP does not re-
quire any exchange of additional messages between agents
apart from those already required by the FMAP search pro-
cedure. Nevertheless, hLand requires the largest amount of
iterations to find solutions in most domains; for instance,
in Driverlog and Elevators, hLand takes 350 and 585 times
more iterations than MH-FMAP, respectively. In general, the
accuracy of hLand depends on the quality of the Landmarks
Graph (LG). Particularly, in the Openstacks domain, the LG
almost provides an skeleton for the solution plans, which ex-
plains the great performance of hLand in this domain.

MH-FMAP requires more iterations and execution time
than hDTG in 6 out of the 10 tested domains. However, in
general, MH-FMAP shows low execution times: less than 3
minutes in most domains, and around 6 minutes in Open-
stacks, the most time-consuming domain. Moreover, MH-
FMAP performs admirably well in some domains, being
around 5 times faster than hDTG in Depots and Logistics.

Regarding plan quality (number of actions and
makespan), MH-FMAP offers a good tradeoff between
hDTG and hLand. According to the global results in Table
1, the quality results of the three approaches are very
similar, being #Act slightly higher in hDTG. As a whole, we
can observe that the alternation of heuristics does not entail
a loss of quality versus the standalone heuristics.

To sum up, hLand turns out to be the fastest approach
with the worst coverage. hDTG is the slowest approach but it
solves many more problems than hLand. MH-FMAP, how-
ever, shows the potential of alternating global heuristics in
MAP: it remarkably improves the coverage up to 88% of
solved problems and, despite the overhead caused by the si-
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Domain-Tasks
MH-FMAP FMAP - hDTG FMAP - hLand

Sol #Iter #Act MS Time Sol #Iter #Act MS Time Sol #Iter #Act MS Time

Depots-20 12 614,75 31,83 24,50 141,57 8 9,46x 1,23x 0,97x 5,55x 7 2,58x 0,96x 0,81x 0,57x
Driverlog-20 15 400,73 22,93 13,07 18,24 15 0,62x 1,04x 1,15x 0,60x 7 349,37x 0,90x 1,03x 51,78x
Elevators-30 30 53,93 24,67 13,40 9,43 30 0,66x 1,00x 0,96x 0,56x 13 585,47x 0,97x 0,92x 49,28x
Logistics-20 20 128,85 69,95 20,75 100,25 10 2,83x 1,05x 1,20x 5,43x 10 8,68x 1,00x 0,98x 1,75x
MA-Blocksworld-34 22 2542,36 18,18 14,64 45,71 23 0,96x 1,09x 1,06x 0,96x 16 11,44x 0,98x 0,91x 7,89x
Openstacks-30 30 707,80 63,10 52,90 353,73 25 0,75x 1,02x 0,95x 1,14x 30 0,18x 1,02x 1,02x 0,05x
Rovers-20 20 507,50 35,05 14,35 95,55 19 1,08x 1,01x 1,03x 1,50x 6 7,14x 0,99x 1,00x 1,21x
Satellite-20 19 72,74 32,58 19,95 115,05 18 0,92x 0,99x 0,97x 0,93x 4 22,01x 1,02x 1,00x 6,42x
Woodworking-30 27 1331,74 19,48 4,81 197,78 23 0,51x 1,01x 1,02x 0,40x 17 0,95x 0,97x 1,01x 0,13x
Zenotravel-20 20 96,65 32,35 18,35 115,68 20 0,94x 0,99x 0,97x 0,95x 7 155,19x 0,97x 1,03x 20,50x

Global results 215 670,56 35,59 20,37 128,51 191 0,95x 1,02x 0,99x 1,06x 117 11,32x 1,00x 0,99x 0,53x

Table 1: Comparison between MH-FMAP and FMAP (using hDTG and hLand)

multaneous application of two heuristics, it offers competi-
tive execution times. Finally, the combination of heuristics
does not reduce the quality of the solution plans.

The second test compares MH-FMAP to another
landmark-based approach to MAP, the Greedy Privacy
Preserving Planner (GPPP). GPPP is the current best-
performing MA-STRIPS planner and it introduces PP-LM,
the first distributed version of a landmark-based heuristic
(Maliah, Shani, and Stern 2014)6.

Both PP-LM and hLand build the LG and evaluate plans
by counting the landmarks of the LG that are not reached
yet. However, each heuristic is built upon a different plan-
ning framework (MH-FMAP and GPPP), presenting some
key differences among them. PP-LM is designed for propo-
sitional MA-STRIPS domains, while hLand supports tasks
where facts are modeled through object fluents. In addition,
the two heuristics are designed around a different notion of
privacy: in GPPP, the private literals of an agent are occluded
to the rest of agents, and the public literals are visible to all
the participants. In contrast, MH-FMAP defines privacy be-
tween each pair of agents, masking the private information
in preconditions and effects.

Table 2 compares the coverage, average execution time
and plan quality of MH-FMAP and GPPP. Note that GPPP
develops sequential plans, so the plan duration (makespan)
equals the number of actions in this approach. Figures in Ta-
ble 2 show average results for both approaches when running
five IPC domains used in (Maliah, Shani, and Stern 2014).

Table 2 shows that GPPP is much faster than MH-FMAP
(up to 50 times faster in some domains), mainly because,
unlike MH-FMAP, GPPP does not use any communication
infrastructure. As commented before, the use of a communi-
cation broker may entail a bottleneck when agents exchange
a large amount of messages.

However, this superiority is not reflected in the coverage
results. Despite being slower, MH-FMAP solves 109 out of
110 tasks, five more tasks than GPPP, which outnumbers
MH-FMAP in only one task in the Satellite domain.

With respect to plan quality, MH-FMAP returns solution
plans with fewer actions than GPPP in almost all the do-
mains. For example, in Zenotravel, the solution plans of
MH-FMAP contain 30% fewer actions than GPPP in aver-

6We want to thank the authors of GPPP for their kind support.

Domain-Tasks
MH-FMAP GPPP

Sol #Act MS Time Sol #Act Time

Elevators-30 30 24,04 13,25 8,90 28 26,71 0,72
Logistics-20 20 69,95 20,75 100,25 20 69,25 2,02
Rovers-20 20 28,88 12,29 25,63 17 32,12 3,25
Satellite-20 19 32,58 19,95 115,05 20 38,32 3,44
Zenotravel-20 20 32,35 18,35 115,68 20 45,00 13,86

Table 2: Comparison between MH-FMAP and GPPP

age. GPPP only obtains slightly better results in the Logis-
tics domain. Additionally, the POP-based approach of MH-
FMAP allows us to obtain much shorter solutions (better
makespan) than GPPP, which is limited to sequential plans.

In conclusion, MH-FMAP proves that the alternation of
global heuristics is as effective in MAP as it is in clas-
sical planning. MH-FMAP not only performs much better
than the single-heuristic FMAP setups, but also outperforms
GPPP in terms of coverage and plan quality.

Conclusions
In this paper, we have presented MH-FMAP, a multi-agent
planning system that draws upon the FMAP framework and
incorporates a novel multi-heuristic search scheme that al-
ternates two global heuristics: hDTG and hLand. We com-
pared the performance of MH-FMAP against the standalone
heuristics and GPPP, an MA-STRIPS-based planner, and the
results throw a very positive balance in favor of MH-FMAP:
a clearly superior coverage and a much better solution plan
quality. In contrast, these excellent results come at the cost
of a high number of message-passings between the agents.

The take-home lessons from this paper are: a) the use of
global heuristics in MAP are actually worthy as long as the
gain of the heuristic pays off the communication cost; b) the
alternation of heuristics shows very beneficial for planning
in general and also for MAP; c) using communication in-
frastructures is costly and affects the execution time but it
is, however, necessary in order to implement heuristics in
distributed environments with private information.

All in all, a proper combination of global heuristic esti-
mators, well-defined communication protocols and a multi-
heuristic search mechanism results in an ideal approach to
cooperative MAP in distributed environments.
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Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 298–306.
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
Distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.
Zhang, J.; Nguyen, X.; and Kowalczyk, R. 2007. Graph-
based multi-agent replanning algorithm. In Proceedings of
the 6th Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 798–805.

233




