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Abstract
Inspired by the success of the satisfiability approach for
deterministic planning, we propose a novel framework
for on-line stochastic planning, by embedding the idea
of hindsight optimization into a reduction to integer lin-
ear programming. In contrast to the previous work using
reductions or hindsight optimization, our formulation is
general purpose by working with domain specifications
over factored state and action spaces, and by doing so is
also scalable in principle to exponentially large action
spaces. Our approach is competitive with state-of-the-
art stochastic planners on challenging benchmark prob-
lems, and sometimes exceeds their performance espe-
cially in large action spaces.

1 Introduction
Many realistic probabilistic planning domains are naturally
modeled as dynamic Bayesian networks (DBNs) over a set
of state and action variables. DBNs allow for compact en-
coding of planning domains with large factored state spaces,
factored action spaces allowing for concurrent actions, large
stochastic outcome spaces for actions, and complex exoge-
nous events. Recently, with the introduction of RDDL and
related languages for probabilistic planning domains, spec-
ifying such domains compactly has become relatively easy,
paving the way for the application of probabilistic planners
to realistic problems.

Unfortunately, as we overview in Section 2, the current
leading frameworks for probabilistic planning face serious
scalability issues when encountering many of the above
problem features. This motivates us to consider a new frame-
work inspired by the success of the planning as satisfia-
bility (Kautz and Selman 1992) for deterministic planning.
The key idea of that work was to reduce deterministic plan-
ning problems to propositional satisfiability (SAT) prob-
lems and then apply state-of-the-art SAT solvers. Reduction-
based approaches for probabilistic planning have received
relatively little attention compared to SAT-based approaches
for deterministic planning. Some exceptions include reduc-
tions to stochastic satisfiability (Majercik and Littman 1998;
2003), stochastic CSPs (Hyafil and Bacchus 2004), and
weighted model counting (Domshlak and Hoffmann 2006).
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Those approaches, however, have either not demonstrated
scalability and/or have been restricted to finding open-loop
plans. Furthermore, these approaches have so far only been
developed for concrete action spaces and hence are not
applicable to factored action spaces. The question then is
whether one can develop a reduction-based approach, which
is both general and able to handle factored action spaces.

The main contribution of this paper is to propose a frame-
work and conduct a first investigation into solving domain-
independent probabilistic planning for factored domains
through integer linear programming (ILP), allowing for the
exploitation of state-of-the-art ILP solvers. To achieve this
we turn to Hindsight Optimization (HOP) (Chang, Givan,
and Chong 2000; Chong, Givan, and Chang 2000) as a
framework for approximately reducing probabilistic plan-
ning to ILP. HOP is a heuristic approach for online ac-
tion selection based on the idea of computing optimistic
bounds on action values via problem determinization, al-
lowing for the use of deterministic solvers for probabilis-
tic planning. While it is known that HOP’s optimistic na-
ture can lead to poor performance in certain types of do-
mains, it has been successfully applied across a diverse
set of challenging probabilistic planning domains (Chang,
Givan, and Chong 2000; Chong, Givan, and Chang 2000;
Wu, Chong, and Givan 2002; Yoon et al. 2008; 2010;
Eyerich, Keller, and Helmert 2010; Hubbe et al. 2012;
Xue, Fern, and Sheldon 2014). Unfortunately, existing HOP
approaches either scale linearly with the number of actions,
which is impractical for many factored-action problems, or
are domain specific. In this paper, we show a general ap-
proach for translating a DBN-style factored planning prob-
lem to an integer linear program (ILP) that captures the HOP
objective. Moreover, the formulation is naturally factored
and it allows the optimization over large action spaces.

Our reduction to ILP translates the planning problem into
one large ILP, which gives rise to a number of questions
about feasibility. Given that integer programming is hard in
general, could we even expect the ILPs to be solved within a
reasonable amount of time for typical benchmarks? What if
we are not able to optimize the ILP and are forced to use sub-
optimal solutions obtained within the allotted time? Can this
approach compete with state-of-the-art domain-independent
planners across a variety of domains? Does the solution
quality suffer due to the inherent optimism of HOP?
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The paper studies these questions experimentally by eval-
uating the algorithm and comparing it to the state-of-the-art
system PROST (Keller and Eyerich 2012). As our experi-
ments show, in many cases our approach provides competi-
tive or superior performance. However, the size of the result-
ing ILP and its solvability plays an important role in the suc-
cess of this method, and improving encoding size, suitability
to ILP solvers, as well as improving the overall optimization
scheme are important problems for future work.

2 Background
2.1 Factored Markov Decision Processes
This paper assumes some familiarity with the basic frame-
work of Markov Decision Processes (MDPs) (Puterman
2005). We are concerned with finite-horizon online planning
in stochastic domains modeled as factored MDPs. A MDP is
a 4-tuple 〈S,A, T,R〉 where S is a finite set of states, A is a
finite set of actions, T is a state transition function and R is a
reward function. The transition function T (s, a, s′) gives the
probability of reaching state s′ by taking action a in state s
and the reward function R(s) associates a numeric reward
with state s. Note that we follow the standard formulation
of these settings that does not include a discount factor but
this is easy to incorporate into our algorithms if needed. The
standard solution of a MDP is a policy which is a mapping
of states to actions. In our setting of online planning the fo-
cus is on efficiently computing a high-quality action for the
current state s after each state transition.

In a factored MDP, the state space S is described by a
finite set of binary variables (x1, x2, . . . , xN ) and the ac-
tion space is described by a finite set of binary variables
(a1, a2, . . . , an). In some cases, the state and action spaces
are also subject to state and action constraints that elimi-
nate certain combinations of values as illegal states or ac-
tions. We assume in this work that the transition func-
tion T is compactly described as a Dynamic Bayesian Net-
work (DBN) which specifies the probability distribution
over each state variable xi in the next time step, denoted
x′
i, given the values of a subset of the state and action

variables parents(x′
i). In particular, we have T (s, a, s′) =∏

i Pr(x′
i|parents(x′

i)). The conditional probability tables
(CPTs) Pr(x′

i|parents(x′
i)) are often represented via a struc-

tured representation such as a decision tree, rule set, or alge-
braic decision diagram. We also assume a similarly compact
reward function description in terms of the state variables.

2.2 Prior Approaches
There are two main approaches for solving factored MDPs.
First, symbolic dynamic programming (SDP) algorithms at-
tempt to compute symbolic representations of policies and
value functions over the entire state-space. SDP has been de-
veloped for concrete action spaces (Hoey et al. 1999), fac-
tored action spaces (Raghavan et al. 2012; 2013), and ex-
tended for using information from the current state to focus
the search and reduce complexity (Feng and Hansen 2002;
Feng, Hansen, and Zilberstein 2003). Unfortunately, these
planners have not yet exhibited scalability to large problems,

in part due to their goal of computing policies over the entire
reachable portion of the state space.

The second type of approach is online tree search, where
planning is done for only the current state by constructing
a look-ahead search tree rooted at that state in order to es-
timate action values. Such tree search algorithms are cur-
rently the state-of-the-art in terms of empirical performance
on certain benchmarks and include planners such as PROST
(Keller and Eyerich 2012), Glutton (Kolobov et al. 2012),
and Anytime AO* (Bonet and Geffner 2012), among oth-
ers. Even these planners, however, exhibit serious scalabil-
ity issues for many domains. In particular, the planners treat
each action as atomic, which dramatically increases their
run time for factored action domains. This, in combination
with large stochastic branching factors, due to exogenous
events, severely limits the achievable search depths. While
this can be mitigated to some extent by pruning mechanisms
or heuristics, applicability of search methods to large fac-
tored action spaces remains a challenge.

2.3 Hindsight Optimization
Given the inherent challenges of the above frameworks, it is
important to consider alternative frameworks that may offer
complementary strengths. In this work, we follow the online
planning strategy of the tree-search approaches, but employ
hindsight optimization (HOP) to compute actions.

The main idea of HOP is to identify the best action in
state s, by calculating an optimistic estimate of Q(s, a) for
each a and choosing the action with highest estimate. To
achieve this, for each a, the HOP algorithm (1) takes mul-
tiple samples of s′ from the transition function T (s, a, s′),
(2) randomly selects a “future” from s′ by determinizing all
future potential transitions, and (3) evaluates “the value of s′
with hindsight” by solving the resulting deterministic plan-
ning problem. Previous work represented and evaluated each
future separately, and explicitly averaged the value of each
a through its successor states s′. This yields an optimistic
estimate for Q(s, a) which can be used in action selection.

The advantage of HOP is its ability to perform deep search
in each of the independent determinized futures. This con-
trasts with the above tree-search approaches where depth is
a significant limiting factor. On the other hand, unlike the
tree-search approaches, in general, HOP is not guaranteed to
select an optimal action even when given an exhaustive set
of futures. HOP constructs a plan based on presumed out-
comes of all future actions, which makes it inherently opti-
mistic and leads to suboptimal plans in general (Yoon et al.
2008). In spite of this significant limitation, HOP has been
successfully applied to a variety of stochastic domains with
small action spaces(Chang, Givan, and Chong 2000; Chong,
Givan, and Chang 2000; Wu, Chong, and Givan 2002;
Yoon et al. 2008; 2010; Hubbe et al. 2012) and domain-
independent systems have been developed (Yoon et al. 2008;
2010). However, the complexity of HOP in previous work
scales linearly with the number of actions, which is not fea-
sible for large factored action spaces. The question then is
whether a more efficient version of HOP can be developed.

It is interesting to note that the HOP solution is a simpli-
fied form of the sample average approximation (SAA) algo-
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rithm (Kleywegt, Shapiro, and Homem-de Mello 2002) from
stochastic optimization literature, which is closely related to
the Pegasus algorithm (Ng and Jordan 2000) for POMDPs.
Like HOP, the SAA solution draws multiple deterministic
futures in order to get an approximate solution of the orig-
inal problem. However, unlike HOP, SAA does not allow
for independent solutions of those futures. As a result SAA,
is more demanding computationally but it can be shown to
converge to the optimal policy under some conditions. The
next section shows how HOP can be used in factored spaces.
Extensions of these ideas to SAA are left to future work.

3 Hindsight Optimization via ILP
In order to scale HOP to factored actions, we turn to a
recent idea that was developed in the context of a bird
conservation problem (Kumar, Wu, and Zilberstein 2012;
Xue, Fern, and Sheldon 2014) where the corresponding do-
main specific problem is translated into a mixed integer pro-
gram (MIP). In particular, the work of (Xue, Fern, and Shel-
don 2014) showed how one can translate the HOP objective
in that problem into a MIP that is expressed directly over
state and action variables. The MIP is then solved to pro-
duce the HOP action for the current state. This work showed
that at least for specific cases, the HOP solution can be com-
puted for exponentially large factored-action spaces. The
question then is whether this approach can be generalized
into a domain-independent planning method.

In this section, we describe such a domain-independent
HOP approach that translates the HOP objective to an in-
teger linear program (ILP) that naturally factors over both
state and action variables. In this way, the size of the ILPs
will grow reasonably with the number of action variables.
This provides the potential for computing HOP actions in
exponentially large action spaces within a reasonable time,
depending on the effectiveness of the ILP solver.

3.1 DBN Domain Representation
We assume that we have as input a compact representation of
the DBN for the domain. This includes a description of the
transition function, the reward function, and possibly state
and action constraints. Previous work has used trees or deci-
sion diagrams for such representations (Boutilier, Dean, and
Hanks 1999). In our experiments we use the Relational Dy-
namic Influence Diagram Language (RDDL) (Sanner 2010)
as the high level specification language for stochastic plan-
ning. RDDL is the current standard used in recent planning
competitions. It can be translated into a ground represen-
tation in various formats, and a translator into decision di-
agrams is provided with the distribution of the simulator
(Sanner 2010). Here we use as input a similar translation, de-
veloped in (Raghavan et al. 2012), where conditional prob-
ability tables (CPT) and the reward function are given as
decision trees.

In the following, we first explain how one can use trees
and then show how in some cases it is beneficial to use a
more compact set of rules. Nodes in the tree representation
are labeled with propositional variables and edges are la-
beled with truth values. A path from the root to a leaf in

the tree captures a conjunction of state and action literals on
that path; the conjunctions corresponding to different paths
are mutually exclusive and they therefore define a partition
of the state and action space. The leaves of the reward func-
tion tree are real values representing the reward for the cor-
responding partition. For state variables, we have a separate
tree for each x′

i capturing Pr(x′
i = 1|parents(x′

i)) where the
parents include state and action variables. Leaves in these
trees are numbers in [0, 1] representing the conditional prob-
abilities. For domains with state-action constraints the leaves
in the constraint tree are labeled with binary values {0, 1}
where 0 identifies illegal combinations of variables.

In this paper we consider all paths or state-action parti-
tions in the trees and translate them to linear constraints.
We note that the same ideas can be applied to ADDs in a
straightforward way although we have not implemented this
in our system. In some cases the number of paths, at least
in automatically derived translations, is unnecessarily large.
We therefore work with a slightly improved representation
that builds on two intuitions. First, given a tree with binary
leaves it is sufficient to represent either the paths leading
to 0 or the paths leading 1, by taking the default comple-
ment value when the paths are not satisfied. This allows us to
shrink the representation significantly in some cases where
one set of paths is much smaller. In addition, in this case
the paths considered need not be mutually exclusive (they
all lead to 0 or all lead to 1) and can therefore be more com-
pact. The second intuition is that in many domains the tran-
sition is given as a set of conditions for setting the variables
to true (false) with corresponding probabilities but with a
default value false (true) if these conditions are not satisfied.
For example, Pr(x′

1 = 1|x1, x2, x3) might be specified as
“x1 ∧ x2 ⇒ p = 0.7; x1 ∧ x2 ⇒ p = 0.4; otherwise p=0”.
In this case the translation can be simplified using the com-
bination of rules and default values. We explain the details
in the context of the ILP formulation below.

For the domains in our experiments we were able to use
direct translation from RDDL into trees for some of the do-
mains, but for domains where the trees are needlessly large
we provided such a rule-based representation.

3.2 ILP Formulation
Recall that for HOP we need to sample potential “futures” in
advance while leaving the choice of actions free to be deter-
mined by the planner. In order to do this, one has to prede-
termine the outcome of any probabilistic action in any time
step (where the same action may be determinized with dif-
ferent outcomes at different steps). For the ILP formulation
we have to explicitly represent the state and action variables
in all futures and all time steps. Once this is done, we can
constrain the transition function in each future to agree with
the predetermined outcomes in each step. To complete the
translation we represent the objective of finding the HOP
action that maximizes the average value over all futures into
the objective function of the ILP. The rest of this section ex-
plains this idea in more detail.

We start by introducing the notation. As discussed above,
we are given a problem instance translated into a set of trees
(or rule sets) {T1, T2, ..., TN , R, C}, where {T1, T2, ..., TN}
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are transition function trees, R is the reward function tree,
and C is the constraint function. Let {x1, x2, ..., xN} be the
set of binary state variables, {a1, a2, ..., an} be the set of
binary action variables, m be the number of futures and h be
the look-ahead (horizon) value. We use t to denote the time
step and k to represent the index of the future/sample. Let
xk
i,t and akj,t be the copies of xi and aj respectively for future

k and time step t. Then Xk
t = (xk

1,t, x
k
2,t, ..., x

k
N,t) denotes

the state and Ak
t = (ak1,t, ..., a

k
n,t) denotes the action at time

step t in the kth future.
To facilitate the presentation we describe the construction

of the ILP in several logically distinct parts. We start by
explaining how to determinize the transition function into
different futures. We then show how the futures are linked
to capture the HOP action selection constraint, and how the
HOP criterion can be embedded into the ILP objective. We
then describe a few additional portions of the translation.

Preliminaries: Integer linear programs can easily capture
logical constraints over binary variables. We recall these
facts here and mostly use logical constraints in the remain-
der of the construction. In particular logical AND [z =
x1∧x2∧ ...∧xn] is captured by nz ≤ (x1+x2+ ...+xn) ≤
(n− 1)+ z, logical OR [z = x1 ∨ x2 ∨ ...∨ xn] is captured
by z ≤ (x1+x2+ ...+xn) ≤ nz, and negation [z = ¬x1] is
captured by z = 1−x where in all cases we have z ∈ {0, 1}.
Determinizing Future Trajectories: We start by explain-
ing how one can translate the tree representation into ILP
constraints and then improve this for using rules.

In order to determinize the transition function we create
m×h determinized versions of each tree, where {Dk

i,t} is the
determinization of Ti, by converting the probabilities at the
leaves to binary values using a different random number at
each leaf, i.e., the leaf is set to true if the random number in
[0, 1) is less than its probability value and false otherwise.

Let Ui,p be the set of positive state literals, Vi,p be the
set of state variables appearing in negative literals, Bi,p be
the set of positive action literals and Ci,p be the set of ac-
tion variables in negative action literals along the root-to-leaf
path #p of Ti. Let yki,p,t be the binary value at the leaf of path
#p in the determinized version Dk

i,t of Ti. The state variable
xk
i,t+1 is constrained to take the leaf-value of the path in Dk

i,t

which is satisfied by the state Xk
t = (xk

1,t, x
k
2,t, ..., x

k
N,t) and

action Ak
t = (ak1,t, ..., a

k
n,t). We let fk

i,p,t denote the con-
junction of all constraints in the path #p of the determinized
version Dk

i,t of Ti. The transition constraints for xk
i,t+1 are

xk
i,t+1 =

{
yki,p,t if fk

i,p,t = 1

unconstrained if fk
i,p,t = 0

which can expressed as
¬fk

i,p,t ∨ xk
i,t+1 = 1 if yki,p,t = 1

¬fk
i,p,t ∨ ¬xk

i,t+1 = 1 if yki,p,t = 0

where
uk
i,p,t = ∧xi∈Ui,p xk

i,t

vki,p,t = ∧xi∈Vi,p
(1− xk

i,t)

zki,p,t = uk
i,p,t ∧ vki,p,t

bki,p,t = ∧aj∈Bi,p
akj,t

cki,p,t = ∧aj∈Ci,p (1− akj,t)

gki,p,t = bki,p,t ∧ cki,p,t

fk
i,p,t = zki,p,t ∧ gki,p,t

Notice that the conditioning on the value of yki,p,t in the
formula above is done at compile time and is not part of
the resulting constraint. In particular, depending on the value
of yki,p,t the formula for fk

i,p,t can be directly substituted in
the applicable constraint. The intermediate variables uk

i,p,t,
vki,p,t, z

k
i,p,t, b

k
i,p,t, c

k
i,p,t, g

k
i,p,t and fk

i,p,t are introduced here
for readability. In our implementation we replace them by
the conjunctions directly as input to the ILP solver. This
completes the description of the basic translation of trees.

To illustrate the construction, consider a hypothetical path
x1∧x2∧a2 leading to a leaf with value y = 1, as part of the
transition function for say x3 at time t. Then f represents
the conjunction of x1,t, (1 − x2,t), and a2,t using linear in-
equalities. Then because we are in the case y = 1 we can
write (1− f)+x3,t+1 = 1. This captures the corresponding
condition for x3,t+1.

As a first improvement over the basic tree translation, note
that once a tree is determinized its leaves are binary and , as
explained in Section 3.1, we can represent explicitly either
the paths to leaves with value 1 or paths to leaves with value
0. By capturing the logical OR of these paths we can set
the variable to the opposite value when none of the paths is
followed. We next discuss how this can be further improved
with rule representations.

For the rule representation we allow either a set of rules
sharing the same binary outcome and an opposing default
value, or a set of mutually exclusive rules with probabilities,
and a corresponding default value. The first case is easy to
handle exactly as in the previous paragraph. For the second
case, we must first determinize the rule set, which we do
by drawing a different random number for each rule at each
time step. This generates a determinized rule set analogous
to Dk

i,t. To make this more concrete consider a rule set with
3 rules and a default value of 0: [R1 → 0.7; R2 → 0.3,
R3 → 0.9; otherwise 0], and determinize it to get [R1 → 1;
R2 → 0, R3 → 1; otherwise 0]. In this case we take only the
rules leading to 1 (the value opposite to the default value),
that is R1 and R3 in the example, represent their disjunction
to force a 1 value of the next state variable, and forcing a 0
value when the disjunction does not hold.

Capturing the HOP action constraint: The only require-
ment for HOP is that all futures use the same action in the
first step. In the translation above, variables from different
futures are distinct. To achieve the HOP constraint we sim-
ply need to unify the variables and actions corresponding to
the first state. Let I ⊆ X be the subset of variables true in
the initial state. The requirement can be enforced as follows:

xk
i,0 = 1 ∀xi ∈ I

xk
i,0 = 0 ∀xi ∈X − I ∀k = 1..m
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akj,0 = ak+1
j,0 ∀j = 1..n, k = 1..m− 1

Capturing the HOP quality Criterion: The HOP objec-
tive is to maximize the sum of rewards obtained in all the
t time steps averaged over k futures. This can be captured
directly in the objective function of the ILP as follows.

Min Z(A) = − 1
m

∑m
k=1

∑h
t=0

∑L
p=1

(
rp × wk

p,t

)
where rp is the reward at the leaf of path #p of the reward
tree, L is the number of leaves of the reward tree, and wk

p,t is
an intermediate variable that represents the path constraint
of #p, defined as

wk
p,t = uk

p,t ∧ vkp,t
uk
p,t = ∧xi∈Up

xk
i,t

vkp,t = ∧xi∈Vp
(1− xk

i,t)

Up is the set of positive literals and Vp is the set of variables
appearing in negative literals along path #p of R and
wk

p,t is set to 1 if the conjunction of the literals along
path #p is satisfied for Xk

t = (xk
1,t, x

k
2,t, ..., x

k
N,t) and

Ak
t = (ak1,t, ..., a

k
n,t) and 0 otherwise.

State Action Constraints and Concurrency Constraints:
As mentioned above, in some domains we are given an ad-
ditional tree C capturing legal and illegal combinations of
state and actions variables. This is translated along simi-
lar lines as above. We can represent the disjunction of all
paths to leaves that have value 1 as an intermediate variable,
and then require that this variable is equal to 1. In addition,
for our experiments we need to handle one further RDDL
construct, the concurrency constraints, which is orthogonal
to the DBN formulation, but has been used to simplify do-
main specifications in previous work, for example in plan-
ning competitions. These have been used to limit the number
of parallel actions in any time step to some constant c. This
can be expressed as∑n

j=1 a
k
j,t ≤ c ∀t = 0..h, k = 1..m

Solving the hindsight ILP: We have used IBM’s opti-
mization software CPLEX to solve the ILPs. We create a
new ILP at each decision point with the current state as the
initial state using a set of newly determinized futures. Our
construction mimics the HOP procedure, although algorith-
mically it is quite different. Previous work on HOP enumer-
ates all actions, estimates their values separately by averag-
ing values of multiple determinations for each action, and
finally picks the action with the highest estimate. Instead
of this, the ILP formulation, if optimally solved, provides
an action which maximizes the average value over all de-
terminized futures. This value is equal to the value in the
simple HOP formulation, although several actions might be
tied. We therefore have that:
Proposition 1 If the simple HOP algorithm and the ILP-
HOP algorithm use the same determined futures then the
optimal solution of the ILP yields the same action and value
as the simple HOP algorithm assuming a fixed common tie
breaking order over actions.

4 Experiments
We evaluate ILP-HOP on six different domains comparing
to PROST (Keller and Eyerich 2012) the winner of the prob-
abilistic track of IPPC-2011. Five of the domains — Sysad-
min, Game of life, Traffic control, Elevators, and Navigation
— are from IPPC-2011. One domain, Copycat, is new and
has been created to highlight the potential of ILP-HOP.

We next explain the setup for ILP-HOP, for PROST, and
for the experiments in general. The time taken by CPLEX
to solve the ILP varies according to its size and it does
not always complete the optimization within the given time
bound. When this happens we use the best feasible solution
found within the time-limit. The two main parameters for
ILP-HOP are the number of futures and the planning hori-
zon used to create the ILP. For the number of futures, we ran
experiments with the values 1, 3, 5, 7, 10. In principle, one
can tune the horizon automatically for each domain by run-
ning a simulation and testing performance. However, in this
paper we used our understanding of each domain to select
an appropriate horizon as described below. This is reason-
able as we are evaluating the potential of the method for the
first time and identifying an optimal horizon automatically
is an orthogonal research issue. On the other hand, in order
to provide a fair comparison with PROST, which attempts to
automatically select planning horizons, we ran two versions
of PROST. The first was the default version that selected its
own problem horizon. The second was a version of PROST
that we provided with the same horizon information given
to ILP-HOP, which is used by PROST for its search and its
Q-value initialization (heuristic computation). The reported
value for PROST is the best of the two systems, noting that
neither version was consistently better.

The experimental setup is as follows. In our main set of
experiments, all planners are allowed up to 180 seconds per
step to select an action as this gives sufficient time for the op-
timization in each step. We also consider 1 second per step
in order to analyze the effect of sub-optimal ILP solutions
on performance. For each problem in a domain we averaged
the total reward achieved over 10 runs, except for Elevator,
where 30 runs were used due to high variance. Each problem
was run for a horizon of 40 steps. We report results in Table
1 and Figure 1 where Table 1 provides detailed results for all
problems for a fixed horizon of 5 futures, and Figure 1 fo-
cuses on specific problems and varies the number of futures.
Table 1 reports average reward achieved as well as the % of
ILPs solved to optimality throughout all problem runs (400
ILPs, one for each step of each run) and the average time
taken to solve the ILPs at each time step.

4.1 HOP Friendly Domain – Copycat
We first describe results for a new domain Copycat that we
created to exhibit the potential benefits of HOP. In particular,
this domain is parameterized so as to flexibly scale the num-
ber of action factors, the amount of exogenous stochasticity,
and the lookahead depth required to uncover the optimal re-
ward sequences.

Description. There are N = n+ d binary state variables
{x1, x2, ..., xn, y1, y2, ..., yd} and n binary action variables
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Table 1: Average reward results and CPLEX solver statistics for ILP-HOP (5 futures) and PROST given 180 seconds and 1
second per time step. Average rewards are averaged over 10 runs for all problems, except Elevator which uses 30 runs. The
CPLEX solver statistics give the % of ILPs solved optimally during the runs of each problems and the average time required
by the solver to solve the ILP at each timestep

Average Reward (180 Seconds per Step)
Domain Problem-2 Problem-3 Problem-5 Problem-6 Problem-8 Problem-10

HOP Prost HOP Prost HOP Prost HOP Prost HOP Prost HOP Prost
Copycat 29.2 5.8 12.3 0.0 29.4 0.0 9.1 0.0

Sysadmin 349.9 355.9 707.0 714.7 1057.2 1056.7 1041.9 1037.7 1388.7 1300.3 1510.2 1272.1
Game of life 176.0 186.5 158.1 172.5 352.3 297.1 290.3 293.5 527.7 411.5 723.6 578.9

Traffic control -13.0 -9.6 -10.8 -8.5 -41.1 -37.6 -66.9 -55.2 -48.1 -49.9 -93.9 -115.5
Elevators -26.2 -19.2 -61.9 -52.4 -57.5 -49.1 -71.9 -65.6 -77.6 -74.1 -75.3 -72.4

CPLEX Solver Statistics (180 Seconds per Step)
ILP% Time ILP% Time ILP% Time ILP% Time ILP% Time ILP% Time

Copycat 100 1.6s 100 8.5s 100 3.8s 100 27.4s
Sysadmin 100 0.3s 100 0.4s 100 0.5s 100 1.7s 100 1.8s 100 5.6s

Game of life 100 2.9s 100 2.8s 100 8.6s 100 10.7s 99.25 24.8s 100 20.1s
Traffic control 100 0.6s 100 1.3s 100 2.5s 100 13.8s 100 21.1s 98.25 45.5s

Elevators 99.33 12.8s 97.42 21.1s 70.92 89.7s 61.33 109.6s 21.83 165.7s 86.75 59.6s

Average Reward (1 Second per Step)
HOP Prost HOP Prost HOP Prost HOP Prost HOP Prost HOP Prost

Copycat 25.5 0.2 0.0 0.0 14.3 0.0 0.0 0.0
Sysadmin 348.4 355.9 709.4 695.5 1059.1 1043.8 1035.0 984.5 1390.5 1380.5 1420.4 1364.7

Game of life 166.3 189.1 155.2 173.4 333.5 279.1 259.8 269.2 369.8 405.2 635.4 506.2
Traffic control -12.8 -9.9 -12.0 -21.8 -95.3 -49.0 -97.1 -71.5 -117.7 -70.3 -341.8 -106.4

Elevators -47.2 -18.3 -71.3 -56.7 -111.4 -52.9 -132.6 -71.3 -151.0 -72.6 -126.4 -72.9

CPLEX Solver Statistics (1 Second per Step)
ILP% Time ILP% Time ILP% Time ILP% Time ILP% Time ILP% Time

Copycat 97.5 0.2s 30.75 0.9s 51.75 0.6s 95.6 0.28s
Sysadmin 95.75 0.2s 99.75 0.1s 98 0.3s 94 0.3s 93.75 0.4s 57.75 0.8s

Game of life 45.75 1.2s 46.50 1.1s 31.75 1.1s 5 1.2s 4 1.4s 38.25 1.1s
Traffic control 89.5 1.1s 65.5 1.3s 17.25 1.4s 3.5 1.1s 0 1.2s 0 1.1s

Elevators 10.42 1.2s 0 1.2s 0 1.1s 0 1.1s 0 1.1s 0.58 1.2s

{ai, a2, ..., an} in a problem instance. The start state has
y1 = y2 = ... = yd = 0 and the goal is to get to a state
in which yd = 1. From any state, the action that matches the
x-part of the state is the only one that causes any progress
towards a goal state. This action sets the leading unset y-
bit to 1 and has a success probability 0.49. Once set, a y-bit
remains set always. All incorrect actions leave the y-bits un-
changed and all the actions cause the x-bits to change ran-
domly. The optimal policy for any problem is to copy the
x-part of the state and hence the name Copycat. The value
of d determines how far away a goal state is from the ini-
tial state and the value of n determines the size of the action
space and the stochastic branching factor. The size of the
state space depends on both n and d. We tested the planners
on four problem instances with all four combinations of 5
and 10 for n and d with a horizon value of d+ 6.

Results. From Table 1 we see that PROST is only able
to get non-zero reward on the smallest problem with n =
d = 5. In general, this domain will break most tree search
methods, unless action pruning and heuristic mechanisms
provide strong guidance, which is not the case for PROST

here. On the other hand, ILP-HOP is able to achieve non-
trivial reward on all problems. This is due to the fact that
the constructed ILP is able to solve the problem globally.
We also see from Table 1 that these ILPs are relatively easy
for CPLEX in that it is able to always produce optimal solu-
tions quite quickly, with the largest problem instance requir-
ing less than 30 seconds per step and the smallest instance
requiring less than 2 seconds.

4.2 HOP Unfriendly Domain – Navigation
This domain from IPPC-2011 models the movement of a
robot in a grid from a start cell to a destination cell. The
problems are characterized by having a relatively long, but
safe, path to the goal and also many shorter, but riskier paths,
to the goal. Along risky paths there is always some proba-
bility that taking a step will kill the robot and destroy any
chances of getting to the goal. Further, once the robot enters
into one of the risky locations there is no way to go back
to safe locations. The optimal strategy is usually to take the
long and safe path, though some amounts of risk can be tol-
erated in expectation depending on the problem parameters.
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Figure 1: Performance of ILP-HOP on a single problem from each domain for different numbers of futures given 180 seconds
per decision. The performance of PROST given 180 seconds per decision is also given.

We have included this domain because it is an example
of an existing benchmark with the type of structure that can
cause HOP to perform poorly. In particular, in this domain,
HOP will often choose one of the riskier options (go to a
risky cell), depending on the precise details of the domain,
and once that choice is made the domain does not allow re-
turning to safe cells. To understand why HOP can behave
in this way consider a decision point where the robot is at
a grid location and faced with the decision to take a step on
the safe path, the risky path, or do nothing. HOP will first
sample a set of futures that will each indicate, for each loca-
tion in the possible paths to the goal and for each time step
in the future, whether the robot would be killed at that lo-
cation and time step. For each future, then, there is often a
risky path to the goal that looks safe in hindsight. Further,
when evaluating whether to take a step onto a risky location,
the hindsight value from that location averaged across the
futures will often be greater than the value of taking a step
along the safe path. Thus, HOP is likely to choose to move
to a risky location at some point during an episode.

Our experiments indeed show that ILP-HOP fails to per-
form well in this domain. An example of ILP-HOP’s perfor-
mance for different numbers of futures on a relatively small
problem is shown in Figure 1. The performance across all
numbers of futures is close to the minimum performance of
-40. Prost is able to do significantly better on this problem.

4.3 Benchmark Domains
We now consider performance on our four remaining IPPC-
2011 benchmarks — Sysadmin, Game of Life, Traffic, and
Elevator — for which both PROST and ILP-HOP achieve
non-trivial performance. For each domain, we use problem
instances 2, 3, 5, 6, 8, and 10. Here we focus on performance
achieved at 180 seconds per step.

Sysadmin and Game of Life. Both of these domains have
the potential for combinatorial action spaces due to concur-

rency (e.g. rebooting n of c computers). The IPPC-2011 in-
stances, however, did not allow for concurrency and hence
the action spaces were relatively small. In order to inves-
tigate performance for combinatorial actions spaces we in-
creased the allowed concurrency in each domain to be 4, 3,
5, 3, 5 and 4 respectively for the six problems. So for ex-
ample, problem 8 from Sysadmin allows for any 5 of 40
computers to be rebooted, giving more than 650K ground
actions. Both domains have a high amount of stochasticity
and strong immediate reward signals meaning that only shal-
low planning horizons are required. Thus, we use a horizon
of h=2 for ILP-HOP, noting that larger horizons did yield
improved performance.

For the smallest two problems, 2 and 3, in both domains
PROST is slightly better or similar to ILP-HOP. As the num-
ber of actions grows larger for the mid-range problems, 5
and 6, ILP-HOP is slightly better or similar to PROST. For
the largest problems, 8 and 10, where the number of actions
become very large we see that ILP-HOP shows a significant
advantage. This shows that PROST has difficulty scaling in
these domains as the number of ground actions grows due
to the huge increase in branching factor. It is worth noting
from Table 1 that for all problems, on average, ILP-HOP is
only using a fraction of allowed 180 seconds per step. For
the largest instances we see that the ILPs are almost always
solved optimally in approximately 5 seconds for Sysadmin
and 20 seconds for Game of Life.

Traffic and Elevators. Problems from these domains
have factored actions, but a relatively small number of total
ground actions compared to the above domains due to con-
straints on the action variables. Thus, they are better suited
to tree search approaches compared to the previous two do-
mains. For Traffic we set the planning horizon for ILP-HOP
to be the number of cells between intersections + 4, which
is sufficient for seeing the consequences of interactions be-
tween intersections. For Elevators we set the horizon to be
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the number of floors in the buildings + 1, which is large
enough to allow any passenger to reach the target floor.

For the small and medium sized problems, 2, 3, 6, and 8,
PROST tends to outperform ILP-HOP by a small margin on
Traffic and larger margin on Elevators. For the larger prob-
lems 8 and 10 ILP-HOP is comparable to PROST, and is sig-
nificantly better for Traffic 10. One observation from Table 1
is that the ILPs generated for the Elevators domain appear to
be more difficult for CPLEX to solve optimally with the per-
centage of ILPs being optimally solved dropping to as low as
21% for problem 8. The average ILP solutions times are also
significantly larger for Elevators even for smaller problems.
This is perhaps one reason for the mediocre performance in
this domain. Rather, for Traffic 10, where ILP-HOP is doing
well, 98% of ILPs were optimally solved.

4.4 Varying the Number of Futures
Figure 1 shows the performance of ILP-HOP with 180 sec-
onds per step for different numbers of futures (1, 3, 5, 7, 10)
on one of the more difficult problems from each domain. The
number of futures controls a basic time/accuracy tradeoff.
The size of the ILPs grows linearly with the number of fu-
tures, which typically translates into longer solutions times.
However, with more futures we can get a better approxima-
tion of the true HOP policy with less variance, which can be
advantageous in domains that are well suited to HOP.

The Sysadmin domain is an example where increasing the
number of futures leads to steadily improving performance
and even appears to have a positive slope at 10 futures. For
the other domains, however, there is little improvement, if
any, after reaching 3 futures. For Copycat and Game of
Life the percentage of optimally solved ILPs was close to
100% for all numbers of futures. Thus, the lack of signif-
icant performance improvement may be due to having al-
ready reached a critical sampling threshold at 3 futures, or
perhaps significantly more futures than 10 are required to
see a significant improvement.

Traffic gives an illustration of the potential trade-off in-
volved in increasing the number of futures. We see perfor-
mance improve when going from 1 to 5 futures. However,
the performance then drops past 5 futures. A possible reason
for this is that a smaller percentage of the ILPs are solved
optimally within the 180 second time limit. In particular, the
percentage of ILPs solved optimally dropped from 98% to
59% when the number of futures was increased from 5 to
10. Similarly we see an apparent drop in performance in El-
evators for 6, 8, and 10 futures. Here the percentages of op-
timally solved ILPs drops from 30% to 15% to 1% respec-
tively. These results provide some evidence that an impor-
tant factor for good performance of ILP-HOP is that a good
percentage of the ILPs should be solved optimally.

4.5 Reducing Time Per Step
The above results suggest the importance of using a large
enough time per step to allow a large percentage of ILPs
to be solved optimally. Here we investigate that observa-
tion further by decreasing the time per step for ILP-HOP
to 1 second (see Table 1). First, recall that with the excep-
tion of Elevators, nearly all ILPs were solved optimally with

180 seconds per step. Rather, for 1 second per step, there
are many problems where the percentage drops significantly.
The main observation is that when we see a large drop in the
percentage of problems solved when going from 180 sec-
onds to 1 second, there is usually a corresponding drop in
average reward. As one example, for Game of Life problem
10, the percentage drops from 100% to 38% and the reward
also drops from 723 to 635. Traffic and Elevators are the
most extreme examples, where for larger problems the per-
centages drop to zero or near zero. This is accompanied by
very large decreases in reward compared to the performance
at 180 seconds. Overall, these results confirm that setting the
time per step to allow for ILPs to be solved optimally is an
important consideration for ILP-HOP.

4.6 Results Summary
ILP-HOP has shown advantages over PROST in 3 domains
(Copycat, Sysadmin and Game of Life), especially for large
numbers of ground actions, and was comparable or slightly
worse in Traffic and Elevators. This shows that the generated
ILPs were within the capabilities of the state-of-the-art ILP
solver CPLEX. We also saw that it is important to select a
time-per-step that allows the solver to return a high percent-
age of optimal ILP solutions. For most of our domains, 180
seconds was sufficient to this and quite generous for many
problems. Finally, for domains like Navigation we observed
that HOP does not perform well due to the inherent opti-
mism in the HOP policy.

5 Summary and Future Work
We presented a new approach to probabilistic planning with
large factored action spaces via reduction to integer linear
programming. The reduction is done so as to return the same
action as previous HOP algorithms but without needing to
enumerate actions, allowing it to scale to factored actions
spaces. Our experiments demonstrated that the approach is
feasible in that ILPs for challenging benchmark problems
can be formulated and solved, and that ILP-HOP can pro-
vide competitive performance and in some cases superior
performance over the state-of-the-art. The experiments also
showed that the algorithm can tolerate some proportion of
ILPs that are not solved optimally, but that planning per-
formance does depend on this factor. This raises several in-
teresting questions for future work. After the initial intro-
duction of planning as satisfiability, significant gains in per-
formance were enabled by careful design of problem en-
codings. This was possible because major strategies of SAT
solvers were easy to analyze but such an analysis is more
challenging for ILP solvers. Another important question is
whether one can extend this approach to avoid the HOP
approximation and optimize the original probabilistic plan-
ning problem. This, in fact, can be captured via ILP con-
straints, but the resulting ILP is likely to be much more com-
plex and encounter more significant run time challenges.
An alternative, as in (Kumar, Wu, and Zilberstein 2012;
Xue, Fern, and Sheldon 2014), would be to use dual decom-
position to simplify the resulting ILP. We hope to explore
this approach in future work.
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