
New Optimization Functions for Potential Heuristics

Jendrik Seipp and Florian Pommerening and Malte Helmert
University of Basel
Basel, Switzerland

{jendrik.seipp,florian.pommerening,malte.helmert}@unibas.ch

Abstract

Potential heuristics, recently introduced by Pommerening et
al., characterize admissible and consistent heuristics for clas-
sical planning as a set of declarative constraints. Every feasi-
ble solution for these constraints defines an admissible heuris-
tic, and we can obtain heuristics that optimize certain criteria
such as informativeness by specifying suitable objective func-
tions.
The original paper only considered one such objective func-
tion: maximizing the heuristic value of the initial state. In
this paper, we explore objectives that attempt to maximize
heuristic estimates for all states (reachable and unreachable),
maximize heuristic estimates for a sample of reachable states,
maximize the number of detected dead ends, or minimize
search effort. We also search for multiple heuristics with
complementary strengths that can be combined to obtain even
better heuristics.

Introduction
Heuristic search with admissible heuristics is commonly
used for optimal classical planning. Recently, Pommerening
et al. (2015) introduced potential heuristics, which associate
a numerical potential with each fact of the planning task and
calculate a state’s heuristic estimate by summing over the
potentials of its facts. Linear constraints on the potentials
characterize exactly the admissible and consistent potential
heuristics. The feasible solutions of these constraints thus
form a space of suitable heuristics, and linear programming
techniques can easily extract heuristic functions that opti-
mize given criteria from this space.

Pommerening et al. (2015) show that the heuristic opti-
mizing the potentials for every encountered state separately
is equal to the state equation heuristic hSEQ (van den Briel
et al. 2007; Bonet 2013). In contrast to the state equa-
tion heuristic, potential heuristics are only optimized once
and then use the same potential function throughout the
search. Since optimizing the heuristic for each state sepa-
rately achieves the maximal heuristic estimates, hSEQ is an
upper bound on the heuristic quality we can achieve with
any optimization function. Our goal is therefore to find opti-
mization functions that approximate hSEQ as closely as pos-
sible and are faster to compute than hSEQ.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Pommerening et al. use potential heuristics that maximize
the heuristic estimate of the initial state. This choice ignores
the heuristic values of other states encountered during the
search, so other optimization functions probably yield better
informed heuristics. Instead of focusing on the initial state,
one possibility that we consider is to optimize heuristics for
a high average heuristic value on all states. These heuristics
significantly outperform the potential heuristic optimized for
the initial state.

However, these heuristics are still problematic for two rea-
sons. In the presence of dead ends, the average heuristic
value can become arbitrarily high, even if just one state has a
high estimate. Also, it is unnecessary to optimize the heuris-
tic values of unreachable states. Therefore, we also try to
find potential heuristics that are good at detecting dead ends
and have high heuristic values in the reachable part of the
search space.

Instead of maximizing heuristic values for a given set of
states, we can also look for heuristics that minimize the ex-
pected search effort. Different ways of estimating search
effort have been suggested; we use a formula by Korf, Reid,
and Edelkamp (2001) and optimize heuristics that assume
different models of the search space. It turns out that opti-
mizing the average heuristic value of a set of samples cor-
responds to the assumption that optimal costs of nodes are
uniformly distributed, i.e., there are equally many nodes at
any distance from the initial state.

Since potential heuristics are extremely fast to evalu-
ate during the search, and are usually fast to precompute,
we also experiment with using multiple heuristics simul-
taneously. As a baseline, we calculate multiple potential
heuristics with a randomized approach. We compare this
to an algorithm that explicitly tries to find diverse heuristics
that have complementary strengths in different parts of the
search space.

Definitions
We start by giving some definitions concerning planning
tasks and then formally introduce potential heuristics.

Planning Tasks and Heuristics
We consider SAS+ planning tasks with operator costs
(Bäckström and Nebel 1995). A planning task Π is a tu-
ple 〈V,O, sI, s?, cost〉 where V is a finite set of variables V ,

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

193

each with an associated finite domain dom(V). A fact 〈V, v〉
is a pair of a variable V and one of its values v ∈ dom(V),
and F is the set of all facts. A partial variable assignment
p maps some variables vars(p) ⊆ V to values in their do-
mains. We say a fact 〈V, v〉 is true in a variable assignment
p if V ∈ vars(p) and p[V] = v. We also consider p to be the
set of facts that are true in p where this simplifies things. A
state is a variable assignment over all variables. We denote
the set of all states with S. A partial variable assignment p is
consistent with a state s if p[V] = s[V] for all V ∈ vars(p).

The finite setO contains operators o, each with a precon-
dition pre(o) and effect eff(o) which are both partial variable
assignments. An operator o ∈ O is applicable in state s if
its precondition is consistent with s. The result of applying
o in s is the state sJoK that maps every V ∈ vars(eff(o)) to
eff(o)[V] and all other variables to s[V]. A sequence of op-
erators π = 〈o1, . . . , on〉 is applicable in a state s0 if there
is a state si for every 1 ≤ i ≤ n such that oi is applicable in
si−1 and si−1JoiK = si. The resulting state is s0JπK = sn.
The cost function cost : O → R+

0 assigns a cost to each op-
erator. The cost of an operator sequence π = 〈o1, . . . , on〉 is
the sum of its operator costs cost(π) =

∑n
i=1 cost(oi).

The goal description s? is a partial variable assignment,
and we call states consistent with s? goal states. An operator
sequence π that is applicable in a state s, and results in a goal
state sJπK, is called an s-plan. If s is the initial state sI, we
refer to sI-plans as plans or solutions of the planning task
Π. We are interested in finding optimal plans, i.e., ones with
minimal cost.

A heuristic h : S → R ∪ {∞} estimates the cost of opti-
mal s-plans. The optimal heuristic h∗(s) maps each state s
to the exact cost of an optimal s-plan or∞ if no s-plan ex-
ists. An admissible heuristic never overestimates the optimal
solution cost, i.e., h(s) ≤ h∗(s) for all states s ∈ S . The
A∗ algorithm (Hart, Nilsson, and Raphael 1968) finds opti-
mal solutions if its heuristic is admissible. We call a heuris-
tic goal-aware if it maps goal states to values less than or
equal to zero. We call it consistent if it satisfies the triangle
inequality h(s) ≤ h(sJoK) + cost(o) for all states s and op-
erators o that are applicable in s. Goal-aware and consistent
heuristics are also admissible, and admissible heuristics are
goal-aware. This implies that when restricting attention to
consistent heuristics, a heuristic is admissible iff it is goal-
aware.

Potential Heuristics

Potential heuristics (Pommerening et al. 2015) are a family
of heuristics that assign numerical values to each fact. We
call this value the fact’s potential. The heuristic value of a
state is the sum of potentials for all facts that are true in the
state. Potentials have to satisfy constraints that guarantee
that the resulting heuristic is consistent and goal-aware. The
constraints form a linear program (LP) that can be optimized
for any linear combination of potentials.

Like Pommerening et al., we assume that if an operator
has an effect on a variable, it also has a precondition on it
(vars(eff(o)) ⊆ vars(pre(o))) and that every variable occurs

in the goal description (vars(s?) = V).1 This simplifies the
linear program as follows:

Maximize opt subject to∑
V ∈V

P〈V,s?[V]〉 ≤ 0∑
V ∈vars(eff(o))

(P〈V,pre(o)[V]〉 − P〈V,eff(o)[V]〉) ≤ cost(o)

for all o ∈ O

The first constraint guarantees that the goal state has a non-
positive heuristic value (goal-awareness) while the second
constraint guarantees that no operator violates consistency.
Every heuristic that is consistent and goal-aware satisfies the
constraints, so they are necessary and sufficient conditions
that characterize the set of consistent and goal-aware poten-
tial heuristics exactly.

The objective function opt can be chosen arbitrarily, and
we discuss different choices in the next section.

Optimization Functions
The heuristic value of any state s is a simple sum over po-
tentials:

opts =
∑
V ∈V

P〈V,s[V]〉.

Maximizing opts subject to the potential function constraints
yields a heuristic with maximal value for state s.

Initial State
Pommerening et al. (2015) used potential functions that op-
timize the heuristic value of the initial state in their experi-
ments, i.e., they maximized optsI

.
One obvious disadvantage of maximizing the heuristic

value of only one state is that there is no incentive to op-
timize potentials of facts that do not occur in the initial
state. We therefore introduce alternative optimization func-
tions that consider more than one state.

All Syntactic States
Instead of maximizing the heuristic value of one state, we
can maximize the average heuristic value of all states. In
general, the average heuristic value for any set of states S is
a weighted sum over potentials:

optS =
1

|S|
∑
s∈S

∑
V ∈V

P〈V,s[V]〉.

Note that we can generally eliminate any linear transforma-
tion of the objective function since we are not interested in
the objective value itself. For example, it makes no differ-
ence if we optimize the average heuristic value, or the sum
of heuristic values, in S.

1We make this assumption for simplicity of presentation only.
In our experiments we use an implementation that can handle arbi-
trary tasks.

194

0, 0

0, 1

1, 0

1, 1

optS =
1

4
(h(s0,0) + h(s1,0)+

h(s0,1) + h(s1,1))

=
1

4

(
2P〈X,0〉 + 2P〈X,1〉+

2P〈Y,0〉 + 2P〈Y,1〉
)

=
1

2

(
(P〈X,0〉 + P〈Y,0〉) +

(P〈X,1〉 + P〈Y,1〉)
)

=
1

2
(h(s0,0) + h(s1,1)) <∞

Figure 1: Example for a task where the set of all syntactic
states S contains dead ends, but the LP maximizing optS
is bounded. There are two variables X and Y , each with
the domain {0, 1}. A state sx,y assigns x to X and y to
Y . Independently of the dead ends’ reachability, the average
heuristic value is bounded by finite heuristic values.

If we consider the set of all syntactic states S, the coeffi-
cient of each potential equals the fraction of states in which
the corresponding fact is true:

optS =
1

|S|
∑
s∈S

∑
V ∈V

P〈V,s[V]〉 =
∑
V ∈V

∑
s∈S

1

|S|
P〈V,s[V]〉

=
∑
V ∈V

∑
v∈dom(V)

|{s ∈ S | s[V] = v}|
|S|

P〈V,v〉

=
∑
〈V,v〉∈F

1

|dom(V)|
P〈V,v〉

Maximizing optS yields a potential heuristic with the
highest possible average heuristic value, but there are two
problems in practice.

First, if S contains dead ends, heuristic values can be-
come arbitrarily large and the linear program can become
unbounded. This can even happen if all dead ends are un-
reachable. When the linear program is unbounded, we usu-
ally cannot extract a useful heuristic function. Unfortu-
nately, the LP is not always unbounded if S contains a dead
end so we cannot use this to test for dead ends in a set of
states. See Figure 1 for an example of a task where the LP
is bounded even though there are dead ends.

Second, the heuristic values of unreachable states influ-
ence the solution. This is problematic since unreachable
states are never encountered during the search. Thus it is
pointless to optimize their heuristic value. Moreover, they
can be fundamentally different from reachable states. For
example, an invariant analysis can detect facts that can never
occur together in a reachable state, i.e., they are mutex. The
set of all states S also includes states that violate such mu-
tex information, and maximizing optS requires considering
them. We would like to only consider reachable states, but
we cannot classify this set of states concisely. (If this could
be done efficiently, it would also present an efficient test for

plan existence as we could use it to check if the goal is reach-
able.) While we could exclude all states that violate a sin-
gle mutex, excluding multiple (potentially overlapping) mu-
texes is more complicated and we therefore leave it as future
work.

Handling Dead Ends
Dead-end states (those with h∗(s) = ∞) are problematic
for the optimization function for several reasons. First, with
an optimization function that sums or averages over heuristic
values of many states, a dead end can outweigh the contribu-
tion of an arbitrarily large number of states with finite goal
distance. Therefore, the optimization function offers little
incentive to derive high heuristic values for non-dead-end
states.

Second, dead ends that are “recognized” by the con-
straints can be assigned arbitrarily high finite heuristic val-
ues, which is likely to lead to an unbounded objective func-
tion.

Both issues can be finessed to a certain extent by introduc-
ing an upper bound M on potentials. We can extend the lin-
ear program with the constraints P〈V,v〉 ≤ M for every fact
〈V, v〉 ∈ F . With these additional constraints, the heuristic
value of every state s is bounded by min(h∗(s), |V| · M).
An LP that maximizes the average heuristic value for a set
of states is therefore always bounded. If the bound is large
(|V| ·M � h∗(sI)), potential heuristics can achieve a higher
average value by assigning high values to recognized dead
ends. Heuristic values larger than h∗(sI) thus contribute the
most to the objective of a maximizing solution. States with
such heuristic values are never expanded during the search.

Focusing on Reachable States
As mentioned before, ideally one would focus the optimiza-
tion of the heuristic function on the set of all reachable
states. This is usually infeasible, but we can use samples that
approximate the set. Drawing a uniformly distributed sam-
ple from the reachable part of the state space is a hard task
in itself. We adopt the sampling procedure from Haslum et
al. (2007): we first calculate a heuristic value for the initial
state using the potential heuristic optimized for this value.
The heuristic can underestimate, so we multiply this esti-
mate by 2 before we divide the result by the average op-
erator cost to get a rough estimate of the optimal solution
depth. We then collect samples using random walks with a
binomially distributed length centered around the estimated
solution depth. If a random walk gets stuck in a state without
successors, it is restarted in the initial state. We then opti-
mize the average heuristic value optŜ for a set Ŝ of sample
states. The sampled states can still contain dead ends, so the
linear program can become unbounded.

One way of handling dead-end samples is to bound the
potential of each fact as described above.

If the number of samples is small enough, we can also ex-
plicitly check for each state whether it is a recognized dead
end. For each sample s ∈ Ŝ, we optimize the LP with the
objective opts. The LP is unbounded iff s is a recognized
dead end.

195

Minimizing Search Effort
A high heuristic value for a state s is useless if s is never gen-
erated during the search. Maximizing the average heuristic
value of all reachable states also maximizes heuristic values
of states that the search never considers. It also might be
more important to have a heuristic value of 1 for n states
than to have a heuristic value of n for 1 state.

Ideally, we would like to minimize the effort of an
A∗ search with the resulting heuristic. Korf, Reid, and
Edelkamp (2001) estimate the search effort of an IDA∗

search up to a bound of c using an admissible and consis-
tent heuristic. Their estimate is based on the number Ni of
nodes with a g value of i and the probability P (k) that a
node drawn uniformly at random from the search tree has a
heuristic value less than or equal to k (the heuristic’s equi-
librium distribution). In the limit for large c the number of
expanded nodes is

c∑
k=0

Nc−kP (k).

The formula can also be used for best-first search if the
probability P (k) is based on nodes that are drawn uniformly
at random from the the search space (not the search tree)
with a cost up to c. If we use a set of samples Ŝ to esti-
mate the value of P (k) the formula for search effort can be
rewritten as:

c∑
k=0

Nc−kP̂ (k) =
c∑

k=0

Nc−k
|{s ∈ Ŝ | h(s) ≤ k}|

|Ŝ|

=
1

|Ŝ|

c∑
k=0

Nc−k
∑
s∈Ŝ

[h(s) ≤ k]

=
1

|Ŝ|

∑
s∈Ŝ

c∑
k=0

Nc−k[h(s) ≤ k]

=
1

|Ŝ|

∑
s∈Ŝ

c−h(s)∑
i=0

Ni

In other words, the search effort is estimated to be the av-
erage cumulative distribution of g values at c−h(s). We can
estimate the distribution of N and the value of c in different
ways resulting in different cumulative distribution functions.

For example, if we assume Ni to be constant for all i,
then the estimated search effort is 1

|Ŝ|

∑
s∈Ŝ

∑c−h(s)
i=0 N0 =

1
|Ŝ|

∑
s∈Ŝ N0(c − h(s) + 1), which is a linear transforma-

tion of the negative average heuristic value− 1
|Ŝ|

∑
s∈Ŝ h(s).

Thus we implicitly assumeNi to be constant if we maximize
the average heuristic value over some samples. This explains
the result by Haslum et al. (2007), who show that the average
heuristic value is not the best predictor for search effort.

A slightly more realistic assumption might be that N de-
velops linearly (Ni = ib), which results in the search effort
estimate b

2|Ŝ|

∑
s∈Ŝ(c−h(s))(c−h(s)+1). This formula is

quadratic in h(s) so it can no longer be optimized with linear
programming. Quadratic programming (QP) is the problem
of optimizing a quadratic objective function (12x

>Qx+c>x)
subject to linear constraints. QP problems with a minimiza-
tion objective can be solved in polynomial time if the matrix
Q is positive semidefinite. If we remove constant factors and
rewrite the objective as

∑
s∈Ŝ(d2s + ds) with the additional

constraints ds = c−h(s), it is easy to see that this produces
a positive semidefinite matrix Q which has entries of 2 on
the diagonal and is 0 everywhere else.

A common assumption is that N develops exponen-
tially (Ni = bi) which has an estimated search effort of

1
|Ŝ|(b−1)

∑
s∈Ŝ(bc−h(s)+1 − 1). By removing constant fac-

tors, we end up with the objective
∑

s∈Ŝ b
−h(s). Since op-

timizing this objective requires more advanced optimization
techniques, we leave it as future work.

Using Multiple Heuristics
The main advantage of potential heuristics is that they are
very fast to evaluate during the search. Instead of comput-
ing one heuristic, we can easily compute multiple heuristics,
evaluate them all during the search, and use their maximum.

Results by Pommerening et al. (2015) show that even
maximizing over two potential heuristics that were opti-
mized for the same objective can have a significant benefit.
In general, LP solutions are not unique so there may be mul-
tiple potential functions optimizing the same objective. The
resulting heuristics can be quite different on most states.

We expect even better results if the different component
heuristics are very diverse and have strengths and weak-
nesses in different parts of the search space. The remaining
question is how best to select diverse component heuristics.

For sample-based heuristics an obvious approach is to just
compute many heuristics, each with its own set of indepen-
dently drawn samples. In the extreme case, where each set
of samples contains exactly one sample, we get one heuris-
tic per sample which maximizes the heuristic value of this
sample. On the other end of the scale, we can use a sin-
gle heuristic for a larger set of samples. This is a trade-off
between heuristic accuracy, precomputation time and evalu-
ation speed during the search. Alternatively, we can look for
diverse heuristics explicitly.

Automatic Diversification
Similar to some of the approaches above, our automatic di-
versification algorithm starts by sampling a fixed number of
states. Instead of calculating a single potential heuristic for
all of the samples however, we try to find a small ensemble
of potential heuristics that together give the maximal heuris-
tic value for each of the samples.

We can precompute the maximal value for each sample s
by optimizing for s individually, i.e., computing hpots . For
brevity we say that a heuristic h covers a sample s if it gives
the maximal value for s, i.e., h(s) = hpots (s). We iteratively
try to find a heuristic that covers as many samples as possible
and focus on the remaining samples in subsequent iterations.

Algorithm 1 describes the procedure in detail. First, we
sample a fixed number of states Ŝ and initialize an empty set

196

Algorithm 1 Sample a fixed number of states and find a
small ensemble of potential heuristics that together give the
maximal heuristic value for each of the samples.

function AUTOMATICDIVERSIFICATION
Ŝ ← SAMPLESTATES
H ← ∅
while Ŝ 6= ∅ do

if ∃s ∈ Ŝ with hpot
Ŝ

(s) = hpots (s) then
h← hpot

Ŝ
else
s← RANDOM(Ŝ)
h← hpots

H ← H ∪ {h}
Ŝ ← {s ∈ Ŝ | h(s) < hpots (s)}

return H

of potential heuristics H . Then we iteratively calculate the
potential heuristic h = hpot

Ŝ
maximizing the average heuris-

tic value for all samples that are not yet covered. If this
heuristic doesn’t cover any additional samples, we choose
a random sample s and set h = hpots . We add h to H and
remove all samples from Ŝ that are now covered, before con-
tinuing with the next iteration. The algorithm stops once Ŝ
becomes empty, i.e. once the heuristics in H together cover
all samples.

Evaluation
We implemented our heuristics in the Fast Downward plan-
ning system (Helmert 2006) and evaluated them experimen-
tally using benchmarks from the international planning com-
petitions (IPC) 1998–2011. For solving linear programs, we
used IBM CPLEX v12.5.1. Each task was run on a single
core of Intel Xeon E5-2660 processors with 2.2 GHz. We
limited runtime to 30 minutes and memory usage to 2 GB.

Initial State
We first investigate how much room for improvement there
is for potential heuristics with any optimization function. As
a baseline for this comparison we use the potential heuristic
hpotsI

which optimizes the heuristic value for the initial state,
as presented by Pommerening et al. (2015). We compare
this to the best heuristic that we can aim for, i.e., one that
optimizes the potential function for the given state in every
evaluation. As mentioned above this heuristic is equal to
the state equation heuristic hSEQ. To measure the relative
heuristic quality of hpotsI

and hSEQ, we compare the number
of expansions for commonly solved tasks in Figure 2. As
usual, in this and all following plots, we exclude states ex-
panded in the last f layer because their number depends on
tie-breaking. We can see that for many tasks the number of
expansions for hSEQ is orders of magnitude lower than the
one for hpotsI

, which shows that there is still room for im-
provement for other optimization functions.

In total, hpotsI
solves 21 fewer tasks than hSEQ (see Ta-

ble 1). The faster evaluation time of this single potential

Figure 2: Number of expansions excluding the last f layer
for the potential heuristic optimized for the initial state
(hpotsI

) and the potential heuristic optimized for every state s
encountered during the search individually (hSEQ) on com-
monly solved tasks. There are no points below the diagonal
since the latter heuristic is an upper bound for the former.
Points above the diagonal represent tasks for which we can
hope to improve upon hpotsI

.

heuristic cannot make up for its lower heuristic quality. This
matches the result by Pommerening et al. (2015).

All Syntactic States
The third column in Table 1 shows the number of solved
tasks when maximizing the average heuristic value of all
states (hpotS). As mentioned above, we deal with dead ends
in the state space by bounding the values of potentials. We
use a limit of 108 for each potential, which is high enough
for dead ends to have heuristic values different from regular
states (the ParcPrinter domain has operator costs on the or-
der of 106). The limit is also low enough to avoid numerical
problems in the LP solver.

We see that overall hpotS with bounded potentials solves
significantly more tasks than hpotsI

(659 vs. 611). It also has
a higher coverage in 20 out of 44 domains, while the same
is true in the opposite direction only in 4 domains.

Average of Sample States
Our next set of experiments evaluates the optimization func-
tion hpot

Ŝ
that maximizes the average heuristic value of a

set of samples Ŝ. To distinguish between the version that
bounds the potentials (B) and the version that filters dead
ends (F), we denote the two variants by hpot

Ŝ,B
and hpot

Ŝ,F
.

In order to find a good value for the number of samples
we evaluated hpot

Ŝ,B
for sample sizes between 1 and 1 000 000.

Table 2 shows that the number of solved tasks increases sig-
nificantly when going from 1 sample to 500 samples. Be-

197

Coverage hSEQ hpot
sI

hpot
S hpot

Ŝ,B
hpot

Ŝ,F
hpot

effort,F hpot
diverse

airport (50) 23 23 22 23 23 23 23
barman-11 (20) 4 4 4 4 4 4 7
blocks (35) 28 18 28 28 28 28 28
depot (22) 7 4 7 7 7 7 7
driverlog (20) 12 10 12 12 12 12 12
elevators-08 (30) 9 11 11 11 11 11 11
elevators-11 (20) 7 9 9 9 9 9 9
floortile-11 (20) 4 2 4 4 2 4 4
freecell (80) 40 39 39 53 53 41 54
grid (5) 1 1 2 2 1 1 2
gripper (20) 7 7 7 7 7 7 7
logistics-00 (28) 16 13 16 16 16 16 16
logistics-98 (35) 4 2 4 4 4 4 4
miconic (150) 52 52 51 52 52 51 52
mprime (35) 20 23 23 23 23 23 23
mystery (30) 15 16 17 17 16 17 16
nomystery-11 (20) 10 8 12 12 12 12 12
openstacks-06 (30) 7 7 7 7 7 7 7
openstacks-08 (30) 16 20 20 20 20 20 20
openstacks-11 (20) 11 15 15 15 15 15 15
parcprinter-08 (30) 28 22 22 25 13 12 27
parcprinter-11 (20) 20 15 16 20 9 8 20
parking-11 (20) 3 0 7 7 1 1 7
pathways (30) 4 4 4 4 4 4 4
pegsol-08 (30) 28 28 29 27 28 28 28
pegsol-11 (20) 18 18 19 17 18 18 18
pipesworld-nt (50) 15 21 21 22 21 22 20
pipesworld-t (50) 11 15 14 16 15 15 16
psr-small (50) 50 49 50 50 50 50 50
rovers (40) 6 5 6 6 6 6 6
satellite (36) 6 5 6 6 6 6 6
scanalyzer-08 (30) 14 13 13 12 12 12 13
scanalyzer-11 (20) 11 10 10 9 9 9 10
sokoban-08 (30) 19 22 24 24 23 23 23
sokoban-11 (20) 16 18 19 19 18 18 18
tidybot-11 (20) 7 13 13 13 13 11 13
tpp (30) 8 6 6 7 7 7 7
transport-08 (30) 11 11 11 11 11 11 11
transport-11 (20) 6 6 6 6 6 6 6
trucks (30) 9 9 9 12 9 7 12
visitall-11 (20) 17 17 16 13 13 13 17
wood-08 (30) 14 8 12 12 11 12 14
wood-11 (20) 9 3 7 7 6 7 9
zenotravel (20) 9 9 9 8 8 8 9

Sum (1396) 632 611 659 679 639 626 693

Table 1: Number of solved tasks for the state equation
heuristic hSEQ and different potential heuristics. We com-
pare the heuristics obtained by maximizing the heuristic
value of the initial state (hpotsI

), all syntactic states (hpotS) and
a set of 1000 samples Ŝ where hpot

Ŝ,B
bounds potentials and

hpot
Ŝ,F

filters dead ends. The heuristic hpoteffort,F tries to mini-

mize the search effort and hpotdiverse uses automatic diversifica-
tion to find an ensemble of potential heuristics that achieve
the maximal heuristic estimate for each of a set of sample
states.

|Ŝ| 1 5 10 50 100 500 1K 5K 10K 50K 100K 500K 1M
Coverage 567 630 643 659 672 679 679 679 681 679 680 676 673

Table 2: Number of tasks solved by the heuristic that max-
imizes the average heuristic estimates of a set of samples Ŝ
while bounding the potentials (hpot

Ŝ,B
) for different sizes of Ŝ.

tween 500 and 100 000 samples the number of solved tasks
remains roughly the same. Only when using even more sam-
ples does coverage decrease. The time it takes to generate
the sample states is negligible for small sample sizes, but
can be very large for bigger sample sizes and more difficult
tasks. We therefore use a default value of 1000 samples in
the experiments below.

The results in Table 1 allow us to compare the hpot
Ŝ,B

and

hpot
Ŝ,F

. The total number of solved tasks is higher for the
method that bounds the potentials (679) than for the variant
that filters dead ends (639). Except for two tasks in the Peg-
Solitaire domain the former method also solves as many or
more tasks in each domain. We can explain the performance
difference by the advantages that bounding the potentials has
over filtering dead ends.

First, filtering dead ends takes time since we need to solve
a linear program for each of the samples. This is fast enough
to run within a minute in most cases, but it can be critical and
even lead to timeouts in some domains or on large tasks.

Second, the sampling method often returns dead ends
since the hpotsI

heuristic that we use for setting the lengths of
the random walks does not detect dead ends during the walk.
For hpot

Ŝ,F
this leads to the problem that very few samples re-

main for the optimization. Since the method that bounds the
potentials does not need to filter dead ends, it can always
consider all samples during the optimization.

Third, filtering dead ends lets the LP solver optimize for
non-dead-end states only. Therefore, heuristic estimates for
dead-end states are likely to be on the same order of magni-
tude as the estimates for non-dead-end states and the search
will be likely to expand the dead-end states.

Given the results of this comparison, we will bound the
potentials for all methods below, except where stated other-
wise.

Search Effort
Next, we evaluate the effect of optimizing for minimal
search effort. If we assume that the g layer sizes Ni grow
linearly (Ni = ib for some factor b) the resulting QP prob-
lems are still solvable in polynomial time. We used 1000
samples as input for this optimization and compare the ob-
tained heuristic hpoteffort,F with hpot

Ŝ,F
maximizing the average

heuristic values of the same set of samples. For both vari-
ants we explicitly filter dead ends from the samples before
optimizing since bounding the potentials as above led to nu-
merical difficulties for the search effort estimation.

In Figure 3 we compare the number of expansions of the
two heuristics. As we can see, there is no clear winner,

198

Figure 3: Number of expansions excluding the last f layer
for the potential heuristic optimized for the average heuristic
value of a set of samples Ŝ (hpot

Ŝ,F
) and the potential heuristic

that tries to minimize search effort (hpoteffort,F).

Heuristics 1 5 10 50 100 500 1000
Coverage 567 597 610 642 647 594 569

Table 3: Number of solved tasks by the combination of n
hpots heuristics for single randomly sampled states s for dif-
ferent values of n.

since both heuristics need the same number of expansions
for most of the commonly solved tasks. Table 1 shows that
hpoteffort,F solves more tasks in 5 domains and less tasks in 6
domains. The total coverage of hpoteffort,F is 13 tasks less than
that of hpot

Ŝ,F
, mainly because hpoteffort,F solves 12 tasks less in

the Freecell domain. Judging by these results, trying to min-
imize the search effort looks like a promising research di-
rection, but bounding the potentials seems to be even more
important for good performance. Since numerical difficul-
ties prohibit us from doing so for hpoteffort, we do not pursue
this idea further in this work.

Maximum over Multiple Heuristics
A straightforward idea for obtaining multiple potential func-
tions is to repeatedly use a randomized approach that yields
different potential functions for each invocation. The heuris-
tics hpotsI

and hpotS are not randomized. They will therefore
always return the same heuristic unless the underlying LP
solver uses different strategies for solving the optimization
problem. There are techniques to bias the LP solver to re-
turn different solutions, but we treat the solver as a black box
here.

Instead, we calculate hpots for each state s in a set of ran-

Heuristics 1 5 10 50 100 500 1000
Coverage 679 681 681 679 678 623 584

Table 4: Number of solved tasks by the combination of n
hpot
Ŝ,B

heuristics optimized for randomly sampled state sets Ŝ

(|Ŝ| = 1000) for different values of n.

Sufficient # Heuristics 1 5 10 50 100 500 1000
Tasks 852 140 29 88 42 156 89

Table 5: Number of heuristics that are sufficient for achiev-
ing the maximal heuristic value for 1000 samples with auto-
matic diversification hpotdiverse.

dom samples Ŝ and use all obtained heuristics together. In
Table 3 we can see that the number of solved tasks increases
from 567 to 647 when going from 1 to 100 heuristics. Only
when using even more heuristics does coverage decrease
again. Overall, none of these configurations solves as many
tasks as the single potential heuristic hpot

Ŝ,B
optimized for a

set of 1000 samples (679 solved tasks).
When comparing the total number of solved tasks by hpotsI

(611) and the heuristic optimized for a single sample (567),
we can conclude that it is better to use the initial state than
a random state. This is expected since the initial state will
have to be expanded in any case by the search, whereas a
random state might never be visited.

The obvious next step is to create multiple heuristics for
bigger sample sizes. Since our sampling method is random-
ized, the set of states each heuristic optimizes for is always
different. As above, we use a fixed sample size of 1000 and
create 1 to 1000 heuristics. Table 4 shows that the total num-
ber of solved tasks does not change much (678–681) for
1 to 100 potential heuristics optimized for a fixed number
of samples. Only when using 500 or more heuristics does
coverage decrease significantly. We hypothesize that using
multiple hpot

Ŝ,B
heuristics has no real advantage over using a

single one because the heuristics are too similar.

Automatic Diversification
Our automatic diversification algorithm tries to address this
problem by iteratively calculating potential functions that to-
gether achieve the maximal heuristic values for all samples.
As a result, we no longer have to manually specify the num-
ber of potential heuristics manually. In our experiment to
evaluate the algorithm, we use 1000 samples for compara-
bility with the other methods.

Table 5 shows the number of potential heuristics that au-
tomatic diversification needs to achieve the maximal heuris-
tic estimate for each of the 1000 samples. Interestingly, for
many tasks a single potential heuristic is sufficient. There
are, however, tasks for which we need to store a separate
potential heuristic for almost all samples.

The experiments above show that it is beneficial to limit
the number of potential heuristics used during search. We

100 101 102 103 104 105 106 107

100

101

102

103

104

105

106

107

un
s.

unsolved

hpot
Ŝ,F

h
p
o
t

ef
fo

rt
,F

199

Figure 4: Comparison of the state equation heuristic hSEQ and the automatic diversification heuristic hpotdiverse. We compare the
number of expansions excluding the last f layer and the runtimes with and without the preprocessing time that hpotdiverse needs
to find the heuristic ensemble. In Figure 4a points above the diagonal represent tasks for which hpotdiverse needs more expansions
than hSEQ. There are no points below the diagonal since hSEQ is an upper bound on hpotdiverse. In Figure 4b points below the
diagonal correspond to tasks for which hpotdiverse finds a solution faster than hSEQ. The same holds for Figure 4c, but here we
exclude hpotdiverse’s preprocessing time.

do the same here and stop the automatic diversification once
it has found 100 heuristics. Table 1 (rightmost column) tells
us that hpotdiverse solves more tasks (693) than all previously
evaluated methods. On many domains hpotdiverse is even com-
petitive with the state-of-the-art hLM-cut heuristic (Helmert
and Domshlak 2009). While hLM-cut solves more tasks than
hpotdiverse in 23 domains, the opposite is true in 11 domains.

In Figure ?? we compare the number of expansions made
by hpotdiverse and hSEQ. Since hSEQ is an upper bound on hpotdiverse
no task solved by both methods can be below the diagonal.
Not only does hpotdiverse require the same number of expan-
sions for almost all commonly solved tasks, it also solves
many tasks for which hSEQ fails to find a solution. When we
compare the runtimes of the two methods in Figure ?? we
see that there are some tasks for which hSEQ finds a solu-
tion faster than hpotdiverse, but this is mainly due to the prepro-
cessing time that automatic diversification needs for calcu-
lating the ensemble of heuristics (see Figure ??). For almost
all tasks that are not solved by hSEQ in 20 seconds, hpotdiverse
finds solutions much faster, often by two orders of magni-
tude. This explains why hpotdiverse solves significantly more
tasks than hSEQ.

Conclusion
We have seen that potential heuristics are a flexible class
of admissible and consistent heuristics. Multiple interesting
objectives can be specified as linear combinations over fact
potentials, and a heuristic maximizing them can be extracted
in polynomial time.

We formulated and evaluated several optimization func-
tions, and we found that it is beneficial to consider multiple
states instead of only focusing on a single state such as the
initial state. For example, we tried to maximize the average
heuristic value of all syntactic states. However, the draw-
back is that the values for unreachable states and dead ends

influence the resulting heuristic too much. Using samples
to approximate the reachable state space, and maximizing
their average heuristic estimate, led to better results. Dead
ends can be explicitly removed from these samples, but we
found that bounding the fact potentials yields better heuris-
tics. This is because such heuristics have high estimates for
dead ends and avoid visiting them during the search.

Trying to minimize the search effort is another promis-
ing idea. However, our experiments show no real advantage
of a model of search spaces with a linear number of states
for each cost layer over a model with a constant number.
Numerical problems make the evaluation complicated, and
more advanced models of the search space require linear op-
timization with quadratic or exponential objective functions.
We did not explore using such objectives.

Since potential heuristics can be evaluated extremely fast
during the search, we can easily compute multiple heuristics
and maximize over them. We get the best results when the
component heuristics have complementary strengths. With
automatic diversification, we can find a small set of potential
heuristics that are sufficient to give maximal estimates for
each of a set of samples. The heuristic values very closely
approximate the state equation heuristic, which is an upper
bound on any potential heuristic. However, our automatic
diversification heuristic is much faster to compute, and con-
sequently, it solves significantly more tasks.

Nonetheless, looking for other objective functions or
other combinations of potential heuristics is still promising
in our opinion. The resulting heuristics will not reduce the
number of expanded states by much, compared to the result
of our automatic diversification approach. However, if they
use fewer component heuristics, they might be faster to eval-
uate. One way of accomplishing this might be to search for
more accurate search space models and formulate optimiza-
tion functions that try to minimize the search effort. Another
promising research direction is the study of potential heuris-

200

tics that assign potential not just to facts, but also to other
formulas over the state variables.

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Abstraction
Heuristics for Planning and Combinatorial Search” (AH-
PACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening A∗. Artificial Intelligence
129:199–218.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015), 3335–3341. AAAI
Press.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen,
T. 2007. An LP-based heuristic for optimal planning. In
Bessiere, C., ed., Proceedings of the Thirteenth Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2007), volume 4741 of Lecture Notes in
Computer Science, 651–665. Springer-Verlag.

201

