
A Compilation Based Approach to Conformant
Probabilistic Planning with Stochastic Actions

Ran Taig and Ronen I. Brafman
Computer Science Department

Ben Gurion University of The Negev
Beer-Sheva, Israel 84105
taig,brafman@cs.bgu.ac.il

Abstract

We extend RBPP, the state-of-the-art, translation-based plan-
ner for conformant probabilistic planning (CPP) with deter-
ministic actions, to handle a wide set of CPPs with stochas-
tic actions. Our planner uses relevance analysis to divide a
probabilistic ”failure-allowance” between the initial state and
the stochastic actions. Using its ”initial-state allowance,” it
uses relevance analysis to select a subset of the set of initial
states on which planning efforts will focus. Then, it gen-
erates a deterministic planning problem using all-outcome
determinization in which action cost reflects the probability
of the modeled outcome. Finally, a cost-bounded classical
planner generates a plan with failure probability lower than
the ”stochastic-effect allowance.” Our compilation method is
sound, but incomplete, as it may underestimates the success
probability of a plan. Yet, it scales up much better than the
state-of-the-art PFF planner, solving larger problems and han-
dling tighter probabilistic bounds on existing benchmarks.

Introduction
In conformant probabilistic planning (CPP) we are given a
distribution over initial states, a set of actions, a goal condi-
tion, and a real value 0 < θ ≤ 1. A valid plan is one that
achieves the goal with probability ≥ θ. Few natural prob-
lems fit the framework, yet important ideas developed in CP
were later extended to the richer framework of contingent
planning, including techniques for representing and reason-
ing about belief states (Hoffmann and Brafman 2005) and
compilation schemes (Albore, Palacios, and Geffner 2009).

Compilation methods have been very effective on CPP
with deterministic actions (Taig and Brafman 2014), but no
compilation-based planner supports stochastic actions due
to two fundamental problems. First, these methods have dif-
ficulty handling non-deterministic actions, in general. Sec-
ond, in CPP, one must monitor two types of probabilistic
uncertainty within the translation: uncertainty regarding the
initial state and uncertainty regarding action effects. Conse-
quently, few CPP solvers handle stochastic actions, and even
those that do, such as Probabilistic-FF (Domshlak and Hoff-
mann 2007) and POND (Bryce, Kambhampati, and Smith
2006) have difficulty handling larger problems and prob-
lems in which θ is high, especially when the plan requires

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

repeating an action a number of times in order to increase its
success probability.

In this paper we present a new compilation-based CPP
planner, RBPP+, which extends our RBPP planner (Taig
and Brafman 2014) with support for stochastic actions.
RBPP+ scales up to much larger problem instances than
those handled so far, and can handle tighter probabilistic
bounds. RBPP+ integrates techniques developed in earlier
compilation-based methods. First, it performs a dedicated
relevance-based analysis, building on ideas developed in
RBPP. Based on this analysis, the 1− θ ”failure-allowance”
is divided into 1 − θI and 1 − θE , representing failure due
to the uncertainty about the initial state and due to the un-
certainty regarding action effects, respectively. Next, RE-
STRICT+, a slightly modified version of RBPP’s RESTRICT
procedure, selects a promising set of initial states with prob-
ability ≥ θI to plan on, ignoring all other possible initial
states. In parallel, we determinize probabilistic actions using
all-outcome determinization (Yoon, Fern, and Givan 2007).
In this determinization, each possible probabilistic outcome
of the original action is represented by a separate determin-
istic action. We associate a cost with each such action that
captures the probability of the corresponding stochastic ef-
fect, following the ideas of (Jiménez et al. 2006). The result-
ing problem is a deterministic conformant planning problem
with costs. We now seek a bounded cost plan to this prob-
lem. If the bound is suitably selected, the plan has success
probability of θE or higher.

Overall, the resulting plan has at least one possible exe-
cution path that will succeed with probability θ. Because
this approach ignores alternative successful execution path
of this plan, it under-estimates the success probability and is
incomplete. To partially address this problem, we augment
the determinized problem using a ”repeatable action” mech-
anism, described later. With this enhancement, we are able
to handle most current benchmark domains.

Our empirical evaluation shows that this approach is ef-
fective and dominates existing state-of-the-art planners on
most problem instances: it scales up to problem sizes that
PFF cannot handle, and is able to solve problems with
tighter probabilistic bounds (higher θ values). However, it
also reveals the limitation of existing benchmark domains
for which RBPP+’s reasoning on limited executions suf-
fices.

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

220

Background
We assume familiarity with classical planning notation, with
(V,A, I,G) corresponding to a set of propositions, actions,
initial world state, and goal, respectively. A CP problem,
(V,A, bI , G), generalizes this framework, replacing the sin-
gle initial state with a set of initially possible states, called
the initial belief state bI , and non-deterministic actions. A
plan is an action sequence a such that a(wI) ⊆ G for ev-
ery wI ∈ bI . CPP extend CP by quantifying the uncertainty
regarding bI using a probability distribution bπI and associ-
ating probabilities with action outcomes.

Following (Domshlak and Hoffmann 2007), a CPP task
is a 5-tuples (V,A, bπI , G, θ), corresponding to the proposi-
tions set, action set, initial belief state, goals, and accept-
able goal satisfaction probability. G is a conjunction of
propositions. bπI is a probability distribution over world
states, where bπI (w) is the probability that w is the true ini-
tial world state. Throughout this paper, we use bI to denote
the set of states to which bπI assigns a positive probability.
The effect set E(a) for an action a ∈ A has richer struc-
ture and semantics. Each e ∈ E(a) is a pair (con(e),Λ(e))
of a propositional condition and a set of probabilistic out-
comes. Each probabilistic outcome ε ∈ Λ(e) is a triplet
(Pr(ε), add(ε), del(ε)), where add and delete lists are as
usual, and Pr(ε) is the probability that outcome ε occurs as
a result of effect e. Naturally, we require that probabilistic
effects define probability distributions over their outcomes,
that is,

∑
ε∈Λ(e) Pr(ε) = 1. In the special case of determin-

istic effect e, we have Λ(e) = ε and Pr(ε) = 1. Uncon-
ditional effects satisfy con(e) = ∅. If a is not applicable
in a state w, then the result of applying a to w is undefined.
Otherwise, if a is applicable in w, then there exists exactly
one effect e ∈ E(a) such that con(e) ⊆ s, and for each
ε ∈ Λ(e), applying a to w results in w∪add(ε)\del(ε) with
probability Pr(ε). This means we assume the conditional
effects of an action are mutually exclusive.

In such settings, achieving G with certainty is often im-
possible. CPP introduces the parameter θ, which specifies
the required lower bound on the probability of achieving G.
Thus, a sequence of actions a is a valid plan if the prob-
ability a reaches the goal (taking into account both initial
uncertainty and stochastic effects) is at least θ. We note that
some approaches to CPP require, in addition, that the plan
be executable in all initial states. Our algorithm can be eas-
ily adjusted to support either semantics, but in this paper we
follow a strictly probabilistic semantics which requires exe-
cutability and success with probability at least θ.

A CPP specification must represent the initial distribution
bπI . PFF’s approach contains two parts. First, a definition
of an induced set of multi-valued variables, corresponding
to a set of literals, only one of which can be true at a time
(e.g., literals denoting possible locations of an object). And
second, NbI , which is a Bayes Net (BN) defined over this
set of multi-valued variables.

Related Work
Probabilistic FF (PFF) (Domshlak and Hoffmann 2007) is
the best current CPP solver that handles stochastic actions.

It uses a time-stamped BN to describe probabilistic belief
states, extending Conformant-FF’s (Hoffmann and Brafman
2006) belief state encoding to model this BN. It uses both
SAT reasoning and weighted model-counting to determine
whether the goal probability is at least θ. In addition, it intro-
duces approximate probabilistic reasoning into CFF heuris-
tic function. While PFF performs well on many domains, its
reasoning mechanism is complicated and is sensitive to the
order by which effect conditions appear. Another CPP plan-
ner which supports stochastic actions is POND which per-
forms inadmissible heuristic forward search in belief space.
It differs from Probabilistic-FF in the belief representation
method and uses random particles for the probabilistic rea-
soning. Empirically, PFF dominates POND significantly,
and both planners share a significant disadvantage: they cre-
ate a complex relaxed probabilistic planning graph which
limits the size of instances that can be handled. When
stochastic actions exist, the graph is too complex even for
medium-sized problems. Another problem both planners
suffer from is their inability to detect the need to apply some
action a few times early in the plan. Thus, they often gen-
erate plan prefixes that cannot be extended to a valid plan,
wasting futile time extending them. Our reduction approach
is much simpler. It avoids complex repeated inference on
graphical models, requiring only a simple computation of
the initial state probability and keeping track of action cost.
The enables us to handle problems that are both larger and
require higher values of θ, but at the price of incompleteness.

(Jiménez et al. 2006) suggested the use of action cost to
model probability in the context of replanning with deter-
minization, which we adapt. They used all-outcome de-
terminization, setting the cost of determinized actions to
−log(probability-of-failure). Thus, the sum of costs is the
log product of these probabilities and the minimal cost plan
is also the plan representing the execution branch with max-
imal success probability. They applied this method to fully
observable MDPs with a known initial state. We combine
it with the other techniques to handle fully unobservable
stochastic planning with an uncertain initial state.

Algorithm 1 RBPP+ (P, classical-planner, ε1, ε2)
ψI , θE ⇐ RESTRICT+(P);
P ′ ⇐ COMPILE(V,A, ψI , G, θE);
return classical-planner(P ′)\ merge-actions;

Algorithm 2 RESTRICT+ (P, ε)
Q⇐ SORT-CLAUSES(P);
ψI ⇐ ϕI ;
C ⇐ Extract-First(Q);
while [(bπI (ψI) ≥ θ + ε1)||RL(C) > 1]&[bπI (ψI) ≥ θ + ε2] do
ψI ⇐ RESTRICT-CLAUSE(C,ψI , P);
C ⇐ Extract-First(Q);

end while
θE ⇐ θ/bπI (ψI);
return ψI , θE ;

Algorithm 3 COMPILE(V,A, ψI , G, θE)

Ã← All-outcome-determinization(A);
P ′ = (V ′, A′, I′, G′)← CP-To-Classical-with-costs(P̃ = (V, Â, ψI , G));
return P ′

221

Compiling CPPs with Stochastic Actions
RBPP The core observation behind RBPP (Taig and
Brafman 2014) is that a deterministic CPP CP =
(V,A, bπI , G, θ) is solvable iff there exists a solvable CP
problem C = (V,A, bI , G) such that bπI ({w ∈ bI}) ≥ θ.
To exploit this, RBPP takes a preprocessing approach: rel-
evance analysis identifies those states which would be most
profitable to ignore, and a CP problem is defined with an ini-
tial state containing those states that are not ignored. This is
given to an off-the-shelf CP solver. The identification pro-
cess is done by theRESTRICT procedure. which exploits
the limited failure ”allowance,” 1− θ, to ignore initial states
whose removal would simplify the problem. The most im-
portant goal of this process, which we adapt here, is to re-
duce the conformant-width of the problem, if possible. Re-
duced width leads to exponentially smaller classical prob-
lems, and is often the most crucial factor affecting success
and failure. Additional restrictions can be useful even with
width 1, but have much less impact.

RBPP+ RBPP+ generalizes RBPP to handle stochastic ac-
tions. Let P = (V,A, bπI , G, θ) be the input CPP. Algo-
rithm 1 describes its high-level structure. RESTRICT+ uses
RBPP’s restriction mechanism to heuristically choose a sub-
set of initial states to plan from. It returns a set ψI of initial
states satisfying bπI (ψI) ≥ θI . RESTRICT+ differs from
RESTRICT in that it must also decide how much of the al-
lowed failure probability will be devoted to initial state re-
striction and how much will be devoted to handling uncer-
tainty about action failure – which we refer to as ”plan risk.”

RESTRICT+ attempts to ensure all clauses C in the initial
state description satisfy RL(C) = 1. RL(C), introduced in
the RBPP planner, measures, for all sub-goals g′ to which
C is relevant, the maximal number of clauses relevant to g′.
This parameter is closely related to the conformant-width
of the problem. The ability to restrict RL(C) to 1 plays a
crucial role in RBPP’s ability to solve CPP problems. When
RL(C) = 1 for all clauses, the translation will result in a
polynomial-sized classical problem, increasing significantly
the likelihood that it will be solved by the classical planner.
If this restriction goal is achieved, ”left-over” risk allowance
is devoted to plan risk. This is especially important given
that our current estimate of plan risk is pessimistic.

To this effect we define two user defined parameters: ε1 ≥
ε2 ≥ 1 − θ, representing the minimal and maximal initial
state restriction allowance,. RESTRICT+ will restrict initial
states with weight of at least 1− (θ+ ε1) (unless no suitable
restriction exists). It restricts more states, if this is required
to reduce RL(C) to 1, but no more than 1 − (θ + ε2), thus
leaving a ”plan risk” of at least 1− θ

θ+ε2
.

Compile determinizes all actions using all-outcome de-
terminiziation (Yoon, Fern, and Givan 2007), creating a
separate deterministic action for each stochastic effect of
each action. Next, we translate the resulting determinis-
tic CP problem into classical planning using the K1 trans-
lation (Palacios and Geffner 2009). Now, we integrate the
probabilistic information into the classical planning prob-
lem, setting the cost of the determinized actions as follows:
If aε is a determinized action originating in a probabilistic

outcome ε, set cost(aε) = −log(Pr(ε)). At this point, we
seek a plan with cost no higher than −log(θE). This en-
sures that the probability of the execution branch captured
by the classical plan ≥ θE . To see this, note that a clas-
sical plan Π = 〈a1εi1

, ..., anεin
〉, represents the execution

branch of the conformant plan Π = 〈a1, ..., an〉, where
the actual effect of action aj is εij . The probability that
this branch takes place is

∏n
k=1 Pr(εik) and it is ≥ θE iff∑n

k=1−log(Pr(εik) ≤ −log(θE). Finally, since we plan
for initial states in ψI only, our success probability is at least
bπI (ψI) × θE ≥ θI × θE ≥ θ. This is a conservative esti-
mate because branches other than the branch accounted for
by the classical plan could reach the goal as well.

Repeatable Actions In CPP, it is often necessary to exe-
cute an action repeatedly to improve its success probability.
For example, a block may slip when picking it up (as in the
slippery gripper domain), but we can try to pick it up again.
More specifically, we say that a stochastic outcome ε ∈ Λ(e)
of action a is repeatable if (

⋃
ε̂∈Λ(e)\ε del(ε̂)) ∩ (pre(a) ∪

con(e) ∪ eff(ε)) = ∅. We say that a determinized action
aε, s.t. ε is a repeatable outcome, is a repeatable action.
Repeatable actions can be repeated a few times to increase
the success probability of ε. Identification and treatment of
repeatable actions is important for success in domain with
repeatable outcomes.

(Domshlak and Hoffmann 2007) point out that action rep-
etition is a serious challenge for PFF and POND. Their
probability calculation mechanism fails to recognize the
need to increase the probability of some fact early on in
the plan by repeating it a few times in a row. This results
in failure of their search later on, and prevents them from
solving many problems for large values of θ. We handle
this issue by identifying repeatable actions during the deter-
minization process. Once ε has been identified as repeat-
able, we add k copies of the determinized action aε to the
determinized problem: {aεi | 1 ≤ i ≤ k} s.t. cost(aεi) =
−log(1 − (1 − Pr(ε))i). k is user specified, set in our ex-
periments to ensure that 1 − (1 − Pr(ε))k ≤ 0.0001, i.e.,
to ensure that further repetitions will have little effect on the
success probability. We treat the new repetitive actions as
macro-actions: when the classical plan is mapped back to
the CPP plan we replace each instance of aεi by i instances
of a. Although the planner can select i to be its maximal
value, we ensure that the minimal number of repetitions is
selected by exploiting the underlying metric planner. We add
a numeric fluent which action aεi increase by i, and mini-
mize its value. Using these ideas, we are able to solve all
instances marked by the PFF authors as challenging.

With the introduction of repeatable actions, the determin-
istic conformant plan potentially captures multiple execu-
tion paths that correspond to different numbers of repeti-
tions of each repeatable action. However, our current mech-
anism cannot capture the need to repeat a sequence of length
greater than one, which may lead to failure in domains where
such repetition is needed (e.g ”start the engine”,”drive”).

Properties Our algorithm is sound given a sound underly-
ing solver (we omit the proof due to lack of space):

222

Lemma 1 Let Π′ be a plan for P ′ (the classical planning
problem generated) with cost(Π′) ≤ −log(θE). Let Π be
the corresponding plan for P . Let w be the belief state
achieved by executing Π in bπI . Then Pr(w |= G) ≥ θ.

However, our algorithm is incomplete for four reasons.
First, RBPP does not systematically consider all initial state
restrictions. Second, K1 is incomplete for problems with
width > 1, and we cannot guarantee restriction to width-1
problems for every θ. Third, we do not perform systematic
search over all possible legal choices of θI and θE . Finally,
as noted before, our computation ignores the probability that
the plan will succeed on one of the initial states ignored, and
that a branch, other than that captured by the determinized
plan, will reach the goal. The first three sources of incom-
pleteness are easy to overcome, in theory, by using exhaus-
tive search where required and replacing K1 by a complete
translation scheme. Such changes, however, are unlikely to
have any positive practical impact because of the computa-
tional overhead. The last source of incompleteness is more
fundamental. It represents a trade-off between accuracy and
tractability. Because we avoid maintaining and reasoning
about the current distribution during planning, we can scale
up much better than planners that devote more effort to accu-
rate belief tracking. Our empirical results demonstrate that
while, in principle, we ignore some valid solution plans, the
nature of the CPP benchmarks allows us, in practice, to find
alternative plans much faster.

θ = 0.25 θ = 0.5 θ = 0.75 θ = 0.9

t/l t/l t/l t/l
PFF RBPP+ PFF RBPP+ PFF RBPP+ PFF RBPP+

slip-grip-1b 0.19/2 0.41/9 0.19/2 0.53/9 0.23/3 0.59/4 0.36/4 0.6/10
slip-grip-4b 1.05/15 0.46/23 3.33/18 0.83/23 err 1.03/18 err 1.03/23
SG-10b 22.11/42 0.72/55 OOT 0.74/62 OOT 1.85/70 err 1.23/63
sand-castle-1 0.02/1 0.9/3 0.3/3 0.9/3 0.2/5 0.94/6 0.9/9 1.07/9
sand-castle-5 1.6/26 1.4/24 OOT 1.84/31 OOT 3.6/55 OOT 4.1/70
Pcube-7-uni 1.17/13 1.05/13 1.17/18 1.11/18 1.92/21 2.07/29 5.48/25 3.55/37
Pcube-11-uni 3.42/23 4.03/36 2.66/32 5.22/49 OOT 5.33/84 OOT 19.27/93
LogL-2-2-2 0.1/9 0.6/13 0.1/13 0.7/19 0.2/17 1.1/21 OOT 1.2/24
LogL-4-2-2 0.2/17 0.8/35 0.2/24 1.05/48 0.3/32 1.06/44 OOT 2.01/61
LogL-4-5-5 11.7/57 2.71/76 OOT 3.16/72 OOT 3.39/96 OOT 4.26/111
grid OOT 6.71/37 OOT 10.25/41 OOT 124.23/80 OOT OOT

Table 1: Empirical results. t: time in seconds. l: plan length.
OOT: no result after 30 minutes. ’err’-PFF returned error or col-
lapsed.

Empirical Evaluation
We evaluated our algorithm on domains with stochastic ac-
tions from the PFF repository and on larger versions of
these domains. See (Domshlak and Hoffmann 2007) for do-
main descriptions. We did not experiment with determin-
istic benchmarks, where RBPP+ reduces to RBPP , the
current state of the art. We modified Palacios and Geffner’s
cf2cs code for relevance analysis and used NORSYS NET-
ICA java api for probabilistic reasoning during the restric-
tion process. We solved the compiled problems by using
METRIC-FF as a cost-bounded planner. We could have used
a cost optimal planner, verifying that its solution is within
the required bound, but our compiled problems are too

large for current cost-optimal classical planners. Other cost-
bounded planners tested were not effective, either. More-
over, by using a metric planner we were also able to optimize
the use of repeatable actions, as described earlier.

RBPP+ was compared with PFF, the CPP planner that
best handles stochastic actions to date. Because PFF is
known to outperform POND, we did not compare against
it. Results are presented in Table 1. Each task was tested
with four different θ values, both in terms of plan quality
and execution time. To make the comparison as fair as pos-
sible, we preprocessed the PPDDL inputs to PFF adding to
them repeatable actions. We note that RBPP+ results in-
clude the overhead of automatically identifying and com-
piling repeatable actions. Nevertheless, the results clearly
show that our method scales by an order of magnitude better
than PFF both in terms of the problem size and θ value.
In logistics and send-castle our method solved instances ex-
ponentially larger than PFF which performs better only on
small instances of simple problems. RBPP+ does output
longer plans, which do not grow monotonically with θ. This
is because RBPP+ attempts to maximize the success proba-
bility of a specific trajectory while PFF can capture the suc-
cess probability of all trajectories, which allows it to validate
shorter plans. We note RBPP+’s success on slippery-gripper
and the larger θ instances of logistics, marked most challeng-
ing for previous planners due to the existence of repeatable
actions. The introduction of repeatable actions to PFF’s in-
put improves its performance on problems it could solve be-
fore, but does not improve its scalability beyond them.

Benchmarks in the PFF repository have width 1. To ex-
amine our techniques for handling larger width problems,
we modified the deterministic CPP benchmark grid into a
probabilistic one. RBPP+ is the only planner that can handle
this domain. We also examined the sensitivity of RBPP+ to
the choices of ε1 and ε2. In our experiments they were set ar-
bitrarily: ε1 = 1−θ

4 and ε2 = 1−θ
10 . Additional experiments

we made show that any choice of values that allows a signif-
icant initial state restriction will keep our performance simi-
lar. But if the parameter choice forces the restriction process
to leave some initial state clauses C with RL(C) > 1, the
performance is weaker and problems can become unsolv-
able. Thus, a future improvement would be to automatically
set parameters according to needs of the restriction process.

Summary and Future Work
We presented a new algorithm for CPP with stochastic
actions that combines diverse techniques from previous
compilation-based planners with new ideas. Our planner
is sound, but incomplete and limited to a specific family
of problems, yet scales up much better than previous CPP
solvers on all existing benchmarks. In future work we hope
to investigate improved determinization that exploits rele-
vance analysis to focus on relevant outcomes only, reducing
the size of the compiled problem and methods for exploiting
the metric planner in order to obtain more accurate estimates
of the success probability, allowing us to detect shorter valid
plans. Another important direction is to extend the repeat-
able action technique to handle repeatable action sequences.

223

Acknowledgments The authors were supported in part by
ISF grant 933/13, the Lynn and William Frankel Center
for Computer Science and the Helmsley Charitable Trust
through the Agricultural, Biological and Cognitive Robotics
Center of Ben-Gurion University of the Negev.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. J. Artif. Intell.
Res. (JAIR) 26:35–99.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. J. Artif. Intell. Res. (JAIR) 30:565–620.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search witn implicit belief states. In
ICAPS, 71–80.
Hoffmann, J., and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artif.
Intell. 170(6-7):507–541.
Jiménez, S.; Coles, A.; Smith, A.; and Madrid, I. 2006.
Planning in probabilistic domains using a deterministic nu-
meric planner. In The 25th PlanSig WS.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
JAIR 35:623–675.
Taig, R., and Brafman, R. I. 2014. A relevance-based com-
pilation method for conformant probabilistic planning. In
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada., 2374–2380.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS, 352–.

224

