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Abstract
Most of the key computational ideas in planning have been
developed for simple planning languages where action pre-
conditions and goals are conjunctions of propositional atoms.
Preconditions and goals that do not fit into this form are nor-
mally converted into it either manually or automatically. In
this work, we show that this modeling choice hides impor-
tant structural information, resulting in poorer heuristics and
weaker planning performance. From a theoretical point of
view, we show that the direct generalization of relaxed plan-
ning graph heuristics to more expressive languages that im-
plicitly allow conjunctions of atoms with more than one state
variable leaves open a crisp gap, as it fails to properly account
for the constraints over these variables. The simple proposi-
tional languages that are standard in planning do not remove
this gap but “hide it under the rug” by forcing atoms to be
of the form X = c, where c is a constant and X is a (usu-
ally boolean) state variable. Closing this gap in the compu-
tation of the relaxed planning graph for more expressive lan-
guages leads to a more accurate but intractable heuristic, yet
a cost-effective tradeoff can be achieved using local forms of
constraint propagation that result in better heuristics, better
plans, and a more effective search. We show this empirically
over a diverse set of illustrative examples using a fragment of
the Functional STRIPS planning language.

Introduction
Consider a simple planning problem involving a set of in-
teger variables X1, . . . , Xn and actions that allow us to in-
crease or decrease by one the value of any variable within
the [0, n] interval. Initially, all variables have value 0, and
the goal is to achieve the inequalities Xi < Xi+1, for
i ∈ [0, n − 1]. A possible encoding of this problem in the
standard classical planning languages would feature an atom
val(i, k) for each equality Xi = k, an atom less(i, j) for
each inequalityXi < Xj , a goal given by the conjunction of
the atoms less(i, i+1), i ∈ [0, n−1], and an initial situation
given by atoms val(i, 0). Computationally, if Pi is the i-th
propositional layer of the relaxed planning graph (RPG) cor-
responding to the initial state (Hoffmann and Nebel 2001),
with P0 being the initial layer, it is easy to see that layer P1

will make true each of the goal atoms less(i, i + 1), since
a single increment is needed to make each of these atoms

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

true. The initial state of the problem thus has an hmax heuris-
tic value of 1 (Bonet and Geffner 2001) and an hFF value of
n−1, whereas actually the shortest plan for the problem has
1 + 2 + · · · + n − 1 = n(n − 1)/2 steps. This inability of
the heuristics to provide a better approximation is not par-
ticularly remarkable; what is interesting is that this happens
because the heuristic assumes that the goals less(i, i + 1)
are independent when they are not. The additive heuristic
(Bonet and Geffner 2001) actually makes this independence
assumption explicit.

When delete-relaxation heuristics are analyzed over a
more expressive encoding of this domain featuring numeric
or multivalued state variables (Hernádvölgyi and Holte
1999; Rintanen and Jungholt 1999; Hoffmann 2003; Coles
et al. 2008; Helmert 2009), a different picture emerges. It
is well known that relaxed planning graph heuristics can
be generalized to languages featuring multivalued variables
plus arbitrary formulas in action preconditions and goals by
following the so-called value-accumulating semantics (Gre-
gory et al. 2012; Ivankovic et al. 2014). In this semantics,
each state variableX has a domainD(X) of possible values
in each propositional layer Pk that grows as action effects
supporting new values are triggered. The truth of a precon-
dition, condition, or goal formula in layer Pk is defined in-
ductively in the usual form from the truth of the atoms in-
volving such variables. For example, an atom like X < Y
is deemed as true in layer Pk if there are values x and y
for X and Y such that x < y. Similarly, a conjunction of
atoms is deemed true in Pk if each atom in the conjunction
is true in Pk. Applying this value-accumulating semantics
to our problem, we find that each of the atoms Xi < Xi+1

is true in layer P1, thus yielding the same heuristic assess-
ments as in the propositional encoding. In the more expres-
sive encoding, however, it is possible to see that there is a
problem in the derivation of the heuristic that is not the re-
sult of the “delete-relaxation” but of the value-accumulating
semantics. Namely, while it is correct to regard each of the
atoms Xi < Xi+1 as true in layer P1, where all variables
have domain {0, 1} and hence there are values for Xi and
Xi+1 that satisfy Xi < Xi+1, it is not correct to regard the
conjunction of all of them as true, since there are no val-
ues for the state variables in the domains D(Xi) = {0, 1}
that can satisfy all the atoms Xi < Xi+1 at the same time
(if n > 2). Indeed, only at layer Pn−1 (where the domains
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of all variables are D(Xi) = [0, n − 1]) can all the atoms
Xi < Xi+1 be satisfied at the same time by means of the
valuation that assigns each variable Xi the value i− 1.

From a logical perspective, it is possible to see that the
value-accumulating semantics is too weak because it makes
two simplifications, not just one. One simplification is mono-
tonicity by which the variable domains D(X) grow mono-
tonically as new values for variable X become reachable,
in line with the notion of “delete-relaxation”. Yet there is
a second simplification, namely, decomposition, by which a
conjunction of atoms is regarded as true in a propositional
layer whenever each one of the atoms in the conjunction is
true. Like monotonicity, decomposition is not true in gen-
eral. The reason is that a propositional layer encodes not just
one but a set of possible interpretations over the language.
In any single logical interpretation, the truth value of a con-
junction is a function of the truth values of its conjuncts. But
when there is a set of interpretations, it is possible that one
interpretation makes one atom true, a second interpretation
makes a second atom true, and yet no interpretation makes
the two atoms true at the same time.

In our example, the domains D(Xi) = {0, 1} associ-
ated with the state variables Xi in the propositional layer P1

implicitly encode 2n possible logical interpretations where
each state variable Xi can have one of the two values. In
this set of interpretations, for any atom Xi < Xi+1 at least
one interpretation makes the atom true, yet no interpretation
in the set makes the conjunction of all such atoms true.

Decomposition is the assumption that if there are interpre-
tations that satisfy each of the atoms in a conjunction, there
are also interpretations that satisfy all of the atoms in the
conjunction. The set of possible interpretations correspond-
ing to a layer Pk of the planning graph is determined by the
set of values D(Xi) that are possible for each of the state
variables in that layer. It turns out that decomposition is valid
when no two atoms in the conjunction involve the same state
variable, e.g. in conjunctions such as (X1 > 3 ∧ X2 < 2)
or (X1 = true ∧ X2 = true), where the conjuncts in-
volve different state variables Xi. This class of conjunc-
tions actually subsumes the language fragment that is stan-
dard for classical planners, in which preconditions, condi-
tions, and goals are conjunctions of propositional atoms p,
like on(b1, b2), that can be taken as abbreviations for atoms
p = true, p being a boolean state variable. In such con-
junctions, no boolean state variable is mentioned more than
once. This language fragment also subsumes the restricted
numeric planning tasks in Metric-FF where atoms can
contain at most one numeric variable, and hence can be of
the form X = c or X > c, where c is a constant, but not
of the form X > Y , where both X and Y are numeric state
variables.

The fact that decomposition is valid for simple languages
where goals, preconditions, and conditions are conjunctions
of atoms involving one state variable each, does not imply
that such languages are more convenient for modeling and
problem-solving than richer languages that do not enforce
this restriction. On the contrary, if the goal of the real prob-
lem contains different non-unary atoms involving the same
state variables, a better alternative is to acknowledge the

constraints between them in the language and to use such
constraints to derive more informed heuristics.

Our aims in this paper are thus (1) to advocate the use
of more expressive planning languages for modeling, (2) to
point to the gap left open by the value-accumulating seman-
tics in its failure to account for the constraints imposed on
state variables by conjunctive expressions, (3) to partially
close this gap by using forms of constraint propagation in
the definition and computation of the heuristics, and (4) to
show that such heuristics can be cost-effective.

With these goals in mind, the rest of this paper is orga-
nized as follows. We first review Functional STRIPS, an
expressive planning language where atoms can be arbitrary,
variable-free first-order atoms (Geffner 2000). We then de-
fine the direct generalization of the hmax and hFF heuris-
tics for such a language following (Gregory et al. 2012;
Ivankovic et al. 2014), based on the assumptions of mono-
tonicity and decomposition, and introduce a stronger, con-
strained generalization that retains monotonicity but avoids
decomposition. We finally define a polynomial approxima-
tion of this stronger but intractable heuristic and test it over
a number of examples.

While the importance of more expressive planning lan-
guages for modeling is well-known (Gregory et al. 2012),
our emphasis is mainly on the computational value of such
extensions, and their use for understanding the limitations
and possible elaborations of current heuristics. Some of the
language extensions that we consider, however, such as the
use of global constraints (van Hoeve and Katriel 2006), are
novel in the context of planning and interesting on their own.
The planning language also makes room for using predi-
cate and function symbols whose denotation is fixed, and
which can be characterized either extensionally by enumer-
ation, or intensionally by means of procedures or seman-
tic attachments (Dornhege et al. 2009). Yet, while the plan-
ning language accommodates constraints and semantic at-
tachments, and the planning heuristics accommodate forms
of constraint propagation, we hope to show that these are
not add-ons but pieces that fall into place from the logical
analysis of the language and the heuristic computation.

Functional STRIPS
Functional STRIPS (FSTRIPS) is a general modeling lan-
guage for classical planning based on the quantifier-free
fragment of first-order-logic involving constant, function
and relational or predicate symbols but no variable symbols.
We review it following (Geffner 2000).

Syntax
FSTRIPS assumes that fluent symbols, whose denotation
may change as a result of the actions, are all function sym-
bols. Fluent constant symbols can be seen as arity-0 func-
tion symbols, and fluent relational symbols as boolean func-
tion symbols of the same arity plus equality. For exam-
ple, BLOCKSWORLD atoms like on(a, b) can be encoded in
FSTRIPS as on(a, b) = true , by making on a functional
symbol, or in this case, more conveniently, as loc(a) = b
where loc is a function symbol denoting the block location.
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Constant, functional and relational symbols whose de-
notation does not change are called fixed symbols. Among
them, there is usually a finite set of object names, and con-
stant, function, and relational symbols such as ‘3’, ‘+’ and
‘=’, with the standard interpretation.

Terms, atoms, and formulas are defined from constant,
function, and relational symbols in the standard way, except
that in order for the representation of states to be finite and
compact, the symbols, and hence the terms are typed. A type
is given by a finite set of fixed constant symbols. The terms
f(t) where f is a fluent symbol and t is a tuple of fixed
constant symbols are called state variables, as the state is
actually determined by the value of such “variables”.

An action a is described by the type of its arguments and
two sets: the precondition and the effects. The precondition
Pre(a) is a formula, and the effects are updates of the form
f(t) := w, where f(t) and w are terms of the same type,
f is a fluent symbol, and t is a tuple of terms. The updates
express how fluent f changes when the action is taken. Con-
ditional effects C → f(t) := w, where C is a formula (pos-
sibly C = true), can be defined in a similar manner.

As an example, the action of moving a block b onto an-
other block b′ can be expressed by an action move(b, b′)
with precondition clear(b) = true ∧ clear(b′) = true, and
effects loc(b) := b′ and clear(loc(b)) := true . In this case,
the terms clear(b) and loc(b) for blocks b stand for state
variables. The term clear(loc(b)) is not a state variable, as
loc(b) is not a fixed constant symbol. For any state variable
X , we commonly abbreviate X = true and X = false as
X and ¬X , and express conjunctions of atoms by the set of
atoms in the conjunction. A FSTRIPS planning problem is
a tuple 〈F, I,O,G〉, where I is a set of literals defining the
initial situation, G is the goal formula, O is a set of actions,
and F describes the symbols and their types.

Semantics
States represent logical interpretations over the language of
FSTRIPS. The denotation of a symbol or term t in the state
s is written as ts. The denotation rs of fixed symbols r does
not depend on the state and it is written r∗. The denotation
of standard fixed symbols like ‘3’, ‘+’, ‘=’ is assumed to
be given by the underlying programming language, while
object names c are assumed to denote themselves so that
c∗ = c. The denotation of fixed (typed) function and rela-
tional symbols can be provided extensionally, by enumer-
ation in the initial situation, or intensionally, by attaching
actual functions to them (Dornhege et al. 2009).

Since the only fluent symbols are function symbols, and
the types of their arguments are all finite, the (dynamic part
of the) state can be represented as the value of a finite set
of state variables f(t), where f is a functional fluent and t
is a tuple of fixed constant symbols. From the fixed denota-
tion r∗ of fixed symbols r, and the changing denotation of
fluent symbols f captured by the values [f(t)]s of the state
variables f(t) associated with f , the denotation of arbitrary
terms, atoms, and formulas follows in the standard way. The
denotation ts of any term not involving functional fluents,
expressed also as t∗, is c∗ if t is a constant symbol or, recur-
sively, g∗(t∗1) if t is the compound term g(t1) where t1 is a

types: block, cell, direction

functions:
loc(b: block): cell
next(x: cell, d: direction): cell

action move(b: block, d: direction)
prec in-grid(next(loc(b), d))
eff loc(b) := next(loc(b), d)

goal:
loc(b1) 6= loc(b2) ∧ loc(b1) 6= loc(b3) ∧
loc(b2) = loc(b3)

Figure 1: Fragment of the GROUPING domain, where the
goal is to group together blocks of the same color. The exam-
ple shows three blocks b1, b2 and b3 of two different colors;
the static color predicate has been manually compiled away.

tuple of terms. Similarly, the denotation ts of a term f(t1)
where f is a fluent functional symbol is defined recursively
as the value [f(c)]s of the state variable f(c) in s where c is
the tuple of constant symbols that name the tuple of objects
ts1; i.e., c∗ = ts1. In the same way, the denotation [p(t)]s of an
atom p(t) is true/false iff the result of applying the boolean
function p∗ to the tuple of objects ts yields true/false. The
truth value Bs of the formulas B made up of such atoms in
the state s follows then the usual rules.

An action a is applicable in a state s if [Pre(a)]s = true.
The state sa that results from the action a in s satisfies the
equation fsa(ts) = ws for all the updates f(t) := w that
the action a triggers in s, and is otherwise equal to s. This
means that the update changes the value of the state variable
f(c) to ws iff the action triggers an update f(t) := w in the
state s for which c∗ = ts. For example, if X = 2 is true
in s, then the update X := X + 1 increases the value of
X to 3 without affecting other state variables. Similarly, if
loc(b) = b′ is true in s, the update clear(loc(b)) := true in
s is equivalent to the update clear(b′) := true.

A plan for a problem 〈F, I,O,G〉 is a sequence of appli-
cable actions fromO that maps the unique initial state where
I is true into one of the states where G is true.

Modeling
The problem described in the introduction, which we call
COUNTERS, can be encoded in FSTRIPS by modeling the
integer variables Xi with a unary functional fluent val such
that val(i) denotes the value of Xi in the [0, n] range. Thus,
val(1), . . . , val(n) are the only state variables of the prob-
lem, and actions increment(i) and decrement(i) update
their values. The goal is then expressed as a conjunction∧n−1

i=0 val(i) < val(i+ 1).
A more interesting domain, which we call GROUPING,

features several blocks of different colors lying on a grid,
and the only available actions allow us to move one block
to a neighboring cell, with no other preconditions (thus, a
cell can accommodate an arbitrary number of blocks). The
objective is to group the blocks by color, i.e. to position
all blocks in a way such that two blocks are on the same
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cell iff they have the same color. Figure 1 shows part of
the FSTRIPS problem specification, where loc is a fluent
function denoting the position of any block, and next and
in-grid are fixed functions representing the topology of the
grid. A key feature of FSTRIPS is that fluent functional
terms allow bypassing the restriction imposed by proposi-
tional languages that objects be referred to by their unique
names (Geffner 2000). Thus we can use the goal expression
loc(b1) 6= loc(b2) ∧ loc(b1) 6= loc(b3) ∧ loc(b2) = loc(b3),
which cannot be modeled in standard PDDL without using
an exponentially long encoding.

Relaxed Planning Graph
As noted by several authors, some of the heuristics that
are useful in STRIPS like hmax and hFF can be general-
ized to more expressive languages by means of the so-called
value-accumulating semantics (Hoffmann 2003; Gregory et
al. 2012; Ivankovic et al. 2014). In this interpretation, each
propositional layer Pk of the relaxed planning graph keeps
for each state variableX a setXk of values that are possible
in Pk. Such sets are used to define the sets yk of possible
values or denotations of arbitrary terms, atoms, and formu-
las y, and from them, the sets of possible values Xk+1 for
the next layer Pk+1. For layer P0, X0 = {Xs}, where s
is the state for which the heuristic is sought. From the sets
of possible values Xk for the state variables X in layer Pk,
the set of possible denotations tk of any term not involving
functional fluents is tk = {t∗}, while the set of possible de-
notations [f(t)]k for terms f(t) where f is a fluent symbol
is defined recursively as the union of the sets [f(c)]k where
f(c) is a state variable such that c∗ ∈ tk. In a similar way, the
set of possible denotations [p(t)]k of an atom p(t) in layer
Pk includes the value true (false) iff p∗(c∗) = true (false,
respectively) for some tuple c∗ ∈ tk. The sets of possible
denotations of disjunctions, conjunctions, and negations are
defined recursively so that true is in [A ∨ B]k, [A ∧ B]k

and [¬A]k iff true is in Ak or in Bk, true is in both Ak

andBk, and false is inAk respectively. Similarly, false is in
[A∨B]k, [A∧B] and [¬A]k iff false is in both Ak and Bk,
false is in Ak or in Bk, and true is in Ak respectively.

The set of possible values Xk+1 for the state variable
X in layer Pk+1 is the union of Xk and the set of possi-
ble values x for X that are supported by conditional effects
of actions a whose preconditions are possible in Pk, i.e.,
true ∈ [Pre(a)]k. A conditional effect C → f(t) := w
of a supports value x of X in Pk iff X = f(c) for some
tuple of constant symbols c such that c∗ ∈ tk and x ∈ wk.

This finishes the definition of the sequence of proposi-
tional layers P0, . . . , Pk that make up the RPG for a given
problem P and state s. When computing the heuristics hmax
and hFF, the computation stops in the first layer Pk where
the goal formula G is true, i.e. true ∈ Gk, or where a fixed
point has been reached without rendering the goal true, i.e.
Xk = Xk+1 for all the state variables. In the second case,
hmax(s) = hFF(s) = ∞ as one can show that there is no
plan for P from s. In the first case, hmax(s) = k, and
a relaxed plan πFF(s) can be obtained backward from the
goal by keeping track of the state variables X and values
x ∈ Xk that make the goal true, the actions a and effects

C → f(t) := w supporting such values first, and iteratively,
the variables and values that make Pre(a) and C true. The
heuristic hFF(s) is given by the number of different actions a
in πFF(s) with each action a counted as many times as layers
in πFF(s) where it is used, in accordance with the treatment
of conditional effects in FF.

Under some restrictions, it is possible to show that πFF(s)
is indeed a plan for a relaxation P ′ of P from the state s
where “assignments” do not erase the “old” values of state
variables, and hence where atoms like X = x and X = x′

for x 6= x′ are not mutually exclusive and can both be true.
In the COUNTERS example, for n = 3 the goal G is (X1 <
X2)∧(X2 < X3), the initial state s is such thatXs

1 = Xs
2 =

Xs
3 = 0, and actions increment or decrement each variable

within the [0, 3] range. We found that hmax(s) = 1 for this
problem, as in layer Pk with k = 1, the possible set of values
for the three variables is Xk

1 = Xk
2 = Xk

3 = {0, 1}. This
implies that true ∈ [X1 < X2]

k as there are constants 0 and
1 in Xk

1 and Xk
2 such that 0 < 1. Similarly, true ∈ [X2 <

X3]
k, so we get true ∈ Gk for k = 1. In this relaxation,

variable X1 can have both values 0 and 1 at the same time,
using 0 to make the first goal true and 1 to make the second
goal true. Indeed, in this relaxation, self-contradictory goals
like X1 = 0 ∧X1 = 1 are achievable in one step as well.

Constrained Relaxed Planning Graph
A weakness of RPG heuristics is the assumption that state
variables can take several values at the same time. This
simplification does not follow from the monotonicity as-
sumption that underlies the value-accumulating semantics
but from the way the sets of possible values Xk in layer Pk

are used. The fact that these various values are all regarded
as possible in layer Pk does not imply that they are jointly
possible. The way to retain monotonicity in the construction
of the planning graph while removing the assumption that
a state variable can take several values at the same time is
to map the domains Xk of the state variables into a set V k

of possible interpretations over the language. Indeed, given
that an interpretation s over the language is determined by
the values Xs of the state variables (Section 2), this set V k

is nothing but the set of interpretations v that result from se-
lecting one value Xv for each state variable X among the
set of values Xk that are possible for X in layer Pk.

As before, X0 = {Xs} when s is the seed state, and
Xk+1 contains all the values in Xk along with the set of
possible values x for X supported by the effects of actions a
whose preconditions are possible in Pk. However, a formula
like Pre(a) is now possible in Pk iff there is an interpreta-
tion v ∈ V k s.t. [Pre(a)]v = true . Moreover, a conditional
effect C → f(t) := w of a supports the value x of X in Pk

iff there is an interpretation v ∈ V k where [Pre(a)]v and
Cv are true , x = wv , and X = f(c) for c∗ = tv .

This alternative, logical interpretation of the propositional
layers Pi affects the contents and computation of the RPG,
keeping the assumption that the set of possible values of
a state variable grows monotonically, but dropping the as-
sumption of decomposability, that holds that such values are
jointly possible. To compute the heuristics h∗max and h∗FF, the
construction of the RPG stops at the first layer Pk where the
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goal formula G is satisfiable, i.e. where Gv is true for some
v ∈ V k, or when a fixed point is reached without rendering
the goal true. We distinguish these heuristics from the previ-
ous ones, as they behave in a different way, produce different
results, and have different computational cost.

From a semantic standpoint, inconsistent goals like (X <
3 ∧ X > 5) get infinite h∗max and h∗FF values, while the
COUNTERS goal

∧n−1
i=0 (Xi < Xi+1) results in optimal hmax

and hFF values, as the goal becomes satisfiable only at layer
Pn. The bad news is that the new heuristics h∗max and h∗FF are
intractable. Indeed, it is possible to reduce any SAT prob-
lem T into a planning problem P such that T is satisfiable
iff h∗max(s0) ≤ 1, where s0 is the initial state of P . For the
mapping, we just need boolean state variablesXi initially set
to false along with actions ai that can make each variableXi

true. The goal G of P is the CNF formula T with the literals
pi and ¬pi replaced by the atomsXi = true andXi = false
respectively. In general, the computation of the heuristics is
exponential in the number of state variables of the problem,
although this bound can be made tighter. In particular, if flu-
ent symbols are not nested the bound is exponential in the
number of state variables involved in any one action. The
relaxed planning graph construction that follows the value-
accumulating semantics, on the other hand, is polynomial,
provided that the denotation of fixed function and relational
symbols is represented extensionally.

Approximate Constrained Graph
We look now at methods for approximating the constrained
relaxed planning graph (CRPG) in polynomial time, in order
to derive heuristics that are more informed than those result-
ing from the unconstrained RPG but remain computation-
ally tractable. For this, we impose some restrictions on the
fragment of FSTRIPS that we will consider. We assume that
(a) action preconditions, conditions, and goals are conjunc-
tion of atoms, rather than arbitrary formulas, and (b) fluent
symbols do not appear nested. These restrictions still leave
ample room for modeling, but allow mapping the bottleneck
computation in the construction of the CRPG into a stan-
dard constraint satisfaction problem (CSP) (Dechter 2003;
Rossi, Van Beek, and Walsh 2006). Although solving this
CSP is NP-complete, we can take advantage of tractable but
incomplete local consistency algorithms to prune the possi-
ble values of state variables. Without loss of generality, we
will also assume that in all terms f(t) where f is a fluent
symbol, t is a tuple of constant symbols. Indeed, if that is
not the case, then t must be a tuple of fixed compound terms
ti, which can be replaced at preprocessing by constant sym-
bols ci such that t∗i = c∗i . The result is that each occurrence
of a term f(t) stands for a particular state variable.

The intractability of the constrained RPG follows from
checking whether there is an interpretation v in layer Pk that
(1) makes the goal G true, or (2) supports the value x of a
state variable X through a conditional effect C → f(t) :=
w of an action a. Under the assumptions above, however,
for X = f(t), task 2 reduces to checking the truth of the
formula Pre(a) ∧ C ∧ w = x, so that both tasks 1 and 2
reduce to checking whether there is an interpretation v that

satisfies a conjunction of atoms. Since the set of possible in-
terpretations is determined by the sets of possible valuesXk

of each state variable X , the operation boils down to solv-
ing a CSP where the variables are the state variables X , the
domain D(X) of the variables X is Xk, and the constraints
are given by the atoms in the conjunction.

The CSP that represents task 2 above, namely, the con-
sistency test of the formula Pre(a) ∧ C ∧ w = x for each
action a and conditional effect C → f(t) := w, usually in-
volves a bounded and small set of state variables, and can
thus be fully solved. On the other hand, the CSP that repre-
sents task 1 involves all the state variables that appear in the
goal G, and can be solved approximately by using various
forms of local consistency. In other words, the approxima-
tion in the construction of the CRPG applies only to check-
ing whether the goal G is satisfiable in a propositional layer
Pk, and relies on the notions of arc and node consistency.

Node consistency prunes the domain D(X) = Xk of
each state variable X by going through all the constraints
(atoms) in the (goal) CSP that involve only the variable X
and removing the values x ∈ D(X) that do not satisfy all
these unary constraints. Arc consistency, on the other hand,
prunes the domain D(X) of each state variable X by going
through all the constraints in the CSP that involveX and an-
other variable Y . If for any of these binary constraints and
some x ∈ D(X) there is no value y ∈ D(Y ) satisfying
the constraint, then x is pruned from D(X). The process it-
erates over all variables and constraints until a fixed point
is reached where no further pruning is possible (Mackworth
1977). The goal G is approximated as being satisfiable if
no state variable gets an empty domain. The hcmax heuris-
tic is defined by the index k of the first layer Pk where
the goal is satisfiable, and it is a polynomial approxima-
tion of the intractable h∗max heuristic. It is easy to see that
0 ≤ hmax ≤ hcmax ≤ h∗max ≤ h∗, where h∗ is the optimal
heuristic. The pruning resulting from the goal CSP is used
also in the plan extraction procedure that underlies the com-
putation of the hcFF heuristic, where pruned values of goal
variables are excluded. As an example, if the goal is the atom
X = Y where X and Y are state variables with domains
D(X) = {e, d} and D(Y ) = {d, f}, arc consistency will
prune the value e fromD(X) and f fromD(Y ), so that plan
extraction will backchain from atoms X = d and Y = d.

Arc consistency applies only to binary constraints, i.e.
to atoms involving two state variables. For atoms involving
more variables, we use local consistency algorithms that de-
pend on the constraint type, as is usually done for global
constraints (Rossi, Van Beek, and Walsh 2006). For ex-
ample, the quadratic number of binary constraints Xi 6=
Xj required to ensure that n variables Xi all have dif-
ferent values can be conveniently encoded with a single
global alldiff (X1, . . . , Xn) constraint, which additionally
can prune the variable domains much more than the bi-
nary constraints. Indeed, arc consistency over the binary
constraints finds no inconsistency when the domains are
D(Xi) = {0, 1} for all i, yet it is known that such con-
straints cannot be jointly satisfied if | ∪ni=1 D(Xi)| < n.
As an illustration, the goal of stacking all blocks in a
single tower in BLOCKSWORLD, regardless of their rela-
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Domain #I #C Coverage Plan length Node expansions Time (s.)
FF FS0 FF FS0 R FF FS0 R FF FS0 R

COUNT-0 13 11 13 11 770.09 270.09 2.51 770.09 270.09 2.51 33.98 318.42 0.13
COUNT-I 13 7 8 9 946.14 204.43 4.99 946.14 204.43 4.99 34.16 272.11 0.65
COUNT-R 39 17 17 28 499.00 87.35 4.10 499.00 88.76 4.04 154.50 25.68 3.39
GROUP. 72 42 48 55 424.24 43.86 9.61 681.24 104.79 12.28 354.45 83.12 41.57
GARD. 51 20 20 33 366.85 86.55 4.10 2635.95 456.45 14.28 205.89 7.84 39.68
PUSH. 17 5 5 8 65.40 34.20 1.43 404.60 64.80 3.18 0.07 3.98 0.01
PUSH-R 81 34 53 34 121.29 59.38 1.67 2964.88 624.82 7.23 3.38 214.33 0.03

Table 1: Summary of results for FF and FS0 using a greedy best-first search with heuristics hFF and hcFF (FF’s EHC disabled).
#I denotes total number of instances and #C number of instances solved by both planners. Length, node expansion and time
figures are averages over instances solved by both planners; R (for ratio) is the average of the per-instance FF / FS0 ratios.
Best-of-class figures are shown in bold. LAMA and Metric-FF results are discussed in the text.

tive positions, can be compactly encoded with the global
constraint alldiff (loc(b1), . . . , loc(bn)). To accommodate
global constraints in our planner, it is necessary to imple-
ment a polynomial-time pruning algorithm for the specific
constraint type. For the experiments below, we use node
and arc consistency for unary and binary constraints, respec-
tively, and bound consistency for the global alldiff and sum
constraints (van Hoeve and Katriel 2006).

Experimental Results
In order to evaluate the empirical impact of the presented
ideas, we have implemented a prototype planner and tested
it on a number of problems encoded in FSTRIPS. We de-
scribe next the planner and the results. Both the planner and
the benchmark problems are available on www.bitbucket.
org/gfrances/pubs/wiki/icaps2015.

The FS0 Functional STRIPS Planner
The FS0 planner deals with a fragment of FSTRIPS fea-
turing multivalued state variables, and additionally allows
fixed symbols to be intensionally defined by external proce-
dures, as in the semantic attachments paradigm (Dornhege
et al. 2009). These include certain global constraints that can
be used as fixed predicates. Currently only alldiff and sum
are supported off-the-shelf, but any arbitrary constraint can
be used as long as an implementation of a suitable local-
consistency pruning algorithm is provided. FS0 currently
employs a simple greedy best-first search (GBFS) strategy
guided by either the hcFF or the hcmax heuristics; the discus-
sion that follows is restricted to results obtained with hcFF.

Experiments
We have run our FS0 planner on a number of domains that
we describe next. We compare the results to those obtained
by some standard planners on equivalent PDDL models, up
to language limitations. In order to understand the differ-
ences in accuracy and computational cost of the hFF and
hcFF heuristics, we have run the FF (Hoffmann and Nebel
2001) and Metric-FF (Hoffmann 2003) planners (the lat-
ter on encodings with numeric fluents, if suitable), using the
same greedy best-first search strategy (i.e. f(n) = h(n) and
enforced hill-climbing disabled). To complete the picture,
we have also run the state-of-the-art Fast-Downward

planner (LAMA-2011 configuration), that uses different
search algorithms and exploits additional heuristic infor-
mation from helpful actions and landmarks (Helmert 2006;
Richter and Westphal 2010). Metric-FF and LAMA results
are not shown in the tables but discussed on the next subsec-
tion — in the case of Metric-FF, because of the large
gap in coverage; in the case of LAMA, because the different
heuristics and search algorithms do not allow a direct com-
parison. All planners are run a maximum of 30 minutes on
an AMD Opteron 6300@2.4Ghz, and are allowed a maxi-
mum of 8GB of memory. Table 1 shows summary statistics
for all domains, whereas Table 2 shows detailed results for
selected instances from each of the domains.

Counters Recall that in COUNTERS we have integer vari-
ables X1, . . . , Xn and want to reach the inequalities Xi <
Xi+1 by applying actions that increase or decrease by one
the value of a single variable. We consider three variations
of the problem that differ in the way in which variables are
initialized: (1) all variables initialized to zero (COUNTERS-
0), (2) all variables initialized to random values in the [0, 2n]
range (COUNTERS-RND), and (3) all variables initialized to
decreasing values from the [0, 2n] range (COUNTERS-INV).

For both FF and FS0, the number of expanded nodes
agrees with plan length in all cases, meaning that plans are
found greedily. However, FS0 plans are consistently shorter
(incidentally, the relaxed plans computed with the approx-
imate CRPG are valid plans for the non-relaxed problem,
which is not the case for the RPG). FF performs quite
well in COUNTERS-0, where the improved heuristic accu-
racy offered by FS0 does not compensate the increased
running times. This is no longer true if the values of con-
secutive variables are decreasing. Both in COUNTERS-RND
and COUNTERS-INV, FF shows a significantly poorer per-
formance, solving only instances up to 20 and 12 variables,
respectively. Again, this stems from the fact that each of the
Xi < Xj inequalities is conceived as independent (since
they are actually encoded in apparently independent propo-
sitional atoms less(i, i + 1)), which frequently guides the
search towards heuristic plateaus. This is not the case for the
FS0 planner, which in spite of a much smaller number of
expanded nodes per second, has a better coverage on these
two variations of the problem, finding much shorter plans
and expanding a consistently smaller amount of nodes.
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Instance Plan length Node expansions Time (s.)
FF FS0 FF FS0 FF FS0

COUNTERS-0 (n = 8) 68 28 68 28 0.03 0.14
COUNTERS-0 (n = 20) 530 190 530 190 2.46 25.13
COUNTERS-0 (n = 40) 2260 780 2260 780 197.65 1796.9
COUNTERS-INV (n = 8) 54 48 54 48 0.06 0.36
COUNTERS-INV (n = 20) 416 300 416 300 8.62 99.99
COUNTERS-INV (n = 44) 2148 - 2148 - 1073.46 -
COUNTERS-RND (n = 8) 30 26 30 26 0.05 0.1
COUNTERS-RND (n = 20) 2250 227 2250 227 333.41 37.1
COUNTERS-RND (n = 36) - 680 - 680 - 1422.83
GROUPING (s = 5, b = 10, c = 2) 287 23 391 23 3.34 0.57
GROUPING (s = 7, b = 20, c = 5) 215 37 259 105 9.75 26.39
GROUPING (s = 9, b = 30, c = 7) 638 98 752 98 1346.79 169.78
GARDENING (s = 5, k = 4) 121 30 144 34 3.47 0.12
GARDENING (s = 10, k = 10) 1156 155 8827 244 1058.55 7.54
GARDENING (s = 15, k = 22) - 360 - 1580 - 242.45
PUSHING (s = 7, k = 4) 51 49 85 102 0.02 4.27
PUSHING (s = 10, k = 7) - 189 - 576 - 160.52
PUSHING-RND (s = 7, k = 4) 36 38 75 105 0.02 3.16
PUSHING-RND (s = 10, k = 8) 423 113 31018 4867 59.92 1024.59

Table 2: Details on selected instances for the FF and FS0 planners. A dash indicates the solver timed out before finding a plan,
and best-of-class numbers are shown in bold typeface. Particular instance parameters are described on the text.

Grouping In the GROUPING domain, some blocks of dif-
ferent colors are scattered on a grid, and we want to group
them so that two blocks are in the same cell iff they have
the same color. In standard PDDL, there is no compact man-
ner of modeling a goal atom such as loc(b1) = loc(b2). For
this reason, we have devised an alternative formulation with
two additional actions used, respectively, to (1) tag any cell
as the destination cell for all blocks of a certain color, and
(2) secure a block in its destination cell. We generate ran-
dom instances with increasing grid size s× s, s ∈ {5, 7, 9},
number of blocks b ∈ {5, 10, 15, 20, 30, 35, 40} and num-
ber of colors c between 2 and 10, where blocks are assigned
random colors and initial locations. The coverage of FS0 is
slightly higher, and the hcFF heuristic used by FS0 proves
to be much more informed than the unconstrained version
used by FF, resulting on average on 12 times less node ex-
pansions and plans around 10 times shorter. This is likely
because the delete-free relaxation of the problem allows all
unpainted cells to be painted of all colors in the first layer of
the RPG, thus producing poor heuristic guidance. FS0 does
not incur on this type of distortion, as it understands that
goal atoms such as loc(b1) = loc(b2) and loc(b2) 6= loc(b3)
are constrained to be satisfied at the same time. Comparing
both planners, the increased heuristic accuracy largely com-
pensates in terms of search time the cost of the polynomial
approximate solution of the CSP based on local consistency.

Gardening We now illustrate an additional way in which
constraints can greatly improve the accuracy of the heuris-
tic estimates. In the GARDENING domain, an agent in a grid
needs to water several plants with a certain amount of wa-
ter that is loaded from a tap and poured into the plants
unit by unit. It is known that standard delete-free heuris-
tics are misleading in this type of planning-with-resources
environments (Coles et al. 2008), since they fail to account

for the fact that the agent needs to load water repeatedly:
in a delete-free world, one unit of water is enough to wa-
ter all plants. As a consequence, the plans computed fol-
lowing delete-free heuristics tend to have the agent going
back and forth to the water tap, loading each time a single
unit of water. FS0, however, is actually able to accommo-
date and use a flow constraint equating the total amount of
water obtained from the tap with the total amount of wa-
ter poured into the plants. This only requires state variables
poured(p1), . . . , poured(pn), and total, plus a goal sum
constraint poured(p1) + · · ·+ poured(pn) = total.

We generate random instances with grid size s × s,
s ∈ [4, 20], having one single water tap and k =
max(4,

⌊
s2/10

⌋
) plants to be watered, each with a random

amount of water units ranging from 1 to 10. The results in-
deed show that FS0 significantly and systematically outper-
forms FF in all aspects, offering higher coverage and finding
plans 4 times shorter, almost 40 times faster, on average.

Pushing Stones Finally, in the PUSHING domain, an agent
moves around an obstacle-free grid, pushing k stones into
k fixed different goal cells. A noticeable inconvenient of
delete-free heuristics in this type of domain is that re-
laxed plans tend to push all stones to the closer goal cell,
even if this means that several stones end up on the same
cell. FSTRIPS allows us to express the (implicit) fact that
stones must be placed in different cells through the use
of a global constraint alldiff (loc(s1), . . . , loc(sk)), which
FS0 exploits to infer more informative heuristic values. This
stands in contrast to other heuristic planners, which might be
able to indirectly model such a constraint but not to leverage
it to improve the heuristic and the search.

To specifically test the potential impact of this constraint,
we model a variation of the problem in which all stones con-
centrate near a single goal cell, with the rest of goal cells
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located on the other side of the grid (pushing). We also
test another variation where agent, stones and goal cells are
assigned random initial positions (pushing-rnd). For the
first type of instances, FS0 is indeed able to heuristically
exploit the alldiff constraint and scale up better, having
an overall larger coverage, and finding significantly shorter
plans. In random instances, on the other hand, FF offers
slightly better coverage and a notably smaller runtime, but
in terms of plan length and number of expanded nodes, FS0
still outperforms FF by a large margin.

Overview & Other Planners
We now briefly discuss the performance of the LAMA and
Metric-FF planners on the same set of problems. In the
COUNTERS domain family, LAMA offers a somewhat uneven
performance, solving 27/33 instances of the random varia-
tion, but only 5/11 of the other two variations. Average plan
length is in the three cases significantly better than FF, but
at least a 30% worse than FS0, and while total runtimes de-
cidedly dominate the two GBFS planners in the rnd and
inv version, they are much worse in COUNTERS-0. For
Metric-FF, the PDDL 2.1 encoding that we use is iden-
tical to the FSTRIPS encoding, save minor syntactic differ-
ences. Metric-FF solves 8/11 instances in COUNTERS-0,
but for the other variations only solves a couple of instances.
Given that the model is the same, this is strong evidence that
at least in some cases it pays off to properly account for the
constraints among state variables involved in several atoms.

In the GROUPING domain, LAMA has perfect coverage
and is much faster than the two GBFS-based planners, but
again the FS0 plans are significantly shorter. In the GAR-
DENING domain, LAMA performs notably worse than FS0
in all aspects, solving 26/51 instances and finding plans
that are on average about 4 times longer, in 13 times the
amount of time. In the Metric-FF model, we have added
the same flow constraint as an additional goal conjunct
total retrieved = total poured but this does not help
the search: Metric-FF is not able to solve any of the in-
stances, giving empirical support to the idea that even if we
place additional constraints on the goal, these cannot be ad-
equately exploited by the unconstrained hFF heuristic, pre-
cisely because it does not take into account the constraints
induced on state variables appearing in more than one goal
atom. Finally, in the PUSHING domain LAMA outperforms in
all aspects the two GBFS planners in the random variation,
but shows a much poorer performance on the other variation,
where the alldiff constraint proves its heuristic usefulness.

Overall, we have shown that in our test domains the use
of the constrained hcFF heuristic consistently results in sig-
nificantly shorter plans (between approximately 1.5 to 9.5
times shorter, depending on the domain) compared to its un-
constrained counterpart. The heuristic assessments are also
more accurate in all domains, resulting in a 2.5- to 14-fold
decrease in the number of expanded nodes, depending on
the domain. In some cases, the increased heuristic accuracy
demands significantly larger computation time, although in
terms of final coverage this overhead tends to be compen-
sated; in other cases the increased accuracy itself already
allows smaller average runtimes.

Discussion
The goal in the PUSHING domains can be described in
FSTRIPS as placing each stone in a goal cell while ensuring
that all stones are in different cells. In propositional plan-
ning, the goal is encoded differently, and the alldiff con-
straint is implicit, hence redundant. Indeed, the flow con-
straint of the FSTRIPS GARDENING domain is also redun-
dant. The fact that the performance of FS0 is improved
by adding redundant constraints reminds of CSP and SAT
solvers, whose performance can also be improved by expli-
cating implicit constraints. This distinguishes FS0 from the
existing heuristic search planners that we are aware of, that
either make no room for any type of explicit constraints or
cannot use them in the computation of the heuristic. This
capability is thus not a “bug” that makes the comparisons
unfair but a “feature”. Indeed, recent propositional planners
illustrate the benefits of recovering multivalued (Helmert
2009) and flow constraints (Bonet and van den Briel 2014)
that the modeler was forced to hide. In this paper, we advo-
cate a different approach: to make room for these and other
types of constraints at the language level, and to account for
such constraints in the computation of the heuristics.

Summary
To sum up, we have considered the intertwined problems of
modeling and computation in classical planning, and found
that expressiveness and efficiency are not necessarily in con-
flict. Indeed, computationally it may pay to use richer lan-
guages when state variables appear more than once in action
preconditions and goals, as long as the resulting constraints
are accounted for in the computation of the heuristic. In our
formulation, heuristics are obtained from a logical analysis
where sets of values Xk that are possible for a state variable
X in the Pk layer of the relaxed planning graph are thought
of as encoding an exponential set of possible logical inter-
pretations. Since these heuristics are more informed but in-
tractable, we show how they can be effectively approximated
with local consistency techniques. Our FS0 planner, imple-
menting these ideas, supports a substantial fragment of the
FSTRIPS language and further extends its expressiveness by
allowing the denotation of fixed symbols to be defined by ex-
ternal procedures and by accommodating a limited library of
global constraints — yet these features are not add-ons, but a
result of our logical analysis. We have empirically shown the
computational value of these ideas on a number of meaning-
ful examples. In the future, we want to optimize the planner
implementation and to make room for state constraints, i.e.
invariants that hold not just in goal states but in all states.
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