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Abstract

Conflict-Based Search (CBS) is a recently introduced algo-
rithm for Multi-Agent Path Finding (MAPF) whose runtime
is exponential in the number of conflicts found between the
agents’ paths. We present an improved version of CBS that
bypasses conflicts thereby reducing the CBS search tree. Ex-
perimental results show that this improvement reduces the
runtime by an order of magnitude in many cases.

Introduction and Overview
A Multi-Agent Path Finding (MAPF) problem is defined by
a graph, G = (V,E) and a set of k agents labeled a1 . . . ak,
where each agent ai has a start position si ∈ V and goal po-
sition gi ∈ V . At each time step an agent can either move to
an adjacent location or wait in its current location. The task
is to plan a sequence of move/wait actions for each agent ai,
moving it from si to gi such that agents do not conflict, i.e.,
occupy the same location at the same time. MAPF has prac-
tical applications in video games, traffic control, robotics
etc. (See (Sharon et al. 2013) for a survey).

In this paper we focus on solving MAPF problems opti-
mally, i.e., where the cost of the resulting plan is minimal.
There is a range of algorithms that optimally solve different
variants of MAPF using various search techniques (Stan-
dley 2010; Wagner and Choset 2011; Sharon et al. 2013)
or by compiling it to other known NP-complete prob-
lems (Surynek 2012; Yu and LaValle 2013; Erdem et al.
2013). Each of these solvers has pros and cons. There is
no universal winner. Which algorithm performs best under
what circumstances is an open research question.

Conflict-Based Search (CBS) (Sharon et al. 2012a), is an
optimal MAPF solver shown to be very effective in many
domains. It is a two-level algorithm. The low-level finds op-
timal paths for the individual agents. If the paths include
conflicts, the high level, via a split action (described below),
imposes constraints on the conflicting agents to avoid these
conflicts. CBS is exponential in the number of conflicts seen.

This paper introduces an improved version of CBS. When
a conflict is found, we first attempt to bypass the conflict and
avoid the need to perform a split and add new constraints. If
no bypass is found we resort to the drastic split action of
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adding explicit constraints to avoid the conflict. We provide
a number of variants that search for bypasses differing in
their search effort. Experimental results show speedups over
basic CBS by more than an order of magnitude.

The Conflict Based Search Algorithm (CBS)
A sequence of individual agent move/wait actions leading
an agent from si to gi is referred to as a path, and the term
solution refers to a set of k paths, one for each agent. A con-
flict between two paths is a tuple 〈ai, aj , v, t〉 where agent
ai and agent aj are planned to occupy vertex v at time point
t. A solution is valid if it is conflict-free. The cost of a path
is the number of actions in it (including wait), and the cost
of a solution is the sum of the costs of its constituent paths.

In CBS, agents are associated with constraints. A con-
straint for agent ai is a tuple 〈ai, v, t〉 where agent ai is pro-
hibited from occupying vertex v at time step t. A consistent
path for agent ai is a path that satisfies all of ai’s constraints,
and a consistent solution is a solution composed of only con-
sistent paths. Note that a consistent solution can be invalid
if despite the fact that the paths are consistent with the indi-
vidual agent constraints, they still have inter-agent conflicts.

The high-level of CBS searches the constraint tree (CT).
The CT is a binary tree, in which each node N contains: (1:)
A set of constraints imposed on the agents (N.constraints),
(2:) A single solution (N.solution) consistent with these
constraints. (3:) The cost of N.solution (N.cost).

The root of the CT contains an empty set of constraints. A
successor of a node in the CT inherits the constraints of the
parent and adds a single new constraint for a single agent.
N.solution is found by the low-level search described be-
low. A CT node N is a goal node when N.solution is valid,
i.e., the set of paths for all agents have no conflicts. The high-
level of CBS performs a best-first search on the CT where
nodes are ordered by their costs (N.cost).

Processing a node in the CT: Given a CT node N , the
low-level search is invoked for individual agents to return
an optimal path that is consistent with their individual con-
straints in N . Any optimal single-agent path-finding algo-
rithm can be used by the low level of CBS. We used A* with
the true shortest distance heuristic (ignoring constraints).
Once a consistent path has been found (by the low level)
for each agent, these paths are validated with respect to the
other agents by simulating the movement of the agents along
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Figure 1: (I) MAPF example (II) CT (III) Alternative CT

their planned paths (N.solution). If all agents reach their
goal without any conflict N is declared as the goal node,
and N.solution is returned. If, however, while performing
the validation, a conflict is found for two (or more) agents
the validation halts and the node is declared as non-goal.

Resolving a conflict: the split action Given a non-goal
CT node, N , whose solution, N.solution, includes a con-
flict, 〈ai, aj , v, t〉, we know that in any valid solution at most
one of the conflicting agents, ai or aj , may occupy vertex v
at time t. Therefore, at least one of the constraints, (ai, v, t)
or (aj , v, t), must be satisfied. Consequently, CBS splits N
and generates two new CT nodes as children of N , each
adding one of these constraints to the previous set of con-
straints, N.constraints. Note that for each (non-root) CT
node the low-level search is activated for one agent only –
the agent for which the new constraint was added.

Algorithm 1: High-level of CBS
1 Main(MAPF problem instance)
2 R.constraints← ∅
3 R.solution← find individual paths using low level
4 R.cost← SIC(R.solution)
5 insert R to OPEN
6 while OPEN not empty do
7 N ← best node from OPEN // lowest solution cost
8 Validate the paths in N until a conflict occurs.
9 if N has no conflict then

10 return N.solution // N is goal

11 C ← first conflict (ai, aj , v, t) in N
12 if Find-bypass(N ,C) then
13 Continue //Optional

14 foreach agent ai in C do
15 A← generate child(N, (ai, s, t))
16 Insert A to OPEN

17 Generate Child(Node N , Constraint C = (ai, s, t))
18 A.constraints← N.constraints+ (ai, s, t)
19 A.solution← N.solution
20 Update A.solution by invoking low level(ai)
21 A.cost← SIC(A.solution)
22 return A

CBS Example: Pseudo-code for CBS is shown in Algo-
rithm 1. We cover it using the example in Figure 1(I), where
the mice need to get to their respective pieces of cheese.
The corresponding CT is shown in Figure 1(II). The root
(R1) contains an empty set of constraints and the low-level
search returns the following individual optimal paths: P1 =
〈S1, A,C,E,G1〉 for agent a1 and P2 = 〈S2, B,D,E,G2〉
for agent a2 (line 3). Thus, the total cost of R1 is 8. R1 is
then inserted into the sorted OPEN-list and will be expanded
next. When validating the two-agents solution (line 8), a
conflict 〈a1, a2, E, 3〉 is found. As a result, R1 is declared
as non-goal. R1 is split and two children are generated (via
the generate-child() function, also shown in Algorithm 1) to
resolve the conflict (line 15). The left child U adds the con-
straint 〈a1, E, 3〉 while the right child V adds the constraint
〈a2, E, 3〉. The low-level search is now invoked (line 20) for
U to find an optimal path for agent a1 that also satisfies the
new constraint. For this, a1 must wait one time step at C (or
at S1 or A) and the path 〈S1, A,C,C,E,G1〉 is returned for
a1. The path for a2, 〈S2, B,D,E,G2〉 remains unchanged
in U . Since the cost of a1 increased from 4 to 5 time steps
the cost of U is now 9. as the sum of right child V is gener-
ated, also with cost 9. Both children are added to OPEN (line
16). In the final step U is chosen for expansion, and the un-
derlying paths are validated. Since no conflicts exist, U is
declared as a goal node (lines 8-10) and its solution is re-
turned. Lines 12-13 are optional but speed up the search.
They are the main contribution of this paper.

Meta-agent CBS (MA-CBS) MA-CBS(B) (Sharon et
al. 2012b) is a generalization of CBS. When the number of
conflicts between a given pair of agents exceeds a predefined
parameter B, then conflicting agents are merged into a meta-
agent. Meta agents are treated as a joint composite agent by
the low-level solver. Basic CBS is, in fact, MA-CBS(∞),
i.e., never merge agents.

Sensitivity of CBS Given a consistent h-function, A*
must expand all nodes with f < C∗ (where C∗ is the op-
timal solution cost) in order to guarantee optimality of the
solution. No such mandatory nodes are known for CBS. In
fact, CBS is very sensitive to the paths found by the low
level and to the conflicts chosen to cause split as these can
significantly influence the number of CT nodes. Consider
the same example problem from Figure 1(I) but now assume
that the paths found at the root of the CT by the low level are:
P ′1 = 〈S1, B,D,E,G1〉 for a1 and P2 = 〈S2, B,D,E,G2〉
for a2 as shown in figure 1(III).1 At the root (R2), the con-
flict 〈a1, a2, B, 1〉 is chosen to cause a split and the left child
M is generated with path P ′′1 = 〈S1, A,D,E,G1〉 (cost 8)
but M includes another conflict 〈a1, a2, D, 2〉. It will also be
split and its left child (O with path P1 = 〈S1, A,C,E,G1〉,
cost 8) is now identical to R1 (the root node of figure 1(II)).
In O the conflict 〈a1, a2, E, 3〉 must be chosen and this is
done in the same manner as described for figure 1(II). Fig-

1If a2 were to be considered first, then, as first suggested
by (Standley 2010) in his Independence Detection framework (ID),
the low level of CBS for a1 would try to avoid P ′

1 using a conflict
avoidance table (See (Sharon et al. 2012a)). However, in our ex-
ample a1 was considered first and a2 is forced to use P2.
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ure 1(II) (CT size 3) and figure 1(III) (CT size 7) correspond
to running CBS on the same problem while choosing differ-
ent paths and conflicts.

Improved CBS: Bypassing Conflicts
When a conflict is found between the paths of two agents
CBS immediately splits the corresponding CT node into two
children, each with its own new constraint. However, it is
sometimes possible to prevent such a split and bypass the
conflict by modifying the chosen path of one of the agents.

Consider again Figure 1(I) and assume that we start with
the root of Figure 1(III) (R2 with paths P ′1 and P2) where
conflict 〈a1, a2, B, 1〉 is found. CBS splits R2 as described
above and generates two successors. At the left child M path
P ′′1 = 〈S1, A,D,E,G1〉 is assigned to agents a1. However,
R2 can replace path P ′1 for agent a1 with path P ′′1 , as it sat-
isfies all of R2.constraints and has the same cost. P ′′1 is a
better path for a1 than path P ′1 because the conflict at node B
no longer occurs. Now, instead of a CT with 7 nodes we get
a CT with only 5 nodes. Importantly, we note that since we
aim to find the optimal solution, we only consider bypassing
paths that have the same cost as the original path. Otherwise,
to guarantee admissibility we must split the node.

Adding the option of bypassing requires only a small ad-
dition to the CBS pseudo code (lines 12-13 in Algorithm 1).
After a conflict is found in node N , bypassing paths are
searched for. If such a path is found, it is adopted by the
corresponding CT node without the need to split N . Below,
we provide a number of methods for finding such bypasses.

Definitions
(1) For each CT node N we use N.NC to denote the

total number of conflicts of the form (ai, aj , v, t) between
the paths in N.solution. Calculating N.NC is trivial.

(2) A path P ′i is a valid bypass to path Pi for agent ai with
respect to a conflict C = 〈ai, aj , v, t〉 and a CT node N , if
the following conditions are satisfied: (i) Unlike Pi, P ′i does
not include conflict C, (ii) cost(P ′i ) = cost(Pi) and (iii) Pi

and P ′i are both consistent with N.constraints.
(3) Replacing a path Pi at a CT node N means replacing

Pi with a valid bypass P ′i for agent ai. When this happens
we say that P ′i was adopted by N .

Adopting a valid bypass may introduce more conflicts
compared to the original path and potentially lead to worse
overall runtime. Thus, we only allow to adopt bypasses that
reduce N.NC. These are called helpful bypasses. That is:

(4) A valid bypass P ′i is a helpful bypass to Pi if
N ′.NC < N.NC (where N ′ is the CT node that adopted
P ′i ). We use “<” (and not “≤”) in definition 4, to avoid an
infinite loop that alternates between conflicts.

Next we cover methods for finding adoptable bypasses.

Bypass1: Peek at the Child
Our first method, denoted as Bypass1 (BP1) peeks at either
of the immediate children in the CT and tries to adopt their
paths. This method was, in fact, demonstrated in our exam-
ple of Figure 1(III) discussed above – where P ′′1 was adopted
by the root. Once the left child (M ) is generated we notice

Algorithm 2: BP2. (BP1 changes line 1)
Input: Node N

1 foreach l ∈ ST (N) in a best-first order do
2 C← first conflict (ai, aj , v, t) in l
3 foreach agent ai in C do
4 A← generate child(l, (ai, s, t))
5 if (A.cost = P.cost) and (A.NC < P.NC) then
6 N.solution← A.solution
7 Insert N to OPEN
8 return true

9 return false

that path P ′′1 is a helpful bypass to path P ′1 of R2. If P ′′1
is adopted by R2 it would avoid the need to split R2 and
branch according to the conflict 〈a1, a2, B, 1〉. In this case
node M and its sibling node N are not added to the CT.

Formally, BP1 works as follows. Let N be a CT node
where the paths for agents ai and aj in N.solution are Pi

and Pj , respectively. Assume that N.solution includes a
conflict C = (ai, aj , v, t) that we want to bypass. We can
now generate the left child and reveal the shortest path P ′i of
ai that satisfies the constraint (ai, v, t) by using the generate-
child() function. If P ′i is a helpful bypass to Pi wrt. con-
flict C, then P ′i is adopted by N without adding any new
constraint to N . Importantly, while the left child of N was
technically generated it will not be added to OPEN and to
the CT. The right child will never be generated and the CT
size is not increased. Similarly, if peeking at the left child
failed because the resulting path was not a helpful bypass,
the same peeking mechanism can be done for agent aj at the
right child. If both peek operations failed then we have these
nodes at hand and insert them to OPEN normally.

While processing node N , BP1 doesn’t incur any ex-
tra overhead over basic CBS due to peek operations. Basic
CBS generates both children and adds both to OPEN. In the
worst case when both peek operations fail, BP1 does exactly
the same as CBS, i.e., generates and adds these children to
OPEN. But if one of these nodes was found helpful then BP1
doesn’t add new nodes to OPEN and might even avoid the
need to generate and run a low-level search for the 2nd child.

The main reason for adopting a path from a child is that a
split action is canceled and new nodes are not generated at
this point. This can potentially save a significant amount of
search due to a smaller size CT as shown in Figure 1.

Bypass2: Deep Search for Bypasses
Bypass2 (BP2) generalizes BP1. Pseudo code for both is
provided in Algorithm 2. Define ST (N) as the subtree be-
low N (including node N ) containing only nodes with the
same cost as N.cost. BP2 searches (in best-first manner ac-
cording to N.NC) through the entire set of nodes in ST (N)
(line 1) in order to find a helpful descendent, i.e., a descen-
dent N ′ ∈ ST (N) such that N ′.NC < N.NC. In line 4
it calls the function generate-child (shown in Algorithm1)
which invokes the low-level. If the child is a helpful descen-
dent (has the same cost but with fewer conflicts, line 5) then
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k Ins. Runtime (ms) Success rate %
CBS BP1 BP2 CBS BP1 BP2

5 100 452 230 257 100 100 100
6 100 153 144 133 100 100 100
7 95 367 227 223 95 96 95
8 85 10,692 5,156 7,615 85 88 88
9 59 20,374 4,835 9,900 60 65 67

10 36 43,488 18,170 21,970 40 47 42

Table 1: 5×5 grid, MA-CBS(5)

this low-level path is returned and adopted by N (lines 6-
7).2 BP1 uses the same pseudo code except that in line 1 it
only allows the two immediate children.

It is important to note that in practical implementation
when BP2 failed to find a helpful descendent (line 9), then
we have all the frontier nodes of this search at hand and they
can be passed to Algorithm 1 which will directly add them to
OPEN without the need to generate them again (and invoke
the low-level again for these nodes).

It is also important to note that node N in its “new suit”
after adopting the solution of one of its descendants will now
be the best node in OPEN and will be chosen for expansion
next.3 Therefore, if it again has a helpful descendent then
the bypass process will be repeated here. In fact, the next
real split will occur only when a bypass call fails.

Experimental results
Performance of BP1 and BP2 We experimented with CBS
and with MA-CBS(B) with various values for B. In general,
in all these settings BP1 outperformed CBS by up to an order
of magnitude. Nevertheless, in very rare cases (a few out
of 25,000) slowdown was observed due to bad tie breaking
and due to recurring conflicts. In some domains BP2 further
outperformed BP1 but in others it was slightly worse.

Table 1 shows representative results (of MA-CBS(5)) for
100 random instances of a 5 × 5 grid with 15% obstacles.
As was done by Sharon et al. (2013; 2012a), we report the
success rate - the number of instances solved by each of
the algorithms within 5 minutes. We also report the average
runtime (in ms) over instances solved by all three algorithms
within 5 minutes (shown in the Ins column). BP1 clearly out-
performed CBS in its success rate and provided speedup of
up to a factor of 5 (for 9 agents). BP2 incurs more overhead
than BP1 in its search but could not find more bypasses as
this domain is dense with agents and most bypasses were
found by BP1. Thus, it was generally worse than BP1.

Figure 2 shows the success rate over 300 instances from
the three standard benchmark maps (brc202d, den520d,

2This is called first-fit adoption. By contrast, best-fit adoption
continues to search all nodes in ST (N) and the path of the helpful
descendant with the smallest NC is returned. We can also param-
eterize the amount of search in ST (N) and halt once we reach a
predefined threshold for the number of allowed nodes Q. BP1 is
a special case of this where Q = 2, while BP2 is the case where
B = ∞. We experimented with all these combinations but only
report the best results for BP2 (of first-fit adoption and Q =∞).

3A mechanism like immediate expand (Stern et al. 2010) which
bypasses OPEN can be efficiently activated here.

Figure 2: Success rate and runtime for the three DAO maps

Figure 3: Success rate: brc202+den520 (left), ost003 (right).

ost003d) of the game Dragon Age: Origins (DAO) (Sturte-
vant 2012) that were used by Sharon et al. (2013; 2012a),
100 instances per map. It also shows the average CPU time
(in seconds) for all instances that were solved by all three
algorithms up to 55 agents and for the BP variants only, for
60 agents or more; hence the jump in the curves at 60. Here
too, BP1 significantly outperformed CBS by up to an order
of magnitude (e.g., 50 agents). This domain is less dense
with agents and many times BP1 could not find bypasses
that BP2 did find. BP2 had better success rate than BP1 and
provided a further factor of up to 1.5 speedup.

Comparison with other algorithms Finally, we com-
pared CBS+BP to the following other MAPF solvers: (1)
our best CBS/MA-CBS variant.4 (2) EPEA* (Felner et al.
2012) which is an enhanced version of A* designed for cases
with large branching factor. (3) ICTS+p (Sharon et al. 2013).
Following Sharon et al. (2012b; 2013) all these were en-
hanced by the Independent Detection framework (ID) (Stan-
dley 2010) which identifies independent groups of agents
and runs separate solvers for each group. In addition, we
executed (4) MA-CBS enhanced with our best BP.5 Fig-
ure 3(left) presents the success rates of each of the solvers
on both den520 and brc202 (total of 200 instances). MA-
CBS+BP clearly outperforms all the other solvers on these
maps. Figure 3(right) presents the results on ost003 (100 in-
stances). MA-CBS+BP outperformed the other MA-CBS-
based solvers on this map too. However, here the trends shift
and ICTS+ID was the best and EPEA*+ID was second for
more than 55 agents. In this map for this range of agents,
there were too many conflicts and the CBS variants are in-

4MA-CBS(10) for den520 and and MA-CBS(100) for ost003
and brc202. EPEA* was used as the low-level solver.

5Combining MA-CBS with both ID and BP (not shown) de-
graded the performance due to duplicating some of the work.
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ferior. This supports the claim that no MAPF solver is best
across all circumstances and topologies.

Conclusions and Future Work
When CBS is used, adding BP on top is a great en-
hancement. This was demonstrated empirically on standard
benchmarks. Future work will (1) further investigate search
for bypasses (2) try to find better low-level paths in the first
place (3) compare and better understand the pros and cons of
the various MAPF algorithms under different circumstances.
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