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Abstract

This paper addresses the problem of domain model acqui-
sition from only action traces when the underlying domain
model contains static relations. Domain model acquisition is
the problem of synthesising a planning domain model from
example plan traces and potentially other information, such
as intermediate states.
The LOCM and LOCM2 domain model acquisition systems
are highly effective at determining the dynamics of domain
models with only plan traces as input (i.e. they do not rely
on extra inputs such as predicate definitions, initial, final and
intermediate states or invariants). Much of the power of the
LOCM family of algorithms comes from the assumption that
each action parameter goes through a transition. One place
that this assumption is too strong is in the case of static pred-
icates.
We present a new domain model acquisition algorithm, LOP,
that induces static predicates by using a combination of the
generalised output from LOCM2 and a set of optimal plans as
input to the learning system. We observe that static predicates
can be seen as restrictions on the valid groundings of actions.
Without the static predicates restricting possible groundings,
the domains induced by LOCM2 produce plans that are typ-
ically shorter than the true optimal solutions. LOP works by
finding a minimal static predicate for each operator that pre-
serves the length of the optimal plan.

Introduction
Modelling is well known as a bottleneck in the develop-
ment of solutions to difficult combinatorial problems. The
research field of automated modelling focuses on the task
of constructing formal descriptions of problems automati-
cally, often using solution data as input. Automated model
acquisition is an active research area in constraint program-
ming, general game playing and computer security (e.g.
(O’Sullivan 2010; Bessiere et al. 2014; Björnsson 2012;
Aarts, De Ruiter, and Poll 2013)).

Domain model acquisition is automated modelling in a
planning context: it is the problem of learning planning
domain models from example data. The LOCM family of
domain model acquisition systems (Cresswell, McCluskey,
and West 2009; Cresswell and Gregory 2011; Cresswell,
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(:action drive-truck-benchmark
:parameters (?t - truck ?d - driver ?l1 - loc ?l2 - loc)
:precondition (and

(at ?t ?l1)
(conn ?l1 ?l2)
(driving ?d ?t))

:effect (and
(not (at ?t ?l1)) (at ?t ?l2)))

(:action drive-truck-locmii
:parameters (?t - truck ?d - driver ?l1 - loc ?l2 - loc)
:precondition (and

(at ?t ?l1)
(driving ?d ?t ?l1))

:effect (and
(not (at ?t ?l1)) (at ?t ?l2)
(not (driving ?d ?t ?l1))
(driving ?d ?t ?l2)))

Figure 1: The Driverlog drive action as encoded manually
in the benchmark domain (top) and by the LOCM2 sys-
tem (bottom). Note the lack of a static precondition in the
LOCM2 version means that there are no restrictions on truck
movement.

McCluskey, and West 2013) learn planning domain mod-
els from collections of plans. In comparison to other sys-
tems of the same type, these systems require only a minimal
amount of information in order to form hypotheses: they
only require plan traces, where other systems require state
information.

However, the LOCM family of algorithms only learn the
dynamic aspects of the domain (i.e. state changes that occur
due to action application). This is problematic since many
domains use static relations to restrict the possible actions.
Consider the Driverlog domain, where the road map is en-
coded as a binary static predicate. Figure 1 shows both the
benchmark and LOCM2 versions of the drive action. The
conn predicate encodes the road map in the hand coded
benchmark. This is not modelled in the induced drive ac-
tion. In this paper, we present an approach that can discover
this type of predicate.

Some of these static relations could be inferred given ex-
tra information about intermediate states. However, it is
more desirable to be able to infer these static relations using
only the minimal information available to the LOCM sys-
tem, since intermediate state information may not always be
available. In this paper, we extend the LOCM system in or-
der to detect static relations. The key assumption in our ap-
proach is that the input is drawn from optimal goal-directed
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plans.
Our approach is to compare the optimal input plans with

the optimal plans found using the induced domain model
of LOCM2. Assuming that LOCM2 has detected the dy-
namics of the problem correctly, then if the induced plan is
shorter, then this is a good clue to the fact that some static re-
lation has gone undetected. Static conditions supporting the
length of the input plans can then be hypothesised. We call
our system LOP (standing for LOCM with Optimised Plans).
We present results that show LOP is effective in discovering
static relations in the standard planning benchmark domains.
We go on to show that even when the restriction of optimal-
ity is removed, and we learn with sub-optimal goal-directed
plans, LOP can still usefully discover static relations.

Background
Since our approach is based on the LOCM family of algo-
rithms, we now briefly present these algorithms, before dis-
cussing the issues involved in detecting static predicates us-
ing only plan traces.

The LOCM Algorithm
LOCM (Cresswell, McCluskey, and West 2009) is a system
for learning domain models from example action sequences.
Its distinguishing feature is that it uses no other informa-
tion besides the action sequences - i.e. no information about
types, predicates, initial or final states. This is possible be-
cause it is based on restricting assumptions about the form
of the domain model.
The assumptions of LOCM are:

1. Each invocation of a planning operator causes a specific
state change in each of the objects given as arguments.

2. The behaviour of each object is described by a single
FSM.

3. Objects are grouped into sorts, and objects of the same
sort are described by identical state machines.

4. Each argument position of each action always takes ob-
jects of the same sort.

5. Each transition appears only once in the FSM.

The domain model construction has two aspects:
Firstly, the action sequences are analysed to obtain a sim-

ple state machine for each sort. This is achieved by sim-
ply creating dummy start and end states for each transition,
where a transition is identified uniquely by an action name
and argument position. The sequences of transitions experi-
enced by individual objects are then tracked through exam-
ple plan sequences. For each pair of transitions occurring
consecutively for an object, unify the end state of the first
transition with start state of the second transition. By re-
peating this process for all objects and all example plans,
the consequential unification of states causes the transitions
to be grouped into a set of state machines. Each state ma-
chine represents the behaviour of a single sort, and the pro-
cess also reveals which objects belong to each sort. E.g. for
a package in Driverlog, the following machine is revealed,
comprising two transitions and two states.

package-1 package-2load_truck.1
unload_truck.1

Secondly, the action sequences are further analysed to es-
tablish whether a given state for a given sort has a tempo-
rary association with another object. If so, the state is quali-
fied with a parameter which records the association. For the
Driverlog packages, they have an association with a place in
one state, and a truck in the other state.

package-1
[p]

package-2
[truck]

load_truck.1
unload_truck.1

It is then possible for the learned model to be translated
into the STRIPS fragment of PDDL. Each state is repre-
sented by a PDDL predicate having its associated object as
first argument, with further arguments formed from state pa-
rameters. Operators are constructed from the transitions and
their parameters, using the binding constraints discovered
between action parameters and state parameters. It is also
possible to output PDDL task descriptions for the example
plans by describing the initial and final states using the syn-
thesised predicates.

While the very simple underlying model representation is
sufficient for many benchmark domains, one of the assump-
tions of LOCM leads to a significant limitation. As the be-
haviour of each sort is described by a single state machine,
it is not possible to describe a sort which has separate in-
dependent aspects to its state. E.g. in Driverlog the sort
truck has the transitions drive truck.1, board truck.2, dis-
embark truck.2, load truck.2, unload truck.2. The fact that
load truck.2 and unload truck.2 can be interleaved arbitrar-
ily with the other transitions masks out the state machine
formed from the other three transitions.

The LOCM2 Algorithm
The LOCM2 system (Cresswell and Gregory 2011) over-
comes some of the limitations of the original LOCM by
generalising the underlying representation to allow a sort
to be represented by multiple state machines, each contain-
ing a subset of the full transition set for the sort. In the
Driverlog example, a separate machine is formed with only
drive truck.1, board truck.2, disembark truck.2 transitions,
and this captures behaviour that was missed in LOCM. An-
other example is 4-operator blocksworld. Here there are
some transitions which only change the state of the top of
a block, and other transitions which change the state of both
the top and bottom of the block. LOCM2 analysis of this do-
main produces separate state machines for top and bottom
of a block.

The generalised LOCM2 representation is still readily
translatable into PDDL-STRIPS, as each transition still only
occurs once within each FSM.
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(:action drive-truck-benchmark
:parameters (?t - truck ?d - driver ?l1 - loc ?l2 - loc)
:precondition (and

(at ?t ?l1)
(conn ?l1 ?l2)
(driving ?d ?t))

:effect (and
(not (at ?t ?l1)) (at ?t ?l2)))

(:action jump-new-move
:parameters (?from - location ?over - location ?to - location)
:precondition (and

(move-ended)
(IN-LINE ?from ?over ?to)
(occupied ?from)
(occupied ?over)
(free ?to)

)
:effect (and

(not (move-ended))
(not (occupied ?from))
(not (occupied ?over))
(not (free ?to))
(free ?from)
(free ?over)
(occupied ?to)
(last-visited ?to)
(increase (total-cost) 1)))

Figure 2: The Driverlog drive action as encoded manually
in the benchmark domain (top) and the jump-new-move ac-
tion from the Peg Solitaire domain. Note the static relations
(conn and IN-LINE respectively)

Defining Static Relations
One task which was previously considered (Cresswell, Mc-
Cluskey, and West 2013) of limited utility is that of PDDL
problem generation from the input plans. In order to gen-
erate PDDL problems, the initial and goal states need to be
known for each FSM. In LOCM this information is easy to
find: the first and last transition in each object’s transition
sequence determines the initial and goal states in the PDDL
translation.

In this work we require LOCM2 generated PDDL prob-
lems. The problem of generating PDDL problem instances
in LOCM2 is complicated by the fact that objects may now
be represented by multiple state machines. It can be the case
that transitions have not been seen for all of the FSMs rep-
resenting an object. In this case, we generate PDDL with no
state for machines of this type. This has the negative conse-
quence of restricting the possible transitions for objects with
this restriction.

Static Relations in Planning
Static relations are often thought of by their semantic inter-
pretations: road maps in Driverlog, successor relations in
Zenotravel and Freecell, for example. This is seen in Fig-
ure 2 for the Driverlog and Peg Solitaire domains. We now
present an alternative purely syntactic interpretation of static
relations that is critical to our work.

Defining Static Relations Static relations can be seen as
restrictions on the groundings of each operator. Instead
of thinking of how the objects are related, we now think
of which combinations of ground operator parameters are
valid. The static relations in a domain can be defined as, for
each operator, a table of all the valid groundings for that op-
erator. Because of this, the static relations for any domain

occupied1
[]

empty
[]

jump_new_move.1

jump_new_move.2

jump_continue_move.2
occupied2

[]

jump_new_move.3

jump_continue_move.3

end_move.1

jump_continue_move.1

ready
[]

blocked
[]

jump_new_move.0

end_move.0

jump_continue_move.0

Figure 3: The derived state machines for the Peg Solitaire
domain. This is a faithful representation of the original do-
main dynamics.

can be encoded as a single relation per operator.
This observation allows us to construct our hypothesis

space of potential static relations. Each operator can be seen
to have a static relation associated with it, and we have to
identify the minimal subset of parameters that permit exactly
the valid groundings of an operator.
We can now present definition of the minimal static relation
identification problem:
Definition 1 (Minimal Static Relation Identification).
Given an operator template:

op(p1, ..., pn)

We define a minimal static relation as the subset Pm ⊆
p1, ..., pn such that all pm ∈ Pm are members of static pre-
conditions of op.

Thus, this problem is simply to identify the parameters
which play a part in the static relation. In reality, there could
be multiple static relations in the precondition. However,
there is no loss of generality, as the cross product of these
relations forms what we have defined as the minimal static
relation. Factoring these smaller relations is an interesting
problem from a practical standpoint, which we return to later
in this work.

Universal Static Relations Some statics are defined for
specific instances and are different in different instances de-
pending on the problem objects. These include the road
maps in Driverlog and the locations of the hoists in Depot,
for example. In contrast to these types of static relations,
there are also those that hold in all instances. For example,
in Peg Solitaire, all instances use the same underlying board.
In Zeno Travel, the static relation that encodes the succes-
sor relation for the fuel levels is the same in all problem
instances. If a static relation holds between all instances, we
call that a universal static relation. When finding static rela-
tions, it will clearly be useful to identify which are universal
relations.

Issues in Detecting Statics The key issue in detecting stat-
ics using plan traces as input is that there are domains which
look very similar, but which vary in the static relations. For
example, Blocksworld and Freecell, in which the goal in
both is to rearrange stacks of objects. In Blocksworld there
are no static relations, in Freecell there are static relation-
ships between the ranks and colours of the cards.
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We can hypothesise two extremes:

• Anything goes: There are no static preconditions - e.g.
blocksworld.

• Over-cautious: The only action instantiations permitted
are exactly the ones that have occurred somewhere in the
training set. This means that for every action schema like
move(?thing,?from,?to), we add a precondition
poss move(?thing,?from,?to), and then create
a static poss move fact for each distinct observed action
instance.

In order to address this issue we use additional infor-
mation about the plans, other than simply the plan traces.
Namely, we identify a set of optimal plans to be used in the
learning phase. In the following sections, we detail exactly
how we use optimal plans to discover static relations.

Detecting Static Relations
The state machine at the bottom of Figure 3 shows the dy-
namics of the position sort in the Peg Solitaire domain. The
state occupied1 is the state in which a position is occupied
by a peg, and there is no current move to continue. From
this state, either the peg at the position is removed by start-
ing a new move, or by another peg jumping over it. Both of
these cases leave the position in the state empty. To become
occupied again, a peg can be moved from elsewhere into
the position. The PDDL generated by LOCM2 is equiva-
lent to the original PDDL, except that the static information
is not present (the important static information is that the
three locations in the parameters of the jump actions are in a
line). Cresswell, McCluskey, and West discuss an approach
to extracting static information in LOCM, but this relies on
manually providing a hint.

Using LOCM2 to Identify Static State Parameters
One method by which we can identify static relations is
through a small modification to the LOCM analysis itself.
Recall LOCM identifies state parameters by finding tempo-
rary associations, as described in the Background section. If
it is the case that the association holds for the entire plan
in all example traces then we form the hypothesis that this
state parameter in fact describes a static relationship. Exam-
ples of when this occurs is in the Logistics domain and the
Depots domain.

In effect, the existing LOCM analysis misreports some
static relations as dynamic relations. Our extra check of the
transition sequences divides the state parameters into those
that are certainly dynamic, and the new class that seem to
represent static relations. Of course, it could be that the state
parameters are indeed dynamic relations, and that the input
plans simply do not contain examples in which the state pa-
rameter changes. As is the case in any learning technique,
overfitting to the input data is a potential problem.

A particular advantage to finding static relations in this
way is that you require no more information than LOCM2
uses. However, there are systematic cases where this anal-
ysis is insufficient to detect all static relations. The state
parameters in LOCM state machines represent one-to-one

and one-to-many relations. Therefore the limit to which the
analysis detailed in this section can detect static relations
does not extend to static many-to-many relations.

We now present an algorithm for detecting static relations
of all types, which can be used as a post-processing step after
LOCM analysis.

The LOP Algorithm
We now present the LOP algorithm that we use to detect
static relations. The algorithm is sketched as follows:

1. Run LOCM2 on both the optimal and suboptimal train-
ing data, constructing the LOCM2 model of the domain
dynamics.

2. Identify minimal subsets of each action’s parameters that
‘preserve’ the optimal length of all plans.

3. Split each relation into a minimal partition that preserve
optimal plan lengths.

4. Identify the universal static relations.

5. Return the valid ground relations and the problem-specific
templates.

LOP Assumptions
The LOP algorithm relies on additional assumptions that we
have discussed in the text. We now make these assumptions
explicit:

1. The LOCM2 system discovers the correct dynamics of the
domain. It is necessary to trust the input from LOCM2
being correct.

2. It is possible to identify the subset of the input plans that
are optimal. These actions are assumed to be unit cost.

Preserving Optimality
All stages of the LOP algorithm rely on testing whether or
not optimality is preserved for a set of input plans. We now
define exactly what we mean by preserving optimality. Con-
sider the following optimal input plan:

(drive truck loc1 loc2)
(drive truck loc2 loc3)

Now, consider the drive action and PDDL problem fragment
induced by LOCM2:

(:action drive
:parameters (?t - truck ?l1 ?l2 - loc)
:precondition (at ?t ?l1)
:effect (and (not(at ?t ?l1))

(at ?t ?l2))
)
(:init (at truck loc1))
(:goal (at truck loc3))

Note that the dynamics of the drive action are correct: the
truck moves from the start location to the destination loca-
tion. However, if we solve this output using an optimal plan-
ner we find the following plan:

(drive truck loc1 loc3)
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Algorithm 1 The Preserve Optimality testing algorithm.
Require: M : an output domain model from LOCM2
Require: T : a set of LOCM2 generated problems
Require: P : a subset of the parameters for each operator

function preserveOptimality
for t ∈ T do

optP← optimal input plan for t
dom←M plus statics defined by P
prob← t plus ground statics defined by optP
optT← optimal solution to dom,prob
if length(optT) < length(optP) then

return false
end if

end for
return true

end function

This plan is shorter than the input plan which we knew to
be optimal. Therefore, we say that the drive action does
not preserve optimality. In order to restore the optimality
we add static relations both in the action preconditions and
the corresponding ground predicates in the initial state. For
example, the set of all parameters yields the following action
and problem fragment:

(:action drive
:parameters (?t - truck ?l1 ?l2 - loc)
:precondition (and (at ?t ?l1)

(drive_static ?t ?l1 ?l2)
:effect (and (not(at ?t ?l1))

(at ?t ?l2))
)
(:init (at truck loc1)

(drive_static truck1 loc1 loc2)
(drive_static truck1 loc2 loc3)

)
(:goal (at truck loc3))

The important thing to note is that in order to test whether
optimality is preserved, we are required to edit the domain
by adding a predicate corresponding to the parameter set,
and we are also required to edit the problem instance to add
the instantiated statics as per the input plan. Algorithm 1
presents the algorithm for testing if optimality is preserved
for a particular parameter set of the operators. In essence,
it checks that each input plan preserves optimality for that
parameter set.

There are eight possible combinations of the parameters
of the drive action (all subsets of the parameters, including
the empty set if there is no static relation). The minimal
static relation for the drive action contains simply the two
locations: in another domain, the truck may form part of the
minimal static relation, an example of this type of is in the
Rovers domain where each rover has its own roadmap. The
algorithm for discovering minimal static relations (or MSRs)
is presented in Algorithm 2 which attempts to remove each
parameter in turn from a candidate relation, adding it back
in if it leads to shorter optimal solutions.

Depending on the current MSR hypotheses for each op-
erator, Algorithm 2 may return different results. For this

Algorithm 2 Minimal static relation hypothesis algorithm.
function MSR

for o : operators do
msr(o)← MSRo(o)

end for
return msr

end function
function MSRo(o : operator)

minS← parameters(o)
for p ∈ minS do

minS′ ← (minS \ {p})
if preserveOptimality(minS′) then

minS← minS′

end if
end for
return minS

end function

reason, the algorithm is run repeatedly until a fix-point is
reached, when the MSRs do not change following an itera-
tion.

Splitting The Static Relation
Once a minimal static relation is found for each operator, we
test if it can be divided into multiple smaller static relations.
As an example, the Freecell domain has the operator:

move(?card, ?cols, ?ncols, ?cells, ?ncells)

Where there is a static relation between cols and ncols and
between cells and ncells. The minimal static relation will be
across all four of these parameters, where it would clearly
be beneficial to identify two separate relations.

In order to split the relation, we need to check the possible
partitions of the parameters in the minimal static relation.
Given a candidate partition of the parameters, we can use the
same approach as when finding the minimal static relation,
and verify that the candidate partition preserves optimality
in the induced tasks.

Checking every partition is computationally prohibitive
for actions with a large number of parameters. For this rea-
son, we propose a pruning technique based on dominated
partition refinements. Suppose that we test a certain partition
of the minimal static relation that fails to preserve optimal-
ity within the input plans. Dividing the partition still further
will not restore that optimality, and so no refinements of that
partition need to be tested. A description of the algorithm is
given in Algorithm 3.

Testing for Universality
As a final step, we test the static relations for universality.
In each input plan, we only have access to a subset of the
ground relations defined in the real problem, since we can
only observe those as revealed by the actions performed. If a
static relation is universal, then all instances share the same
groundings for that relation. This means that for universal
statics, the input plans provide us with a much fuller picture
of the relation.
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Algorithm 3 Minimal static relation splitting algorithm. In
this algorithm rank refers to the rank of the partition (the
size of the largest block minus the total number of blocks).

function MSR Split(P : a partition of the MSR)
if preserveOptimality(P ) = false then

return ⊥
end if
min← P
for P ′ ∈ refinement(P ) do

minP′ ← MSR Split(P ′)
if evaluate(minP′) < evaluate(min) then

min← minP′

end if
end for
return min

end function
function evaluate(P : a partition of the MSR)

if P = ⊥ then
return∞

else
return rank(P )

end if
end function

Intuitively, we collect all of the instances of the static
relations found in the earlier stages of LOP and combine
the groundings across instances. When we combine these
ground instances there are two possible results: the com-
bined relation preserves optimality (in this case we accept
the relation as universal), otherwise the combination of the
ground relation leads to shorter than optimal plans (in this
case, of course, we reject the universality of the relation).
The algorithm is presented as Algorithm 4.

Evaluation
In this section, we demonstrate the effectiveness of the LOP
domain acquisition system on the planning benchmarks.
The experimental setup is as follows: we used the Fast
Downward (Helmert 2006) planner, with the LMCut heuris-
tic (Helmert and Domshlak 2009) with a fifteen minute cut-
off to find optimal plans to as many of the benchmark plan-
ning problems as possible. These form the optimal train-
ing plans needed for the static analysis. For benchmark
instances which then have fewer than 10 optimal plans to
learn from, we generate ten additional problems by sampling
states in a random walk and choosing random pairs of states
as the initial and goal states.

Experiment 1: Optimal LOP Plans

In this experiment, we learn the initial LOCM2 state ma-
chines using both optimal and suboptimal plans. This leads
to a greater coverage of transitions, and hence machines that
match the domain much more closely. However, we also
have a set of plans which we know to be optimal and we use
these plans for the LOP analysis.

Algorithm 4 Universal static relation test. We assume a
preserveOptimality function that works with an input re-
lation here.

function UniversalStatics(R : a set of relations)
U ← ∅
for r ∈ R do

if preserveOptimality(r) then
U ← U ∪ {r}

end if
end for
return U

end function

Experiment 2: Only Suboptimal Plans

In this experiment, we treat goal-directed plans that are not
proven to be optimal the same way as we treat optimal plans
in our previous analyses. For this, we use the LAMA planner
(Richter and Westphal 2010), with a 120 second time cutoff,
and we take the first plan produced. This experiment is to
demonstrate whether or not our strong assumption of opti-
mality is strictly necessary, or whether goal-directed plans
suffice for detecting statics.

Discussion

Table 1 shows the results of both experiments. Underneath
the LOCM2 label, there are two columns, the first indicates
whether or not LOCM2 was able to correctly discover the
dynamics of the domain. If not, this is typically due to one
of the LOCM assumptions being violated. Where possible,
we correct these flaws, so that we can still perform the LOP
analysis. The results for the first experiment, only using an
optimal planner, are shown in the three columns underneath
the ‘LOP Optimal’ heading. The results for the second ex-
periment, using a satisficing planner, are shown in the three
columns underneath the ‘LOP Satisficing’ heading. The col-
umn that counts the number of errors counts either an incor-
rect minimal static relation, a misidentified universal relation
or a missing static relation as an error. Note that there are no
false positive results; LOP never reports a static that isn’t
there. Note also that the satisficing results are effectively the
same as the optimal results.

Generally the results are very positive: of the domains
that have static relations and had valid dynamic output from
LOCM2, nine out of twelve had their static relations discov-
ered error free. LOP can be seen as a LOCM-like system
in that it produces an overly general result when incorrect.
We now present a discussion of some of the more interesting
results:

Driverlog In the Driverlog domain, the structure of both
statics are detected correctly. These are the roads that the
trucks drive on and the path that the drivers can walk on.
The paths are incorrectly identified as universal statics. We
are unsure whether this happens because the path maps are
completely consistent with the input data, or that the path
maps are very dense, leading to many alternative route.
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Domain Operators Input Plans LOCM2 LOP Optimal LOP Satisficing
# #Static #Univ. #Opt #Sub Valid #St. #St. #Uni. #Er. #St. #Uni. #Er.

AoP Freecell 8 3 3 60 60 3 1 2 2 0 2 2 0
Blocks 4 0 0 28 35 3 0 0 0 0 0 0 0
Depot 4 2 0 17 19 3 2 0 0 0 0 0 0
Driverlog 6 2 0 13 15 3 0 2 1 1 2 1 1
Freecell1 10 10 10 14 16 3* 8 - - - 3 1 6
Grid 5 2 2 12 15 3 0 2 2 0 2 2 0
Gripper 3 0 0 7 20 3 0 0 0 0 0 0 0
Logistics 6 1 0 20 28 3 1 0 0 0 0 0 0
Miconic 4 4 2 141 92 3 0 2 0 2 2 0 2
Mystery2 3 3 0 16 19 3* 0 3 0 0 3 0 0
Parking 4 0 0 12 20 3 0 0 0 0 0 0 0
Peg Solitaire 3 2 2 16 20 3 0 2 2 0 2 2 0
Rovers 9 9 0 15 15 7 - - - - - - -
Satellite 5 4 0 17 18 7 - - - - - - -
Scanalyzer 4 4 4 15 13 7 - - - - - - -
Sokoban 3 3 0 18 20 3 0 3 3 0 3 3 0
Storage 5 5 2 15 14 3 0 5 2 0 5 2 0
TPP 4 4 4 16 25 7 - - - - - - -
Visitall 2 2 2 10 20 3* 0 2 2 0 2 2 0
Zenotravel2 5 3 3 12 13 3* 0 3 3 0 3 3 0

Table 1: Table of results running LOP on a collection of benchmark domains. Headings refer to # (number of operators) #Static
(number of operators with static precondition) #Univ. (number of operators with universal preconditions) #Opt (number of
optimal training plans) #Sub (number of suboptimal training plans) Valid (did LOCM2 output complete dynamics) a star means
the input had to be modified to meet the LOCM2 assumptions #St. (number of operators for which statics are found) #Uni.
(number of operators for which universal statics were found) #Er. (the number of errors made in all stages of LOP).

Peg Solitaire In the Peg Solitaire domain, LOP recovers
all of the static information and determines the universal re-
lations that encode the positions that make the rows.

Freecell and AoP Freecell Figure 4 shows the state ma-
chine derived by LOCM2 for the number type that maintains
which column is next available. This type exists only as a
symmetry-breaking measure, ensuring that only exactly one
column of cards can begin at any one time. In the original
benchmark domain, a collection of static predicates describe
the successor function for these numbers. The LOCM2 in-
duced domain encodes this information as a dynamic rela-
tion described by the state machine in Figure 4

Freecell is interesting in that the optimal version of LOP
takes too long to complete (over 24 hours), but the sub-

1The plans for the benchmark Freecell domain often have du-
plicate objects in actions. This violates the LOCM assumption that
each object makes a single transition per action. This arises due to
the fact that integers are encoded as objects and are used to number
the cards and the spaces. We simply provide two sets of objects,
one for counting cards and the other for counting positions, both
mirroring the original number objects.

2In Zeno Travel, LOCM2 unfortunately fails to correctly induce
the dynamics of the domain. This violates one of the LOP assump-
tions. LOCM2 fails to identify the fuel level state parameter in the
plane’s state machine. In order to demonstrate the performance of
LOP we correct this flaw in the LOCM2 output manually. In the
Mystery domain, there is an equivalent problem with the LOCM2
analysis, fixed in the same way.

optimal version does complete, albeit with several mistakes.
All of these mistakes are with respect to the underlying num-
ber system. The detected statics are defining the card orders.
It is possible that with more example plans, a more complete
model would have been discovered.

AoP Freecell is an alternative encoding of Freecell, de-
rived by LOCM from logs of people playing Freecell. This
has been discussed in detail in (Cresswell, McCluskey, and
West 2013), and (Cresswell and Gregory 2011) shows that
LOCM2 produces a correct encoding of the domain’s dy-
namics. Perhaps due to the simplicity of the more natural
set of actions and objects used, both versions of LOP are
able to discover the static relations in this domain.

Miconic Miconic encodes both universal and non-
universal static relations. The universal statics encode an

successor
[xn]

current
[]

newcolfromfreecell.3

sendtonewcol.4

move_b.3

sendtofree_b.4

sendtohome_b.6

predecessor
[xn]

newcolfromfreecell.2

sendtonewcol.3

move_b.4

sendtofree_b.5

sendtohome_b.7

Figure 4: The LOCM2 encoding of a propositionally en-
coded number. What was encoded as a static relation in the
original benchmark is encoded dynamically in the LOCM2
derived domain.
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ordering relation over the floors. The origin and destinations
of the passengers are encoded as statics. LOP successfully
detects the origin and destinations of the passengers (in the
board and depart actions) but fails to detect the relations
between the different floors (in the up and down actions).
This failure is due to the fact that all that happens by allow-
ing more groundings for the up and down actions is that an
up action can now move the lift down (and vice versa). This
will never lead a shorter plan, and so even an empty static
relation for up and down will preserve optimality.

Miconic demonstrates an example of when LOP fails to
discover a static relation. However, it is difficult to know
if this presents a meaningful problem: since all floors are
accessible at all times, it can be argued that the only reason
to have separate up and down actions is as a presentational
device for the plan.

Zeno Travel Zeno Travel encodes the possible transitions
of the fuel level of the planes as universal static relations.
These restrict the groundings of the fly, zoom and refuel
operators. LOP successfully induces these relations in their
scope and universality, and can be said in a way to improve
on the original domain. In the original domain, the zoom
operator:

zoom(plane, loc1, loc2, f3, f2, f1)

encodes that the plane in question uses two units of
fuel. The preconditions encode this as the two predicates
(next f3 f2), (next f2 f1) . The static relation identified by
LOP is between the two parameters f3 and f1 and ignores
f2. This may initially be viewed as a mistake, but on
closer inspection, the universal relation identified encodes
the n plus two relation. The parameter f2 is, in fact, redun-
dant.

Satellite and Rovers Satellite fails in the LOCM2 analysis
as it contains dynamic many-to-many relations, which can-
not be represented in a LOCM state machine. The particular
relation is added by the take-image operator:

(have image ?direction ?mode)

There is a similar problem in Rovers, where images can
also be taken using different camera modalities. In order
to avoid this type of problem, the direction and the mode
objects would need to be combined to form a single direc-
tion mode object.

Summing up, our empirical analysis demonstrates that the
LOP algorithm is effective at discovering static relations for
a wide range of problems. We have also demonstrated do-
mains in which LOCM2 fails to discover the correct domain
dynamics, possibly suggesting new research direction.

Related Work
Within the planning literature, there are many domain model
acquisition systems. These systems each have varying levels
of detail in their input observations. LOCM-derived systems
use a minimal amount of input (only plan traces) whereas
most other systems use predicates, initial and goal states
and possibly intermediate states. The comprimise is that

the target language in LOCM is simpler than many other
systems. The Opmaker2 system (McCluskey et al. 2009;
Richardson 2008) learns models in the target language of
OCL (McCluskey and Porteous 1997) and requires a par-
tial domain model, along with example plans as input.
The ARMS system (Wu, Yang, and Jiang 2007), can learn
STRIPS domain models with partial or no observation of
intermediate states in the plans, but does at least require
predicates to be declared. The LAMP system (Zhuo et al.
2010) can target PDDL representations with quantifiers and
logical implications. Systems that learn planning models in
the presence of noisy and incomplete data (Mourao et al.
2012) have also been studied. Other types of learning in-
clude (Mehta, Tadepalli, and Fern 2011) considering the task
of learning a single state space with no input plans, but with
a system by which an oracle can validate plan hypotheses.
A form of transfer learning has been considered (Zhuo et al.
2011) where action schema are constructed via a combina-
tion of analysing exisiting domains and using web queries to
match operator names.

Outside of the planning literature, model acquisition is
also of interest. In the constraint programming literature
(O’Sullivan 2010; Bessiere et al. 2014), for example, con-
straint model acquisition is performed as an interactive task
between the domain modeller and the acquisition system. In
general game playing (Björnsson 2012) it has been observed
that in addition to being of use in learning game rules, model
acquisition systems can be of use in translating between for-
malisms. In the area of computer security, automata learning
(Aarts, De Ruiter, and Poll 2013) has aided in learning mod-
els of system protocols, for example.

Conclusions and Future Work
Domain model acquisition is useful whenever a knowledge
engineer has access to a controllable system that acts, but
for which the structure of those actions has not been for-
mally specified. Simple observation can provide a means to
discover this formal structure.

We have presented a solution to the problem of domain
model acquisition under the presence of static relations, re-
lying on only plan traces as input. The LOP algorithm relies
on the quality of the input plans serving as a guide to refin-
ing an overly general model generated by the LOCM2 sys-
tem. We have presented the LOP algorithm as using optimal
plans as input. However, as our empirical analysis shows,
even sub-optimal goal-directed plans are typically sufficient
for the detection of the types of statics present in the bench-
mark domains. In fact, due to the relative efficiency of sat-
isficing planners, the sub-optimal version of the system has
better domain coverage than the optimal version.

There will always remain a trade-off between the amount
of information contained in the input to domain model ac-
quisition systems, and the expressiveness of the target lan-
guage for which models can be learnt. For example, the
LOCM family of algorithms at present cannot correctly learn
domains which contain dynamic many-to-many relation-
ships (such as a dynamic road network, for example). Our
future efforts will be to explore this boundary even more
closely.
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