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Abstract

DEC-POMDPs extend POMDPs to a multi-agent setting,
where several agents operate in an uncertain environment
independently to achieve a joint objective. DEC-POMDPs
have been studied with finite-horizon and infinite-horizon
discounted-sum objectives, and there exist solvers both for
exact and approximate solutions. In this work we consider
Goal-DEC-POMDPs, where given a set of target states, the
objective is to ensure that the target set is reached with mini-
mal cost. We consider the indefinite-horizon (infinite-horizon
with either discounted-sum, or undiscounted-sum, where ab-
sorbing goal states have zero-cost) problem. We present a new
and novel method to solve the problem that extends meth-
ods for finite-horizon DEC-POMDPs and the RTDP-Bel ap-
proach for POMDPs. We present experimental results on sev-
eral examples, and show that our approach presents promis-
ing results.

1 Introduction

POMDPs and DEC-POMDPs. Partially-observable Markov
decision processes (POMDPs) are standard models for prob-
lems related to probabilistic planning, where an agent tries to
optimize an objective in an uncertain environment (Howard
1960; Papadimitriou and Tsitsiklis 1987; Kaelbling et al.
1998). There are a wide range of applications of POMDPs
ranging from reinforcement learning (Kaelbling et al. 1996),
to software verification (Cerný et al. 2011) to robot motion
planning (Kaelbling et al. 1998). However, in many scenar-
ios there is not a single agent, but a set of agents whose
joint goal is to optimize an objective in an uncertain envi-
ronment. Each agent has a different view of the state space
of the system, and must choose a local policy based on her
own view, such that the joint policy optimizes the objective
function. For example, a classic scenario is when two robots
are necessary to achieve a task (like moving a large box) and
each of them has a specific view of the environment (Seuken
and Zilberstein 2007; Bernstein et al. 2005). Decentralized
POMDPs (DEC-POMDPs) provide the appropriate model
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for such scenarios, which are an extension of POMDPs to
a multi-agent setting, where each agent has her personal
view of the entire system (Seuken and Zilberstein 2007;
Bernstein et al. 2005; Amato and Zilberstein 2009; Nair et
al. 2003).
Indefinite-horizon objectives. In this work we consider
DEC-POMDPs with indefinite-horizon objectives. We con-
sider DEC-POMDPs with a set of target (or goal) states, and
a cost function that assigns a cost to each transition. Given
a discount factor 0 < γ ≤ 1, the cost of a path is the
discounted-sum of the costs of the transitions in the path.
If γ = 1, then we refer to the objective as the undiscounted-
sum objective, and if γ < 1, then we refer to the objec-
tive as the discounted-sum objective. The costs are accu-
mulated until the target is reached (i.e., once a target state
is reached, from then on the costs are zero). The objective
function we consider is to ensure that the target set is reached
with probability 1 and the accumulated cost according to the
discounted-sum (or undiscounted-sum) is minimized. The
objectives we consider are the classical optimization crite-
ria in the setting of POMDPs and DEC-POMDPs. Note that
while a finite-horizon objective requires to optimize the cost
for a given finite number of steps, and an infinite-horizon
objective requires to optimize over the whole length of the
paths, an indefinite-horizon objective requires to optimize
until the target set is reached.
Restriction. Most problems related to optimizations in
POMDPs are undecidable, e.g., infinite-horizon undis-
counted planning (Paz 1971; Madani et al. 2003). There
is a number of POMDP restrictions that imply decidability
results, e.g., approximations of infinite-horizon discounted
planning, finite-horizon undiscounted planning (Goldsmith
and Mundhenk 1998). To develop a practical approach to
solve POMDPs, restricted class of POMDPs are consid-
ered, where from every state there is a path to a target state,
and such POMDPs are referred to as Goal-POMDPs (Bonet
and Geffner 2009). Several examples of POMDPs that arise
in practice can be modeled as Goal-POMDPs (Bonet and
Geffner 2009; Kolobov et al. 2011). Hence in this work we
consider DEC-POMDPs with the restriction that from ev-
ery state there is a path to a target state, and refer to them
as Goal-DEC-POMDPs. Note, that our restriction is weaker
than the requirement that any strategy reaches the goal states
with probability 1.
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Previous results. One of the most efficient and practical ap-
proach to solve Goal-POMDPs is the RTDP-Bel approach
that extends the classical RTDP approach (Barto et al. 1995).
There are several methods, exact and approximate, to solve
finite-horizon and infinite-horizon DEC-POMDPs (Seuken
and Zilberstein 2007; Amato et al. 2007) (see Related work
for detailed discussion).
Our contributions. In this work we present an approach
to solve Goal-DEC-POMDPs with indefinite-horizon objec-
tives. Our approach combines and extends two classical al-
gorithmic approaches, namely, the RTDP-Bel approach for
POMDPs, and the principle of policy-iteration algorithm for
MDPs (which has been considered for DEC-POMDPs as
well (Banerjee et al. 2012)). Our approach is as follows: we
consider an agent, and fix the policies of all other agents,
and treat the problem as a POMDP and obtain an improved
policy for the agent using a RTDP-Bel approach to solve the
POMDP. We repeat this process for all agents. In principle,
we fix policies for the agents, and use the RTDP-Bel ap-
proach for the policy improvements. The two challenges for
this approach are: (i) how to fix policies in DEC-POMDPs
and interpret the problem as POMDP; and (ii) then trans-
late the policy from the POMDP to the DEC-POMDP. For
the first issue, we compute a probability distribution over
states that mimics the belief-state for the agent, even though
in the multi-agent setting there is no simple notion of belief-
state (Hansen et al. 2004). For the second issue, we merge
belief-states in the POMDP that corresponds to probability
distribution over states in the DEC-POMDP, and thus inter-
pret the policy from the POMDP in the DEC-POMDP. In ad-
dition to our approach, we present several heuristics to make
the approach practical. Our heuristics mainly achieve state-
space reduction for the POMDP construction, and are based
on (i) merging belief-states that are close in terms of proba-
bility distribution; and (ii) even if the DEC-POMDP reaches
a point where no policy is returned by the RTDP-Bel ap-
proach, instead of playing a naive policy, we play based on
policies that correspond to similar beliefs in the POMDP. We
have implemented our approach along with the heuristics,
and present experimental results on several DEC-POMDP
examples from the literature that demonstrates the effective-
ness of our approach. Moreover, we present additional large
examples and demonstrate the scalability of our approach.

1.1 Related work

POMDPs. There are several works for dis-
counted POMDPs (Kurniawati et al. 2008;
Smith and Simmons 2004; Pineau et al. 2003), as well as for
Goal-MDPs and Goal-POMDPs (Bonet and Geffner 2009;
Kolobov et al. 2011; Chatterjee et al. 2015). In this work we
extend the Goal-POMDP solution to Goal-DEC-POMDPs.
DEC-POMDPs. The problem of DEC-POMDPs with vari-
ous objectives has been an active research area, see (Seuken
and Zilberstein 2008; Oliehoek 2012; Kochenderfer 2015)
for surveys. Some important works related to DEC-
POMDPs are as follows: (i) exact algorithms for finite-
horizon objectives (Hansen et al. 2004; Szer et al. 2005);
(ii) approximate methods for finite-horizon objectives (Nair

et al. 2003; Seuken and Zilberstein 2007); (iii) approximate
methods for infinite-horizon discounted objectives (Am-
ato et al. 2007; Bernstein et al. 2005; Szer and Charpil-
let 2005). The undecidability for infinite-horizon objectives
was established in (Bernstein et al. 2002). A translation of
DEC-POMDPs to continuous-state MDPs was established
in (Dibangoye et al. 2013). The error-bounded approxi-
mations for infinite-horizon discounted-sum objectives was
considered in (Dibangoye et al. 2014). An approach based
on fixing policies in turns for finite-horizon objectives was
considered in (Banerjee et al. 2012). While (Banerjee et al.
2012) does not consider indefinite-horizon objectives, we
show how to extend the policy iteration along with RTDP-
Bel approach to DEC-POMDPs with indefinite-horizon ob-
jectives. One of the most closely related work is (Amato and
Zilberstein 2009) that also considers reaching goals in DEC-
POMDPs, but our approach is very different: (Amato and
Zilberstein 2009) considers an approach where policies for
all the agents are constructed simultaneously, and in contrast
we consider extension of policy iteration (for single agent
with other policies fixed) and RTDP-Bel approach to solve
the problem.

2 Definitions: Goal-POMDPs,

DEC-POMDPs

A probability distribution f on a set X is a function f : X →
[0, 1] such that

∑
x∈X f(x) = 1, and we denote by D(X)

the set of all probability distributions on X . For f ∈ D(X)
we denote by Supp(f) = {x ∈ X | f(x) > 0} its support.
DEC-POMDPs. A Decentralized Partially Observable
Markov Decision Process (DEC-POMDP) is defined as a tu-
ple D = (I, S, {Ai}, δ, {Zi},O, c, λ), where (i) I is a finite
set of agents; (ii) S is a set of states; (iii) Ai is a finite set of
actions for every agent i ∈ I; (iv) δ : S×∏

i∈I Ai → D(S)
is a probabilistic transition function that given the current
state s and the vector of actions �a ∈ ∏

i∈I Ai for every
agent gives the probability distribution over the successor
states; (v) Zi is a finite set of observations for every agent
i ∈ I; (vi) O : S×∏

i∈I Ai → D(
∏

i∈I Zi) gives the prob-
ability of observing �z ∈ ∏

i∈I Zi given the current state and
the played actions; (vi) c : S ×∏

i∈I Ai → R is a function
that given a state and the played actions assigns a cost; and
(vii) λ ∈ D(S) is the initial state distribution. We will for
simplicity use A as a shortcut for

∏
i∈I Ai and similarly Z

for
∏

i∈I Zi. Let D denote the class of all DEC-POMDPs.
Subclasses. We identify two subclasses of D based on the
type of the observation function O.
Observation–independent DEC-POMDPs. A DEC-POMDP
D is observation–independent (Allen and Zilberstein 2009)
if the observation function O can be written as a set of in-
dividual observation function Oj for j ∈ I , where Oj :
S ×∏

i∈I Ai → D(Zj). Let O denote this subclass.
Action–independent DEC-POMDPs. A DEC-POMDP D is
action–independent if it is observation–independent and
moreover the individual observation functions Oj for j ∈ I
do not depend on actions played by other agents, i.e., Oj :
S ×Aj → D(Zj). Let A denote this subclass.
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In (Becker et al. 2003) a subclass called transition-
independent DEC-POMDPs was defined, and we denote the
subclass as T. The relationship is as follows: T ⊂ A ⊂ O ⊂
D, and the inclusions are strict.
POMDPs. A Partially Observable Markov Decision Pro-
cess (POMDP) is a special type of DEC-POMDP where the
set of agents I is restricted to be a singleton.
Plays. A play in a DEC-POMDP is an infinite sequence
ρ = (s0,�a0, s1,�a1, s2,�a2, . . .) of states and action sets
�an ∈ A such that s0 ∈ Supp(λ) and for all n ≥ 0 we have
δ(sn,�an)(sn+1) > 0. We write Ω for the set of all plays.
Strategies (or policies). A local strategy (or a policy) for
agent i ∈ I is a recipe to extend prefixes of plays and is
a function σi : (Zi · Ai)

∗ · Zi → D(Ai) that given a fi-
nite history of observations observed by agent i and actions
played by agent i selects a probability distribution over the
actions Ai. For agent i ∈ I we denote by σU

i the strategy
that plays all the actions Ai uniformly at random1, i.e., for
all histories ρ = (z0, a0, z1, a1, . . . , an−1, zn) and actions
a ∈ Ai we have σU

i (ρ)(a) = 1/|Ai|. Given a local strategy
σi for every agent i ∈ I , we denote by σI the joint strategy∏

i∈I σi and σU
I for

∏
i∈I σ

U
i .

Cones and last state. For a finite prefix w ∈ (S · A)∗ · S of
a play, we denote by Cone(w) the set of plays with w as the
prefix (i.e., the cone or cylinder of the prefix w), and denote
by Last(w) the last state of w.
Probability and Expectation Measures. Given a joint
strategy σI and an initial state distribution λ, the unique
probability measure obtained given σI is denoted as PσI

λ (·).
Let K : (S · A)∗ · S → D((Z · A)∗ · Z) be the prob-
ability distribution that given a finite prefix w of a play
gives a probability distribution over the joint observation
and action sequence ρ observed by the joint strategy. We
first define the measure μσI

λ (·) on cones. For w = s,
where s ∈ S, we have μσI

λ (Cone(w)) = λ(s) and for
w′ = w · �a · s we have μσI

λ (Cone(w′)) = μσI

λ (Cone(w)) ·∑
ρ∈Supp(K(w)) K(w)(ρ) · σI(ρ)(�a) · δ(Last(w),�a)(s). By

Carathéodory’s extension theorem, the function μσI

λ (·) can
be uniquely extended to a probability measure P

σI

λ (·) over
Borel sets of infinite plays (Billingsley 1995). We denote by
E
σI

λ [·] the expectation measure associated with strategy σI .
Objectives. We consider the following objectives:
(Un)Discounted Sum Objectives. The traditional optimiza-
tion objective in (DEC-)POMDPs is defined as follows:
given a discount factor 0 < γ ≤ 1 and a play ρ =
(s0,�a0, s1,�a1, s2,�a2, . . .) the discounted infinite-horizon
sum of the the play ρ is the value Sum∞

γ (ρ) =
∑∞

n=0 γ
n ·

c(sn,�an). A discounted finite-horizon sum, where a horizon
length m is given, only considers the prefix of length m of
a play, i.e., Summ

γ (ρ) =
∑m

n=0 γ
n · c(sn,�an). The undis-

counted sum is a special case where γ is required to be 1.
Reachability Objectives. Goal-(DEC-)POMDPs are addi-
tionally equipped with a reachability objective. A reachabil-
ity objective is a measurable set of plays ϕ ⊆ Ω defined by a

1For simplicity and w.l.o.g., we consider that all actions in Ai

are available in all states.

set of absorbing goal states G ⊆ S as follows: Reach(G) =
{(s0,�a0, s1,�a1, s2,�a2, . . .) ∈ Ω | ∃n ≥ 0 : sn ∈ G}.
In the framework of Goal-(DEC-)POMDPs it is additionally
required that for all states s ∈ G and actions �a ∈ A, (i) we
have δ(s,�a)(s) = 1 (i.e., s is absorbing); and (ii) the cost
function assigns c(s,�a) = 0; i.e., once a play reaches a goal
state it stays there and stops to accumulate costs. Observe
that the cost restriction on the absorbing goal states of Goal-
(DEC-)POMDPs allows the indefinite-horizon objectives to
be expressed as infinite-horizon objectives.
Almost-sure winning. Given a (DEC-)POMDP D with
a reachability objective Reach(G) a joint strategy σI is
almost-sure winning iff P

σI

λ (Reach(G)) = 1. We denote
by AlmostD(G, λ) the set of all joint almost-sure winning
strategies from the initial state distribution λ.
Optimal cost under almost-sure winning. Given a Goal-
(DEC-)POMDP D with a reachability objective Reach(G)
and a cost function c we are interested in minimizing the
expected discounted (or undiscounted) sum of costs before
reaching the goal set G, while ensuring that the goal set is
reached almost-surely. Formally, the value of an almost-sure
winning joint strategy σI ∈ AlmostD(G, λ) is the expecta-
tion Val(σI) = E

σI

λ [Sum∞
γ ], and the objective is to mini-

mize Val(σI) over almost-sure winning strategies.
In our work we assume that the (DEC-)POMDP do not

contain states from which the goal states are no longer reach-
able, i.e., for every initial state distribution λ the joint strat-
egy σU

I belongs to the set of almost-sure winning strategies
AlmostD(G, λ).

3 Approximate Algorithm for Goal-POMDPs

In this section we summarize the key concepts of the RTDP-
Bel algorithm (Bonet and Geffner 2009) that is an approx-
imate solver for Goal-POMDPs. In the following section
we show how to extend RTDP-Bel for solving Goal-DEC-
POMDPs, inspired by an approach from the work (Banerjee
et al. 2012) for finite-horizon objectives.

The state of the art algorithm for solving Goal-POMDPs
is RTDP-Bel (Bonet and Geffner 2009), that is an adap-
tation of the older RTDP algorithm (Barto et al. 1995) to
Goal-POMDPs. It uses the well-known approach of turning
a POMDP into a completely observable continuous MDP
over belief states (Åström 1965; Sondik 1978). Formally, a
belief state is a probability distribution b ∈ D(S), that rep-
resents the information the agent has about the current state.
Belief state updates. Given the current belief state b, the ac-
tion a played by the agent, and the observation z observed,
it is straightforward to compute the newly reached informa-
tion state b′ (Cassandra et al. 1994) using the transition and
observation probabilities. We write b′ = Update(b, a, z) for
the belief state update.
Belief state discretization. In order to bound the size of the
MDP, the algorithm uses a discretization method Disc that
maps belief states to qbeliefs. A qbelief is a function q :
S → N. Given a belief state b the corresponding discretized
qbelief q = Disc(b) is defined as follows: for every state
s ∈ S the value of q(s) is ceil(D·b(s)), where D is a positive
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integer parameter of the method. Note, that the discretization
method preserves the support of the belief states.
Algorithm. The algorithm runs simulations of the POMDP
as follows. Every simulation starts in the initial belief
state λ, and terminates when a goal state or an upper bound
on the length of the simulations is reached. The informa-
tion learned from the simulations is stored in a hashtable
that maps qbeliefs to an estimation of the expected cost until
a goal state is reached, i.e., the value of the qbelief.

During the simulation the algorithm maintains the current
belief state b. In every step of the simulation for every action
a ∈ A and observation z ∈ Z the new belief state b′ =
Update(b, a, z) is computed that is discretized into a qbelief
q′ = Disc(b′). The next action to be played by the strategy
is one that minimizes the estimations of the expected costs
stored in the hashtable for the qbeliefs q′. The data from the
simulation are used to update the hashtable, and to improve
the strategy for the following simulations.

There are theoretical downsides of using the discretization
method: the convergence is not guaranteed, and the values of
the learned strategy may oscillate. Additionally, the learned
expected cost is not guaranteed to be an upper bound on the
optimal cost. However, the learned strategy can be evaluated
(by fixing the strategy and obtaining the value in the Markov
chain) and the obtained value is guaranteed to be an upper
bound on the optimal cost. Despite the theoretical disadvan-
tages, in practice the RTDP-Bel method works very well.
In the experimental sections of (Bonet and Geffner 2009;
Chatterjee et al. 2015) it is shown that RTDP-Bel scales to
examples that could not be solved exactly before. Finally,
on smaller examples, the computed values match the values
obtained from an exact solver. Hence in practice RTDP-Bel
algorithm is the state-of-the-art solver for Goal-POMDPs.

4 Approximate Algorithm for Goal-DEC-POMDPs

In this part we present our new approach that extends the
RTDP-Bel algorithm to provide joint strategies for DEC-
POMDPs. We build on the approach presented in (Baner-
jee et al. 2012) for finite-horizon objectives. Informally, we
fix policies of all but one agent, obtain a POMDP, and use
RTDP-Bel for the policy improvement in a POMDP.
Algorithm overview. Intuitively, we initialize every agent
i ∈ I with an initial strategy σ0

i and fix all the initial strate-
gies of the agents in the DEC-POMDP except for one. As the
strategies for all but one agent, say i, are fixed, the resulting
model is a POMDP. By running RTDP-Bel on the POMDP
we obtain a new strategy σ1

i for agent i. In the next round we
choose another agent j and fix all the current strategies of the
remaining agents, construct a POMDP, and improve the cur-
rent strategy of agent j. We iteratively cycle through agents
and improve their strategies until the desired value of the
joint strategy is reached. For simplicity of presentation and
without loss of generality we will consider only two agent
DEC-POMDPs in the following text (see Remark 1).

Remark 1 The case for more agents is as follows. In case of
more agents, it is intuitively possible to merge the remaining
agents into a single agent in every iteration and instead of

a set of strategies consider the joint strategy of the merged
agents. The presented methods can be easily extended to
handle joint strategies.

Main challenges. There are two key issues relevant to our
algorithmic approach. First, the method that fixes strategies
for agents in a DEC-POMDP and obtains a POMDP as a re-
sult. In the case of two agents i and j, the belief state update
of the agent i whose strategy is fixed depends on the action
played by agent j. Thus unless all actions are fixed, belief
update interpretation is difficult and we take a cooperative
approach since the agents have a joint objective. Second, we
obtain a strategy in the reduced POMDP, and the challenge is
to interpret the strategy of the POMDP in the DEC-POMDP.
Below we present the solution for both the issues.
Fixing a strategy in a DEC-POMDP. Given a Goal-DEC-
POMDP D = ({i, j}, S, (Ai,Aj), δ, (Zi,Zj),O, c, λ), let
σi be a strategy for agent i that is for simplicity of the type
σi : D(S) → D(Ai), i.e., given a belief state gives a prob-
ability distribution over the actions to be played next. For a
DEC-POMDP D with a set of goal states G, we denote by
P = D�σi the Goal-POMDP P that is obtained from DEC-
POMDP D by fixing strategy σi of agent i. The POMDP
P = ({j}, S′, {Aj}, δ′, {Zj},O′, c′, λ′) is defined as:
• The states are S′ = {(s, b) | s ∈ S, b ∈ D(S)}, i.e., a

state of D and a probability distribution that mimics the
belief state of agent i.

• The transition probability δ′((s, b), aj)((s′, b′)) for aj ∈
Aj is defined as the product of the follows. Let P (b,�a) :

D(S) × A → D(D(S)) denote the probability distribu-
tion of updating to the belief state b′, given the current
belief state is b and actions �a are played. The transition
probability is given as follows:

δ′((s, b), aj)((s′, b′)) =∑

ai∈Ai

σi(b)(ai) · δ(s,(ai, aj))(s′) · P (b, (ai, aj))(b
′)

i.e., for every action ai of agent i the components are
the probability that agent i plays action ai, the transition
probability of moving to state s′, and the probability of
updating to belief state b′. Note that due to the presence
of multiple agents, the notion of a belief state update is
not well defined, as it depends on the action of agent j.
The intuitive explanation of the distribution stored in the
state, is the belief state of agent i if agent j cooperates and
plays the expected action.

• The observation function O′ is a projection of the function
O, conditioned on strategy σi. Formally:

O′((s, b), aj)(zj) =∑

ai∈Ai

σi(b)(ai) ·
∑

zi∈Zi

O(s, ai, aj)((zi, zj))

• The cost c′ is weighted over the actions played by strategy
σi, i.e., the function is:

c((s, b), aj) =
∑

ai∈Ai

σi(b)(ai) · c(s, (ai, aj))
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• The initial belief state for agent i is λ, therefore the dis-
tribution is defined λ′((s, b)) = λ(s) for b = λ and 0
otherwise.

The goal states of the POMDP P = D � σi are all states
(s, b), where s is an goal state of DEC-POMDP D. The out-
put POMDP P is then used as an input for the RTDP-Bel al-
gorithm. The tool outputs a deterministic strategy σj for the
POMDP, i.e., given a belief state the strategy returns a single
action to be played next. Note, that the number of states in
the POMDP does not increase with the number of iterations.
In the next part we show how to interpret a strategy σj of
POMDP P in the DEC-POMDP D.
Interpreting the POMDP strategy. Let the current two
strategies for agents i and j be σk

i and σ�
j , respectively. We

fix a strategy σk
i in the DEC-POMDP D and obtain a strat-

egy σj for the POMDP P = D�σk
i . In this part we present

how to interpret the strategy σj in the context of the DEC-
POMDP and obtain an improved strategy σ�+1

j for agent j.
The strategy σj is of type D(S×D(S)) → D(Aj), whereas
the strategy σ�+1

j needs to be of type D(S) → D(Aj).
We define a transformation function Reduce that reduces

belief states b′ from the POMDP to belief states b of the
DEC-POMDP as follows: Given a belief b′ ∈ D(S×D(S))
in P, the reduced belief b = Reduce(b′), where b ∈ D(S)
in D, for a state s ∈ S is defined as follows: b(s) =∑

b∈D(S) b
′(s, b). In other words, given a state s we sum

the probabilities of all states, where the first component is s,
i.e., the states differ only in the belief state of agent i.

Given a belief state b in the DEC-POMDP D, the new
strategy σ�+1

j (b) is defined as follows:

1. Compute all belief states b′ such that b = Reduce(b′),
where the corresponding qbeliefs q = Disc(b′) are stored
in the hashtable. If there are no such beliefs play all the
available actions uniformly at random.

2. For every belief state b′ compute the discretized qbelief
q = Disc(b′) and utilize the hashtable stored by RTDP-
Bel that for any given qbelief stores its value, i.e., the ex-
pected sum of costs before the goal state is reached, and
selects an optimal belief b′.

3. The strategy σ�+1
j (b) is defined to play the action ac-

cording to the optimal value over the considered qbeliefs
stored in the hashtable with probability 99% (according
to the optimal belief b′). With the remaining probability
1% plays all the other actions from Aj uniformly at ran-
dom. Note that this ensures that all actions are played with
positive probability, and as a consequence we can show
(in item 1 of Theorem 1) that the POMDP we obtain is a
Goal-POMDP.

Our approach is summarized as Algorithm 1. In the first
step all the agents are initialized with a strategy that always
plays all available actions uniformly at random. The algo-
rithm is parametrized with an integer k, that specifies how
many times should a strategy of an individual agent be im-
proved.

Theorem 1 The following assertions hold:

Algorithm 1 GOAL-DEC-POMDPS

Input: Goal-DEC-POMDP D, Integer k
Output: A joint strategy σI

	 Initialize the agents with initial strategies
for i ∈ I do

σ0
i ← σU

i

	 Iteratively improve the strategies
for 0 ≤ u < k do

for j ∈ I do
POMDP P ← D�(

∏
i∈I\{j} σ

u
i )

σj ← RTDP-Bel(P)
σu+1
j ← InterpretOnDEC-POMDP(σj)

return σI ← ∏
i∈I σ

k
i

1. During the computation of Algorithm 1, the constructed
POMDPs are Goal-POMDPs.

2. The value of the computed joint strategy σI is an upper
bound on value of the optimal-cost joint strategy.

Proof. For the first item, note that for every agent i ∈ I
and every 0 ≤ u ≤ k the strategy σu

i satisfies that for ev-
ery belief state b we have Supp(σu

i (b)) = Ai. Therefore,
any path in the DEC-POMDP can be mapped to a path in
the POMDP that is obtained by fixing the strategies of the
agents. Since we consider Goal-DEC-POMDP, it follows
that in the POMDP there is a path from every state to a target
state, and hence we obtain a Goal-POMDP. For the second
item, note that the value learned from RTDP-Bel is not guar-
anteed to be an upper bound on the optimal value, however,
we can evaluate the joint strategy by constructing the corre-
sponding Markov chain. The expected cost to reach the goal
state in the chain is an upper bound on the optimal value.

�

Remark 2 (Discussion) The crucial property that affects
the performance of Algorithm 1 is the estimation of the cur-
rent belief of agents given the currently fixed strategy. Con-
sider that agent i is improving its strategy. The knowledge of
the belief of agent j allows agent i to estimate what action
agent j is going to play, and cooperate with agent j. Thus
the accurate belief estimation allows for efficient coopera-
tion. For the general class of DEC-POMDPs the estimation
can be imprecise due to two reasons: (1) the observation
function O, as the probability distribution over observations
for agent i depends on the observation for agent j, which
is not known; and (2) the randomized strategy, the observa-
tion distribution for agent i depends on the action played by
agent j which in case of a randomized strategy is not known.

However, in the special case of observation–independent
DEC-POMDPs there is no imprecision due to observation
function (due to independence), and the only imprecision in
this setting is due to a potentially randomized strategy. Fi-
nally, in case of action–independent DEC-POMDPs even
though the imprecision due to strategy can appear as well,
but unlike in the previous case the error in the estimation is
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only local (i.e., in each step), and the error does not prop-
agate in the further steps for estimation. Thus for the sub-
classes O and A our algorithm is likely to perform well.

Remark 3 (Comparison with JESP Algorithms.) The
presented algorithm is related to the JESP algorithm (Joint
Equilibrium-based Search for Policies) (Nair et al. 2003).
The main differences are as follows: (i) JESP algorithms
are designed for finite-horizon objectives and crucially rely
on the knowledge of the horizon length, whereas our algo-
rithm works for indefinite-horizon objectives, and (ii) for
finite-horizon objectives the strategy search space is finite
and well-understood as compared to indefinite-horizon
objectives (Szer and Charpillet 2006).

Remark 4 (Technical remark) Note that in our approach
we store state and belief state pairs, instead of states and
qbelief pairs. We remark that the simpler approach to re-
place belief states with qbeliefs in the states of the POMDPs,
that are obtained by fixing the strategies of the agents, might
not yield satisfactory results. Intuitively, the stored belief
state may evolve for a sequence of steps, even when the
corresponding qbelief remains unchanged. The qbelief is
changed only after a certain number of steps. This behav-
ior is not captured if qbeliefs instead of the belief states are
considered.

5 Heuristics
In this section we present a number of possible heuristics to
make our approach practical. Intuitively, any joint strategy
σI , that satisfies that the individual strategies of the agents
always play all the available actions with positive proba-
bility, is almost-sure winning for the reachability objective.
Therefore, we focus on heuristics that reduce the size of the
state space of the POMDPs constructed in Algorithm 1, to
speed up the construction of the POMDP and run RTDP-Bel
on smaller instances.
Merge states with close belief states. Given a DEC-
POMDP D and a strategy σi for agent i ∈ I the constructed
POMDP P = D �σi has a continuous set of states due to
the fact that the states s are elements in S × D(S). We ex-
ploit the assumptions, that if two probability distributions
are similar, then it suffices to keep one of them as represen-
tative and reduce the size of the POMDP. Given a threshold
δ > 0 we say that two belief states b, b′ ∈ D(S) are δ-close
if the following two conditions hold:
1. Supp(b) = Supp(b′); and
2. for all s ∈ S : |b(s)− b′(s)| ≤ δ.
In the constructed POMDP, whenever a new state (s, b) is
to be added, it is checked that whether there exists a state
(s, b′), where b and b′ are δ-close. If it is the case, then tran-
sitions to (s, b) are redirected to (s, b′), otherwise a new state
(s, b) is added. This heuristic ensures that the constructed
POMDP has a finite state set, and can be used to adjust the
size of the POMDP.
Relax the interpretation of the strategy. As defined in Sec-
tion 4 (item 1 of Interpreting the POMDP strategy), when-
ever no matching qbelief is found in the hashtable from the

RTDP-Bel computation, a default naive option of playing
all the available actions uniformly at random is chosen. In
this heuristic we consider instead other qbeliefs stored in the
hashtable, that are close to the qbelief that is missing (in a
similar sense as in the previous heuristic). The resulting dis-
tribution over the actions will still play all the available ac-
tions with positive probability, but the resulting distribution
is a weighted sum based on the closeness of the other qbe-
liefs and their probability distributions over played actions.

Initial strategies of the agents. It is possible to initialize
individual agents with different initial strategies, that can
affect the performance of the computation. Without prior
knowledge of the model, the strategy that plays all the avail-
able actions uniformly at random performs well, as it ex-
plores the largest state space of the DEC-POMDP with high
probability.

More aggressive reductions of the state space. For larger
examples one can significantly reduce the state space of the
POMDP by deploying more aggressive reductions. One can
view the belief state component of the state as an informa-
tion that the strategy uses to make decisions. There are vari-
ous possibilities to reduce the size, we give a few examples:

• Remove states s from the belief state b (assign b(s) = 0),
when their probability b(s) is a below a certain threshold
and distribute the probability mass to the other states.

• For a given integer n keep only the n highest probable
states in the belief state and remove all the others.

6 Implementation and Experimental Results

We have implemented our approach presented in Section 4
together with the heuristics from Section 5 in Java. We
have modified the existing implementation of RTDP-Bel in
C++ to export the strategy together with the content of the
hashtable storing the values and actions for individual qbe-
liefs to a file.

Key difference to existing tools. Several benchmarks pre-
sented in the literature are naturally expressed as Goal-
DEC-POMDPs. However, in the literature the infinite-
horizon discounted-sum objective is considered, rather than
indefinite-horizon (discounted-sum or undiscounted-sum)
objectives. Thus our setup is different from most exist-
ing tools. Since in the literature the objective is infinite-
horizon discounted-sum, for the benchmarks the objectives
have been expressed as follows: whenever a target state of
the DEC-POMDP is reached a negative cost (reward) is ac-
quired and the DEC-POMDP is restarted back to the ini-
tial distribution. Note that in this approach undiscounted-
sum objectives are not allowed, and the discounted-sum
costs are accumulated even after the goal has been reached.
Our framework allows to explicitly specify goal states in
the input file and can handle undiscounted-sum (as well as
discounted-sum) indefinite horizon problems, and provide a
natural and convenient framework to model the problems.

Experimental setup. For every example we run a number of
iterations of strategy improvements. The constructed strate-
gies are then evaluated by constructing a Markov chain and
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the value of the strategies is computed by running simu-
lations within the RTDP-Bel algorithm. In iteration 0 the
strategies are initialized to the naive setting, where all avail-
able actions are played uniformly at random. The time
needed to evaluate the strategies after the last iteration fin-
ishes is very small and is not included in the running times.
We have experimented with a number of examples from the
literature on an Intel Core i7 (2.5 GHz) CPU equipped with
16GB of RAM. We have extended the .dpomdp file format
with the possibility to specify goal states. For every POMDP
constructed we run 20k simulations with RTDP-Bel, to con-
struct a strategy. We use the built-in standard cut-off length
250 for the length of simulations. The membership of indi-
vidual benchmarks in the DEC-POMDP subclasses is sum-
marized in Table 1.

Benchmarks
DEC-POMDP class
T A O D

Meet in the grid × � � �
Decentralized Tiger × × � �

Box-pushing × � � �
Hallway 1–3 × × � �

RockSample 1–3 × × � �

Table 1: Classification of the DEC-POMDP benchmarks.

Meeting in a grid problem. The problem is based on the
Meeting in the Grid problem of (Bernstein et al. 2005) and
used later in (Amato and Zilberstein 2009; Dibangoye et al.
2014). We require two agents that move in a 2x2 grid to meet
at the same grid position. The state where the two agents a
share a single grid position is a goal state. Initially the agents
are placed uniformly at random among all the positions in
the grid, where they do not share the same position. We as-
sign a cost of 1 to every move of the agents until they meet
in the grid. The objective is to minimize the undiscounted-
sum of costs, i.e.,the expected number of steps the agents
need to meet at a grid position (in other words, this is the
stochastic shortest path problem). In the Table 2 we report
the obtained values for individual iterations, where iteration
0 corresponds to the naive joint strategy, where all the agents
play all available action uniformly at random. The values of
the strategies after the 3rd iteration do not change. The re-
sults are presented in Table 2.
Decentralized Tiger problem. The problem is an extension
of the well-known tiger problem POMDP (Kaelbling et al.
1998) to the multi-agent setting and is used extensively in
the literature (Dibangoye et al. 2013; Amato and Zilberstein

Meeting in the Grid problem |S| = 16, |A| = 3, |Z| = 2, |I| = 2

Num of iter. Val. Tot. time

0 10.28 -
1 6.5 4.1s
2 6.5 8.2s

3–5 4.87 9.64s

Table 2: Results for the Meeting in the Grid problem

2009). The problem models two agents that are standing in
a hallway with two doors. Behind one of the doors is a tiger,
behind the other a treasure. Therefore there are two states:
the tiger is behind the left door or behind the right door.
Both agents have three actions at their disposal: open the
left door, open the right door, and listen. They cannot ob-
serve the action of the other agent. Whenever both agents
open jointly a door with the treasure the model reaches a
goal state. Otherwise the model is restarted (tiger is placed
again randomly). Every move before reaching the goal state
has cost 1, we consider the undiscounted-sum objective. The
results are presented in Table 3. Unlike in the previous ex-
ample, one iteration was sufficient to obtain strategies that
do not improve with more iterations (in this example the op-
timal value is 2). The results are presented in Table 3.

Decentralized Tiger problem |S| = 3, |A| = 3, |Z| = 2, |I| = 2

Num of iter. Val. Tot. time

0 17.37 -
1 2.05 0.37s

2-4 2.04 0.58s

Table 3: Results for the Decentralized Tiger problem

Box-pushing problem. The cooperative box-pushing prob-
lem is a well-known robotics problem introduced by (Kube
and Zhang 1997). Two agents have to cooperate to move
a big object (the box) that they could not move on their
own. Even though the robots cannot communicate with each
other, they have to achieve a certain degree of coordina-
tion to move the box at all. The problem was considered
as a DEC-POMDP in (Seuken and Zilberstein 2007). We
define the goal states as the situation when some of the
boxes is pushed in its goal position, and we assign only pos-
itive costs (instead of positive and negative costs used in the
discounted-sum setting). See Table 4 for results.

Box Pushing problem |S| = 100, |A| = 4, |Z| = 5, |I| = 2

Num of iter. Val. Tot. time

0 556.68 -
1 414.82 73.4s

2-4 252.52 136.3s

Table 4: Results for the Box Pushing problem

Rover example. In our experimental result we compare
with the examples studied in (Amato and Zilberstein 2009).
Along with the examples we presented, (Amato and Zilber-
stein 2009) also considers another (Mars Rover) example.
For this example our algorithm performs poorly, mainly be-
cause the constructed POMDP is quite large. After two iter-
ations we could improve the value of the naive strategy (that
plays all actions uniformly) by 5% and it took around 40
minutes.
Large examples. We present two new large observation–
independent DEC-POMDP domains with number of states
up to 1600.

94



Hallway. The problem is inspired by Hallway prob-
lems (Littman et al. 1995). We assume there are agents
placed into a maze with several places of interest. The ob-
jective is to visit all places of interest in any order by some
agent. The agents are equipped with sensors that enable it
to detect walls and other agents immediately adjacent to its
current location. Every agent has four noisy actions that rep-
resent the movement in the four compass directions. We con-
sider three different sizes of the Hallway problem. The re-
sults are presented in Table 5. The size of the constructed
POMDPs did not exceed 2000 states.

Hallway 1 |S| = 101, |A| = 4, |Z| = 17, |I| = 2

Num of iter. Val. Tot. time

0 16.4 -
1–3 3.04 9.78s

Hallway 2 |S| = 576, |A| = 4, |Z| = 17, |I| = 2

Num of iter. Val. Tot. time

0 78.34 -
1 6.03 452.97s
2 4.53 563.34s

3–5 4.02 702.64s

Hallway 3 |S| = 1569, |A| = 4, |Z| = 17, |I| = 2

Num of iter. Val. Tot. time

0 98.22 -
1 56.2 2513.88s

2–4 5.48 4717.81s

Table 5: Results for the Hallway problems

RockSample. The problem is inspired by RockSample
POMDPs (Smith and Simmons 2004). As in the case of
Hallway problems, we assume there are agents placed into
a maze with places of interest. In some of the places ran-
domly mining sites are placed. In order to mine a site all the
agents must be at the same time at the mining site. Whether
there is a mining site on a place of interest is not known to
the agents beforehand. The agents can detect whether there
are walls or other agents adjacent to their current location.
The movement is deterministic in the four compass direc-
tions. We consider three different sizes of the RockSample
problem. The results are presented in Table 6.

6.1 Comparison with other DEC-POMDP
solvers.

The other existing related tools for DEC-POMDPs are
the goal Directed algorithm introduced in (Amato and
Zilberstein 2009) and the state-of-the art infinite-horizon
discounted-sum DEC-POMDP solver introduced in (Diban-
goye et al. 2013). These implementations are not (publicly)
available for comparison. We compare our results with the
results reported from (Dibangoye et al. 2013; Amato and
Zilberstein 2009). Note that since we have indefinite-horizon

RockSample 1 |S| = 102, |A| = 4, |Z| = 15, |I| = 2

Num of iter. Val. Tot. time

0 10.89 -
1 1.99 2.96s

2–4 1.99 5.19s

RockSample 2 |S| = 402, |A| = 4, |Z| = 15, |I| = 2

Num of iter. Val. Tot. time

0 17.72 -
1 11.18 90.41s
2 11.09 160.34s

3–5 3.42 222.46s

RockSample 3 |S| = 1602, |A| = 4, |Z| = 15, |I| = 2

Num of iter. Val. Tot. time

0 18.51 -
1 18.51 305.8s
2 17.15 802.53s
3 17.15 1145.05s

4–6 12.7 1599.66s

Table 6: Results for the RockSample problems

undiscounted-sum objectives, and the cost assignments are
different, the computed values are different. We have also
modified DEC-POMDPs by adding new goal states. Nev-
ertheless, the remaining states, transitions, and observations
are similar. Also the results were computed on different but
similar platforms. Hence the time comparison maybe ap-
proximate at best. In the table, we report the runtime until
the iteration after which the values do not improve.

Algorithm Dec. Tiger Meet in the Grid Box pushing
Val. Time (s) Val. Time (s) Val. Time (s)

BFS -14.1 12007 4.2 17 -2 1696
DEC-PBI -52.6 102 3.6 2227 9.4 4094
NLP -1.1 6174 5.7 117 54.23 1824
Goal Directed 5.0 75 5.6 4 149.9 199
FB-HSVI 13.5 6 - - 199.4 15.2
Our algorithm 0.37 9.64 136.3

Table 7: Time comparison of the existing algorithms

7 Conclusions

In this work we presented a new approach, based on RTDP-
Bel for Goal-POMDPs and the principle of policy itera-
tion algorithm, for Goal-DEC-POMDPs. Along with our ap-
proach we presented a number of heuristics. One bottle-
neck of our approach is that the POMDP constructed can
be large, and an important direction of future work would be
to explore methods for state-space reduction of the POMDP.
In DEC-POMDP an important concern is to obtain small-
size policies, which was considered in (Amato and Zilber-
stein 2009). Whether our approach can be extended to obtain
small policies is another direction of future work.
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