
The Mathematics of Dispatchability Revisited

Paul Morris
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

Abstract

Dispatchability is an important property for the efficient ex-
ecution of temporal plans where the temporal constraints are
represented as a Simple Temporal Network (STN). It has been
shown that every STN may be reformulated as a dispatch-
able STN, and dispatchability ensures that the temporal con-
straints need only be satisfied locally during execution. Re-
cently it has also been shown that Simple Temporal Networks
with Uncertainty, augmented with wait edges, are Dynami-
cally Controllable provided every projection is dispatchable.
Thus, the dispatchability property has both theoretical and
practical interest.
One thing that hampers further work in this area is the under-
developed theory. The existing definitions are expressed in
terms of algorithms, and are less suitable for mathematical
proofs. In this paper, we develop a new formal theory of dis-
patchability in terms of execution sequences. We exploit this
to prove a characterization of dispatchability involving the
structural properties of the STN graph. This facilitates the
potential application of the theory to uncertainty reasoning.

Introduction

The concept of Dispatchability was introduced by (Muscet-
tola, Morris, and Tsamardinos 1998) in the context of execu-
tion of temporal plans. The work was motivated by the needs
of the Remote Agent experiment (Muscettola et al. 1998),
where an AI system controlled the NASA Deep Space I
spacecraft for several days.

Dispatchability is a property of a Simple Temporal Net-
work (STN) (Dechter, Meiri, and Pearl 1991) that allows
the network to be correctly executed even when propagation
is limited to neighboring timepoints. Another way of look-
ing at this (Morris et al. 2013) is that temporal constraints
need only be checked locally when deciding whether to ex-
ecute a procedure. It was shown that every consistent STN
can be reformulated as an equivalent minimum dispatchable
network, which improves execution efficiency while provid-
ing real-time guarantees (Muscettola, Morris, and Tsamardi-
nos 1998). A more efficient version of the reformulation
algorithm was presented in (Tsamardinos, Muscettola, and
Morris 1998). Dispatchability algorithms have also been ex-

This is a work of the U.S. Government and is not subject to copy-
right protection in the United States. Foreign copyrights may apply.

tended to disjunctive temporal problems (Tsamardinos, Pol-
lack, and Ganchev 2001; Shah and Williams 2008).

Previous papers (e.g. (Shah et al. 2007)) have noted a re-
lationship between dispatchability and a property involving
temporal uncertainty called Dynamic Controllability (Vi-
dal and Fargier 1999; Morris, Muscettola, and Vidal 2001;
Hunsberger 2009). In particular, it has been shown (Mor-
ris 2014) that Simple Temporal Networks with Uncertainty
(STNU), augmented with wait edges, are Dynamically Con-
trollable provided every projection is dispatchable. This
suggests that an increased understanding of dispatchable
networks may benefit studies of temporal uncertainty. A
number of authors, e.g. (Rossi, Venable, and Yorke-Smith
2006; Tsamardinos and Pollack 2003; Moffitt 2007; Moffitt
and Pollack 2007; Hunsberger 2002), have studied temporal
uncertainty in wider contexts than STNUs.

In this paper, we develop an updated theory of dispatch-
ability oriented towards mathematical proofs, and use it to
provide characterizations of dispatchability in terms of the
structural properties of the STN graph. In particular, we
show that an STN is dispatchable if and only if each tem-
poral path constraint is enforced by a particular type of path.
This provides insight into “reduction rules” used in previous
work (Shah et al. 2007; Nilsson, Kvarnström, and Doherty
2013; Morris 2014) that can be seen to create such paths.

Preliminaries

In this section, we review relevant properties of the Sim-
ple Temporal Network formalism (originally called Simple
Temporal Problem) introduced by (Dechter, Meiri, and Pearl
1991).

A Simple Temporal Network (STN) is a pair <N,C>
where N is a set of temporal events or timepoints, and C
is a set of direct constraints of the form a ≤ y − x ≤ b
where x and y are time variables corresponding to the time-
points and a and b are extended1 real numbers. The network
has a graphical representation where the above constraint is

represented in the form x
[a,b]−→ y.

Note that a ≤ y − x can be rewritten as x − y ≤ −a.
Thus, all the constraints can be re-expressed as upper-bound
constraints with simple numerical values, and the graph in

1Negative or positive infinity can be used to indicate the absence
of a lower or upper bound, respectively.

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

244



this form is called the distance graph. In this case, the ex-
ample constraint corresponds to the two edges x b−→ y and
x
−a←− y. It is sometimes convenient to mix the two forms of

graphical notation in a single diagram.
The upper-bound value on an edge in the distance graph

is referred to as the edge weight (also known as the edge
length or edge distance). Note that a constraint with a neg-
ative weight such as x −5←− y implies timepoint x precedes
timepoint y. Observe that from constraints y − x ≤ b and
z − y ≤ c we can infer z − x ≤ b + c; thus, paths in the
distance graph give rise to derived constraints.

An STN is consistent if and only if the distance graph
does not contain a negative cycle, i.e., a cycle where the
weights add up to a negative value. A consistent schedule
is a mapping from the timepoints to real numbers that satis-
fies the constraints; it exists if and only if the STN is con-
sistent. This can be determined by a single-source shortest
path distance computation such as with the Floyd-Warshall
or Bellman-Ford algorithms (Cormen, Leiserson, and Rivest
1990). If the STN is consistent, such computations may also
determine propagated upper and lower bounds for a time-
point x relative to a source q as upper(x) = distance(q, x)
and lower(x) = −distance(x, q).

A partial schedule is a mapping from a subset of the
timepoints to the real numbers. A partial schedule S is lo-
cally consistent if it satisfies the constraints between pairs of
nodes in its domain. The (Dechter, Meiri, and Pearl 1991)
paper shows that any STN can be represented in a particular
form called the d-graph, also known as the minimal or All-
Pairs network, where the derived shortest-path distance con-
straints are included as direct constraints. It further shows
that every partial schedule that is locally consistent with re-
spect to the d-graph can be extended to a consistent complete
schedule. As a more convenient terminology, we will say a
partial schedule is path-consistent if it is locally consistent
with respect to the d-graph, since this means it satisfies the
shortest-path distance constraints.

For our purposes (as in (Muscettola, Morris, and
Tsamardinos 1998)) we require a local version of propaga-
tion. We will say two nodes are neighbors if there is a direct
constraint between them (in either direction). A node is a
neighbor of a partial schedule S if it is a neighbor of some
node in the domain of S. Similar to the shortest path dis-
tance computation we can propagate a time bound from a
node x in the domain of a partial schedule S to a neighbor-
ing node y not in the domain of S; we refer to this as local
propagation. For example, given a constraint y−x ≤ u, we
can infer an upper bound S(x)+u on y and similarly we can
infer a lower bound S(x)− u in the case where x− y ≤ u.
We can also compute tightest such bounds taking into ac-
count all the nodes in the domain of S and their constraints
to neighboring nodes. Thus, for a neighbor node y not in
domain(S), we define

upper(S, y) = min{S(x) + u | x in S and x
u−→ y}

lower(S, y) = max{S(x)− u | x in S and x
u←− y}

where x in S indicates x is in the domain of S.

Time Dispatching Algorithm

The KR’98 paper (Muscettola, Morris, and Tsamardinos
1998) “Reformulating Temporal Plans For Efficient Execu-
tion” (hereafter called MMT) defines dispatchability. First
it defines an algorithm for a “dispatching execution” as fol-
lows.

TIME DISPATCHING ALGORITHM (TDA):
1. Let

A = {start_time_point}
current_time = 0
S = {}

2. Arbitrarily pick a time point TP in
A such that current_time belongs to
its time bound;

3. Set TP execution time to
current_time and add TP to S;

4. Propagate the time of execution of
TP to its IMMEDIATE NEIGHBORS in
the distance graph;

5. Put in A all time points TPx such
that all negative edges starting
from TPx have a destination in S;

6. Wait until current_time has advanced
to some time between

min{lower_bound(TP) : TP in A}
and

min{upper_bound(TP) : TP in A}
7. Go to 2 until every time point is

in S.

Then it defines a network to be dispatchable if it is cor-
rectly executed by a dispatching execution. We may think
of the dispatching algorithm as performing a number of lo-
cal checks of consistency to guide the execution. For exam-
ple, it requires a timepoint to be executed within its locally
propagated time bounds. Also, the step 5 condition prevents
a TP x from being executed until it is “enabled,” i.e., all the
TPs that are directly constrained to precede x have already
been executed.

The network is correctly executed if the local checks are
sufficient to guarantee global consistency; if not, the dis-
patching execution will be “blocked” at some point, for ex-
ample by A containing a TP whose upper bound is in the
past (so step 6 waits forever). The (Muscettola, Morris, and
Tsamardinos 1998) paper gives examples of this blocking
for general STNs, but goes on to show that any STN can be
reformulated to an equivalent minimal dispatchable STN in
which blocking does not occur. The reformulation involves
starting with the All-Pairs network, which is shown to be
dispatchable. The paper then introduces a process where an
edge can be removed as not needed for dispatchability, pro-
vided it satifies a triangle rule with respect to another edge
of the same sign, said to dominate it.

This captures the intuitive concept and leads to effective
algorithms that have been of great practical value. However,
the formal treatment in MMT has certain characteristics that
make it less suitable for proving results about dispatchabil-
ity, as we seek to do in this paper. These are:

245



1. In general, it is inconvenient to work mathematically with
properties defined in terms of an algorithm. Note that the
TDA needs to be interpreted as an idealized algorithm.
For example, steps 2-5 must take zero time in the case
where a TP x is executed and another TP y is constrained
([0,0] constraint) to occur at the SAME time as x.

2. The blocking concept is a complicated one that may be
awkward to use in formal proofs.

3. The reformulation algorithm in (Muscettola, Morris, and
Tsamardinos 1998) has a minor problem because the
dominance analysis overlooks the following pathological
case.

In MMT terms, AB strictly dominates CB and BA strictly
dominates CA. Thus, both CA and CB would be removed
(see the code in Figure 5 in MMT). However, the resulting
network would not be equivalent to the original. Note that
CA and CB are NOT mutually dominating.2

For these reasons, we redefine “dispatching execution”
without reference to an algorithm, and clarify how it relates
to dispatchability. In the following sections, we consider se-
quences where timepoints are “instantiated” (i.e., set to oc-
cur at a specific time) and where the instantiated times are
propagated to neighboring timepoints in the STN graph. We
will then consider executions to be instantiations that pro-
ceed forward in time. In our analysis, dominance does not
play a central role so we avoid the issue in item 3 above.

Instantiation/Execution Sequences

In the following discussion, we assume the STNs are consis-
tent unless there is an explicit statement otherwise. Recall
from the preliminaries section that a partial schedule for an
STN is a mapping from a subset of the timepoints to time
values, local consistency of a partial schedule S means S
satisfies the direct constraints between every pair of time-
points in its domain, and local propagation involves propa-
gating lower and upper bounds to neighboring timepoints.

Intuitively, an instantiation-sequence may be viewed as an
attempt to find a partial solution to an STN by scheduling a
timepoint at a fixed time within its bounds, locally propa-
gating bounds from the timepoint, and repeating for some
subset of the timepoints.

Definition 1 Given an STN, an instantiation-sequence E is

2It should be noted that the algorithm in the later pa-
per (Tsamardinos, Muscettola, and Morris 1998) fortuitously han-
dles this case correctly because there the AB rigid component
would be contracted to a single node.

a pair <A, S> where A = {a1, ..., an} is a sequence3 of dis-
tinct timepoints and S is a locally consistent partial schedule
defined on the timepoints in A.

Thus, an instantiation-sequence has two parts: a partial
schedule part that determines the times of the timepoints,
and a sequence part that specifies the order of propagation.

We will say an instantiation-sequence is complete if the
{ai} sequence4 includes every timepoint in the STN. Note
that we do NOT require instantiation-sequences to be com-
plete in general. This allows us to define a prefix relationship
between them. In the definition, a sequence {a1, ..., am} is
a prefix of a sequence {b1, ..., bn} if m ≤ n and ai = bi for
1 ≤ i ≤ m. A partial schedule Q coincides with a partial
schedule P on a sequence A if Q(ai) = P (ai) for each ai
in A.

Definition 2 An instantiation-sequence <A, P> is a prefix
of an instantiation-sequence <B, Q> if the sequence A is a
prefix of the sequence B and the partial schedule Q coincides
with P on A.

Intuitively, an execution is an instantiation that proceeds
forward in time. In the following, a timepoint y is a direct
predecessor of a timepoint x if there is an explicit edge with
a negative weight from x to y in the distance graph of the
STN.

Definition 3 An execution-sequence for an STN is an
instantiation-sequence E = <{ai}, S> such that
(1) S(ai+1) ≥ S(ai), for each i, and
(2) each direct predecessor of a timepoint in E is also in E.5

Condition (2) may be viewed as a reasonable strengthen-
ing of local consistency for executions, since if it is false, an
extension to a complete execution-sequence is always im-
possible.

Note that even though an execution proceeds forward in
time, the partial schedule alone does not determine the or-
der of propagation when timepoints are simultaneous. The
sequence part makes that unambiguous, which is useful for
proving results about executions.

Execution sequences bear a resemblance to Real Time Ex-
ecution Decisions (Hunsberger 2009), though they differ in
detail and setting.

It is easy to see that any prefix of an execution-sequence is
itself an execution-sequence since local consistency implies
that S(y) < S(x) if y is a direct predecessor of x.

NOTATION The following notations assume E =
<{a1, ..., an}, S> is an execution sequence.

We write Ei to denote the prefix of E that contains the
timepoints up to ai for i < n. By convention, E0 is the
empty execution sequence.

3We follow old-school mathematics (e.g., (Hille 1965)) in using
braces to denote sequences as well as sets; it should be clear from
the context which is intended.

4We may sometimes write{a1, ..., an} as {ai} when we don’t
need to refer to an.

5i.e., x in E and y
−u←− x implies y in E. We take the liberty of

saying a timepoint is in E to mean it is one of the ai.

246



A timepoint x is enabled by E if every direct predeces-
sor of x is in E. We write enabled(E) to denote the set of
timepoints that are enabled by E. Note that E is contained
in enabled(E) by condition (2) of the definition. However,
there may be timepoints in enabled(E) that are not in E; we
denote this set by ready(E).

As an example, an must be in enabled(En−1) by (2), and
hence is in ready(En−1) since it is not in En−1.

We write lower(E, x) to denote the lower bound on x ob-
tained by local propagation from the {ai} in E with respect
to their scheduled times in S, and similarly for upper(E, x).6

We set latest(E) = S(an) and also use the following no-
tations:

MIN LOWER (E) = min{ lower (E, x) | x in ready (E) }

MIN UPPER (E) = min{ upper (E, x) | x in ready (E) }
OBSERVATION: Note the monotonicity of key con-

cepts with respect to an execution sequence. For exam-
ple, lower(Ei, x) is non-decreasing with respect to i, and
upper(Ei, x) is non-increasing. Similarly, latest(Ei) = S(ai)
can only increase or stay the same.

Dispatchability

Our goal is to define a dispatching execution sequence,
which we will call a dispatch sequence, in such a way that
it captures the same local checks as the TIME DISPATCH-
ING ALGORITHM (TDA). As we have seen, the definition
of execution sequence already incorporates the requirement
that a timepoint be enabled before it can enter the sequence,
and it cannot be assigned a time earlier than the timepoints
already in the sequence.

The following is a literal transcription of the remaining
criterion in the TDA:

MIN LOWER(Ei−1) ≤ S(ai) ≤ MIN UPPER(Ei−1).

It turns out that every execution sequence must already
satisfy the left-hand inequality. To see this, suppose other-
wise. Then

S(ai) < MIN LOWER(Ei−1)

≤ lower(Ei−1, ai)

≤ S(aj)− u for some ai
u−→ aj

where j < i. But this implies S(aj) − S(ai) > u, which
would violate local consistency of the execution sequence.

The right-hand inequality is an interesting check that is
not already captured by execution sequences. It is phrased
as a requirement on the timepoint currently being executed
that its execution time should not exceed the upper bounds
of the other timepoints eligible and waiting for execution.7

6i.e. lower(E, x) = lower(S, x) and upper(E, x) = upper(S, x)
where lower(S, x) and upper(S, x) are as defined in the prelimi-
naries section.

7The apparent intent is to indirectly enforce deadlines. For ex-
ample, if some eligible timepoint x is at its deadline, then x would
have to be executed before the current time could advance further.

Again, this is a local check that, if violated, makes a com-
plete consistent execution impossible. As an example, con-
sider

a3
5←− a1

10−→ a2

Note that <{a1, a2}, S> where S(a1) = 0 and S(a2) = 10
is a valid execution sequence but it cannot be extended to a3
without violating local consistency or monotonicity.

A stronger version of this local check would take into con-
sideration the upper bounds of all the unexecuted timepoints,
not just those currently eligible for execution. Intuitively, a
violation of these requirements means that the current execu-
tion is broken in terms of timepoints with missed deadlines.
This leads us to define the following properties.

Definition 4 An execution-sequence E = <{a1, ..., an}, S>
is weakly dispatching if x in ready(En−1) implies
upper(En−1, x) ≥ latest(E).

Definition 5 An execution-sequence E = <{ai}, S> is
strongly dispatching if upper(E,x) ≥ latest(E) for all time-
points x not in E.

It is not hard to see from the monotonicity observation
that if E satisfies one of these properties, then the prefixes of
E must satisfy the same property. (If a timepoint misses a
deadline, it can never thereafter meet its deadline.)

As expected, the strong property implies the weak one.
Lemma 1 Strongly dispatching implies weakly dispatching.

Proof: Suppose an execution-sequence E is strongly
dispatching where E = <{a1, ..., an}, S>. If x is in
ready(En−1) then either x = an or x is not in E.

If x is not in E then

latest(E) ≤ upper(E, x) ≤ upper(En−1, x)

by strong dispatching, while if x = an then latest(E) =
S(an) ≤ upper(En−1, x) by local consistency. In both
cases, upper(En−1, x) ≥ latest(E) so E is weakly dispatch-
ing. �

The criterion in the TDA corresponds to the weak prop-
erty and we incorporate this in the definition of a dispatch
sequence:8

Definition 6 A dispatch-sequence is an execution-sequence
that is weakly dispatching.

With some additional notation, there is a “super” version
of the dispatching property that involves a global rather than
local condition. This will be useful for our proofs.

NOTATION We will use d(x, y) to denote the shortest-
path distance between two timepoints x and y in the distance
graph of an STN. (See preliminaries section.). By conven-
tion d(x, y) =∞ if there is no path from x to y.

Definition 7 An execution-sequence E = <{ai}, S> is su-
per dispatching if whenever x is in E and y is not in E, then
S(x) + d(x, y) ≥ latest(E).

8We will see later that we could have used the strong property
instead, in the sense that it leads to an equivalent definition of dis-
patchability. We use the weak property for continuity with MMT
and it may have a practical advantage of checking fewer timepoints.

247



Note that if x is a node in E that determines upper(E,y),
then there is an edge of some length u from x to y. Since
d(x, y) ≤ u we have upper(E, y) = S(x) + u ≥ S(x) +
d(x, y). Thus the super version implies the strong version.

Observe that any solution to an STN can have its time-
points sorted according to the scheduled time (placing si-
multaneous timepoints in arbitrary order). Thus, every
solution schedule S can be associated with a complete
execution-sequence E = <{ai}, S>. We will see below (in
Theorem 1) that all the prefixes of E are super dispatching,
hence weakly dispatching, and thus are dispatch-sequences.

We are almost ready to define dispatchability. The def-
inition essentially says that for every dispatch-sequence E
= <A,S>, the schedule S can be extended to a solution
schedule S′ where the added timepoints occur no earlier than
those in E.

For an example of an STN that is not dispatchable, con-
sider

B
+5−→ C

−10−→ D

and E = <{B}, S> where S(B) = 1. This is a dispatch
sequence. (Local propagation only reaches C, not D.) This
could be extended to D without violating monotonicity; for
example, we could set S(D) = 1 also. Note that this does
not violate local consistency because C is not in the se-
quence. However, it clearly violates global consistency so
the sequence cannot be completed. As another example,
consider

B
+10−→ C

−5−→ D

and E = <{B,D}, S> where S(B) = 1 and S(D) = 7.
Again E is a dispatch sequence that does not extend to C.

Definition 8 An STN is dispatchable if every dispatch-
sequence is a prefix of a complete execution-sequence.

The usefulness of the super dispatching property lies in
the following result. Recall that a partial schedule S is path-
consistent if S(y)− S(x) ≤ d(x, y) for each x and y in the
domain of S.

Theorem 1 An execution sequence E = <A,S> is a prefix of
a complete execution-sequence if and only if (1) E is super
dispatching and (2) S is path-consistent.

Proof: First suppose E = <a1, ..., an,S> is a prefix of a
complete execution-sequence E′ = <{A′, S′}>. Then S′
extends S to a solution, so (2) holds. Suppose x is in E but
y is not in E. Then y comes after an in A′ so

S(x) + d(x, y) ≥ S(x) + S′(y)− S(x) = S′(y) ≥ S(an)

so (1) holds.
Conversely, suppose (1) and (2) both hold. Consider a

modified STN where for each z not in E we add a new edge
from z to an of length 0 (i.e., a new constraint that requires
z ≥ an).

We will show that S is still path-consistent with respect to
the modified STN. Consider a cycle-free shortest path

x, ..., z, an, ..., y

that passes through one (and only one since the path is
cycle-free) of the new edges. Thus, d′(x, z) = d(x, z),

d′(an, y) = d(an, y), and d′(z, an) = 0, where d′ is the
shortest-path distance in the modified STN. From (1) we
get S(x) + d(x, z) ≥ S(an), which can be rewritten as
S(an)− S(x) ≤ d(x, z). We then have

S(y)− S(x) = S(an)− S(x) + S(y)− S(an)

≤ d(x, z) + S(y)− S(an)

≤ d(x, z) + d(an, y)

= d′(x, an)− d′(z, an) + d(an, y)

= d′(x, an)− 0 + d′(an, y)
= d′(x, y)

We conclude that S is path-consistent with respect to the
modified STN.9 By (Dechter, Meiri, and Pearl 1991), S can
be extended to a solution schedule S′ for the modified STN.
Because of the added edges, S′(z) ≥ S(an) for each z not
in E. Thus, by sorting S′, we can form a complete execution
sequence E′ that is an extension of E. �

Structural Characterizations

We will now prove some characterizations of dispatchabil-
ity in terms of structural properties of the STN distance
graph. We consider shortest paths in the distance graph,
called vee-paths, where all negative edges, if any, come be-
fore all non-negative edges, if any. We also consider shortest
paths, called hinge-paths, where this condition is violated.
Our strategy will be to show that certain configurations of
hinge-paths prevent dispatchability while vee-paths enable
it. In other words, the vee-paths determine whether path
constraints are enforced or not in a dispatching execution.
We also consider intermediate properties, interesting in their
own right, that facilitate the proof of a chain of equivalences.

DISCUSSION Intuitively, a path constraint between x
and y of length u − v can be enforced by propagating a
lower bound of u to x and an upper bound of v to y from
some common precursor z.

It is shown in MMT that, in a dispatching execution of the
STN Distance Graph, upper bounds are propagated through
non-negative edges in the forward direction, while lower
bounds are propagated through negative edges in the back-
ward direction. Thus, enforcement can be achieved by a
chain of negative edges from x to to z and a chain of non-
negative edges from z to y, as illustrated by this cartoon
(edges directed from x to y):

x y
- \ /+
- \ /+
- \ /+

z

This suggests that constraint enforcement in a dispatching
execution might involve paths that consist of some number
of negative edges followed by some number of non-negative
edges. In the following, we develop concepts that lead to a
rigorous derivation of this result.

9Recall this is the same thing as saying it is locally consistent
with respect to the d-graph of the STN.

248



Definition 9 A hinge point with respect to a pair <x, y> of
timepoints is an interior10 point z on a shortest path from x
to y such that d(x,z)11 is non-negative and d(z,y) is negative,
as illustrated (edges directed from x to y):

hinge-point
z
/ \

+v / \ -u
/ \

x y

Note: z�=x and z�=y
Intuitively, the significance of this is that there can be a

dispatching execution where x and y are executed before
the hinge point z. Any propagation through z will occur
after x and y have already been executed. Consequently, that
path will not enforce the constraint between x and y in all
dispatching executions. This leads to the following lemma.
Lemma 2 Given a consistent STN and timepoint pair
<x, y>, suppose there is a set H of timepoints such that
every shortest path from x to y passes through at least one
of the points, z, in H, and that point, z, is a hinge point
for the path. Then there is a strongly dispatching execution-
sequence whose partial schedule is not path-consistent.
Proof: Consider a modified STN where, on each shortest
path from x to y, the edge immediately following the point
z in H has its weight increased by some amount δ > 0.
Thus, the shortest paths from x to y have their total distance
increased by some positive multiple of delta. (A shortest
path may pass through more than one hinge point.)

Since distances are only increased, the STN is still consis-
tent. (There are no negative cycles.) Note that δ can be cho-
sen to be sufficiently small such that (i) the shortest paths in
the modified STN are also shortest paths in the original STN,
and (ii) the distances from z in H to y are still negative.

Define a partial schedule S by setting S(x) to an arbi-
trary value, and S(z) = S(x) + d′(x, z) for each z in H,
where d′ gives the shortest path distance in the modified
STN.. Also set S(y) = S(x) + d′(x, y). By construc-
tion, S is locally consistent with respect to the d-graph for
the modified STN.12 Thus, it can be extended to a solu-
tion S′ (Dechter, Meiri, and Pearl 1991). However, S is
not path-consistent with respect to the original STN because
S(y)−S(x) ≥ d(x, y)+δ where d(x, y) is the shortest path
distance from x to y in the original STN. (Each shortest path
in the modified STN passes through at least one enlarged
edge.) Note that S(z) ≥ S(x) and S(z) > S(y) for each z
in H.

Now let E′ be a complete execution sequence for the mod-
ified STN that corresponds to the above solution S′. Since
S(z) ≥ max(S(x), S(y)) for each z in H, we can choose
E′ so that z comes after both x and y in the sequence. Con-
sider the prefix E of E′ up to and including x or y, whichever

10i.e., z �= x and z �= y
11Notice that the d(x, y) function can be used to measure dis-

tance along any shortest path.
12Note that d′(x, y) − d′(x, z) ≤ d′(z, y) by the triangle in-

equality, so S(y)− S(z) ≤ d′(z, y) for each z in H.

comes later. Thus, latest(E) = max(S(x),S(y)). Since E is a
prefix of a solution, it is locally consistent and strongly dis-
patching for the modified STN.

Note that E does not include any of the timepoints z in
H, and the modified constraints emanate from those time-
points. Thus, the constraints that determine both local con-
sistency of E and upper(E,w), for any w, are the same for
the original as for the modified STN.13 Consequently, E is
also locally consistent and strongly dispatching with respect
to the original STN. However, the partial schedule of E co-
incides with S on x and y, and we have shown this violates
path-consistency with respect to the original STN. �

This prepares the way for the following.

Definition 10 Given an STN a vee-path is a shortest path
in the distance graph that consists of a subpath (possibly
empty) of negative edges followed by a subpath (possibly
empty) of non-negative edges.

Thus, the negative edges, if any, in a vee-path all come be-
fore the non-negative edges, if any, in the path.

The intuition behind the name is that a chain of negative
edges points backward in time while a chain of active non-
negative edges points forward in time, where time is visu-
alized as proceeding upwards. Note that every subpath of a
vee-path is itself a vee-path since the negative edges, if any,
will precede the non-negative edges, if any.

The following properties will also be useful.

Definition 11 Given an STN a vee-zero-path is a shortest
path in the distance graph that consists of a subpath (possi-
bly empty) of non-positive edges followed by a subpath (pos-
sibly empty) of non-negative edges.

Definition 12 Given timepoints x and y, a hook-path is ei-
ther a non-negative shortest path that ends with a non-
negative edge, or a negative shortest path that starts with
a negative edge.

It is not hard to see that every vee-path must also be a
hook-path.

We are now ready for the main theorem containing several
characterizations of dispatchability.

Theorem 2 The following conditions are equivalent for a
consistent STN:

(i) The STN is dispatchable.
(ii) Every strongly dispatching execution-sequence is a

prefix of a complete execution sequence.
(iii) For every pair <x, y> of timepoints, if d(x,y) is finite,

there is a hook-path from x to y.
(iv) For every pair <x, y> of timepoints, if d(x,y) is finite,

there is a vee-path from x to y.

Proof: (i) => (ii)
As we have noted, any strongly dispatching execution se-

quence is also weakly dispatching. Thus, it can be extended
to a complete execution sequence if the STN is dispatchable.

(ii) => (iii)
We will show if (iii) does not hold then (ii) cannot hold.

13The modified edges, which are negative, could potentially af-
fect lower(E,w) but that does not matter for the conclusion.

249



Suppose (iii) does not hold. Thus, d(x, y) is finite, but
there is no hook path from x to y.

Consider first the case where d(x, y) is non-negative.
Then each shortest path from x to y ends with a negative
edge. Thus, the points z immediately preceding y on each
shortest path from x constitute a set of hinge points H. More-
over, each shortest path from x to y passes through at least
one point in H. Thus, we can apply Lemma 2 to conclude
(ii) does not hold.

Otherwise, d(x, y) is negative. Then each shortest path
from x to y starts with a non-negative edge. In this case, the
points z immediately following x constitute a set of hinge
points such that each each shortest path from x to y passes
through at least one of them. Again we can apply Lemma 2
to conclude (ii) does not hold. The result follows.

(iii) => (iv)
We prove the result in two stages. First we show there is a

vee-zero-path from x to y. Then we show there is a vee-path.
Consider a modified STN where all explicit all-zero cy-

cles are contracted to a single timepoint. Thus, the modified
STN is free of all-zero cycles. It is not hard to see that prop-
erty (iii) is preserved in the modified network.14

Consider any two timepoints x0 and y0. We will define
two sequences {xi} and {yi}, starting with x0 and y0 re-
spectively. By (iii), if the distance between x0 and y0 is neg-
ative, then there is a shortest path between them that starts
with a negative edge; if non-negative, there is a shortest path
that ends with a non-negative edge. In the first case define
x1 to be the point on the path after x0 and leave the {yi}
sequence unchanged. In the second case, define y1 to be
the point on the path before y0 and leave the {xi} sequence
unchanged.

Let x′ and y′ be the last elements in the {xi} and {yi}
sequences, respectively. If x′ �= y′, we repeat the application
of (iii) to the x′, y′ pair, to further extend either the {xi} or
{yi} sequences, and continue in this way.

Note that there can be no repetition in the x0, x1, x2, ..
sequence, since that would imply a negative cycle. Also,
there cannot be a repetition in the y0, y1, y2, ... sequence,
since that would imply an all-zero cycle.15

Since there are no repetitions (and the STN has a finite
number of timepoints), the applications of (iii) must eventu-
ally terminate when some x′ = y′. This implies a vee-path
between x and y. In the original STN (where all-zero cycles
have not been contracted) this will correspond to a vee-zero-
path between any pair of timepoints. (Since one or more of
the timepoints in the negative segment may have arisen from
a contraction.)

Now let x and y be any two timepoints in the original
STN. Among the shortest paths from x to y, there must be
one that has the largest number of initial consecutive neg-
ative edges. Suppose x′ is the end timepoint of that initial

14For a shortest path in the contracted STN, consider a corre-
sponding shortest path in the original STN that does not start or
end with a contracted edge..

15If a shortest path of non-negative edges contains a cycle, the
edges in the cycle must all have zero length; otherwise, the path
could be further shortened by omitting the cycle.

sequence of negative edges. If x′ = y, we are done. Oth-
erwise, there must be a vee-zero-path VZ from x′ to y. If
VZ contains a negative edge, it must be somewhere in the
negative-or-zero segment. Thus, there must be an interme-
diate point y′ between x′ and y such that the path from x′ to
y′ is negative. But then (iii) implies there is a shortest path
from x′ to y′ that starts with a negative edge, which gives us
a path from x to y with a greater number of initial negative
edges, which is a contradiction. We conclude that VZ con-
tains only non-negative edges, and the initial negative path
to x′ followed by VZ constitutes a vee-path from x to y.

(iv) => (i)
Suppose there is a vee-path between every pair of time-

points.16 Our strategy will be to show each dispatch se-
quence E is (1) super dispatching and (2) path-consistent
with respect to the STN. The result will then follow from
Theorem 1.

Suppose otherwise for some E =<{a1, ..., an}, S>. If
condition (1) is violated then there is some x in E and y
not in E such that S(x) + d(x, y) < S(an). If condition
(2) is violated then there is some x and y in E such that
S(x) + d(x, y) < S(y). Define ̂S(y) = S(y) if y is in E,
and ̂S(y) = S(an) otherwise. Then both types of violation
are captured by the expression S(x) + d(x, y) < ̂S(y). (For
future reference, note that ̂S(y) ≤ S(an).)

Without loss of generality, we can choose a violation node
y that minimizes d(x, y), i.e., such that

d(x, y) = min{d(x, q) : S(x) + d(x, q) < ̂S(q)}.
By hypothesis, there is a vee-path from x to y. We reiterate
that since a vee-path is a shortest path, the d function can be
used to measure local distance along the vee-path.

Suppose z is the last node on the vee-path such that the
nodes on the subpath from x to z are all in E. By local con-
sistency of E, S(x) + d(x, z) = S(z), so z �= y. Let w
be the node immediately following z in the vee-path (thus
not in E). Since all the nodes in the negative portion of the
vee-path constitute a chain of direct predecessors of x and
so are in E, z must lie in or begin the non-negative portion.
We have

S(z) = S(x) + d(x, z)

≤ S(x) + d(x,w)

≤ S(x) + d(x, y)

< ̂S(y)

≤ S(an).

Thus, z �= an and z is in En−1. Since the vee-path has a
direct edge from z to w whose weight equals d(z, w), we
get

upper(En−1, w) ≤ S(z) + d(z, w) < S(an).

It follows that w cannot be in enabled(En−1); otherwise
an would fail the MIN-UPPER condition for a dispatch se-
quence.

16Within the framework of MMT, dispatchability would follow
because the vee-paths would dominate other edges in the AllPairs
network. The proof here does not depend on dominance.

250



Since w is not in enabled(En−1), it must have a direct
predecessor v that is not in En−1. Thus, either v = an or
v is not in E. In either case, ̂S(v) = S(an). We also have
d(x, v) < d(x,w) since there is a negative edge from w to
v. It follows that

S(x) + d(x, v) < S(x) + d(x,w)

< S(an)

= ̂S(v).

Since d(x, v) < d(x,w) ≤ d(x, y), this contradicts the min-
imality of y.

This, we have established that each dispatch sequence E is
both path-consistent and super dispatching. It then follows
from Theorem 1 that the network is dispatchable. �

Temporal Uncertainty

The results of this paper apply directly to STNs. In this sec-
tion we consider some implications for STNUs and tempo-
ral uncertainty. The discussion assumes a basic knowledge
of Dynamic Controllability as contained for example in the
Hunsberger tutorial (Hunsberger 2013).

An STNU may be regarded as a compact representation
of all its projections, which are STNs.. From this point of
view, a reduction rule that adds an edge may be regarded
as simultaneously adding the edge in each of the projec-
tions. (Note that a wait or conditional edge reduces to
an ordinary edge in each projection (Morris 2014).) Re-
duction rules in recent STNU work (Shah et al. 2007;
Nilsson, Kvarnström, and Doherty 2013; Morris 2014; Nils-
son, Kvarnström, and Doherty 2015) involve “plus-minus”
rules where a non-negative AB edge followed by a BC neg-
ative edge may result in an added AC edge. It is not diffi-
cult to see that applying “plus-minus” transformation rules
repeatedly to a shortest path will eventually result in a vee-
path where all the remaining negative edges precede all the
remaining non-negative edges.

The sign of an edge in the labelled distance graph (Mor-
ris 2006) of an STNU is the same as its sign in each of the
projections. Thus, the reduction rules result in vee-paths be-
tween connected nodes in every projection. It is not hard to
see that if any projection is inconsistent, the reduction rules
will produce a negative cycle. Thus, if there no negative cy-
cles, every projection is dispatchable by Theorem 2. It then
follows that the STNU is Dynamically Controllable (Mor-
ris 2014). Thus, the reduction rules, which were originally
formulated empirically, may be understood as determining
Dynamic Controllability indirectly by establishing dispatch-
ability of each projection.

We see that the “plus-minus” reduction rules establish dis-
patchability, although they may add more edges than needed
for that purpose. More specifically, the resulting projec-
tions are generally not minimum dispatchable in the sense
of MMT. Theorem 2 part (iii) shows that an edge from x
to y in a dispatchable network is unneeded for dispatchabil-
ity provided there remains an alternative hook path from x
to y after the edge is deleted. This provides a counterpart
to MMT dominance that could be used to prune unneeded

edges. Notice that it allows pruning edges from any dis-
patchable network, not just the All-Pairs one.

These results may also potentially be helpful in general-
izing notions of Dynamic Controllability to multi-agent in-
teractions. For a problem with two agents, where one may
observe the outcomes of the other, the consistent schedules
of the observed agent are analogous to the projections of
Dynamic Controllability. We conjecture that ensuring dis-
patchability of these generalized projections may constitute
a dynamic strategy for the observing agent. Related tempo-
ral decoupling work (Hunsberger 2002; Wilson et al. 2014)
is static and does not take advantage of observation.

For example, consider an STNU

C
[18,29]⇐= A

[20,31]
=⇒ B

[1,3]←− D

where the AB and AC links are contingent. This is not Dy-
namically Controllable (DC). (Applying the reductions to
the ABD subgraph would produce a negative cycle.)

In an STNU, the contingent links are assumed to be in-
dependent. However, an observed agent may have a richer
temporal plan that adds a cross-constraint

C
[2,4]
=⇒ B

to the above example. In the following discussion, we will
extend the usage of the term projection to mean consistent
schedule of the observed agent.

It is easy to see that the DB requirement can now be sat-
isfied by executing D at 1 time unit after C is observed, so
this new problem is intuitively DC. Note that the ABD re-
ductions would produce the same negative cycle as before.
This shows unmodified STNU methods break down when
applied to this new type of problem.

The conjecture provides a possible way forward. If true,
then we should try to apply only enough plus-minus reduc-
tions to make every projection dispatchable. By Theorem 2
this means establishing vee-paths for every projection with-
out making any projection inconsistent. In the present ex-
ample, if we only apply reductions to the CBD subgraph,

we can derive a C
[1,1]
=⇒ D link and add it to the network.

As may be verified in the above distance graph for an ar-
bitrary projection,17 this results in a vee-path between ev-
ery pair of timepoints. To see this, observe that the BD and
DB edges are dominated by the BCD and DCB paths, re-
spectively, in every projection, since y ∈ [2, 4]. Similarly,

17In a projection, the contingent links take on definite values;
thus the resulting links are rigid. Note that x + y ∈ [20, 31] so x
and y are not fully independent.

251



the BA and AB edges are dominated by the BCA and ACB
paths, respectively. If these dominated edges are omitted,
every other cycle-free shortest path is a vee-path.

It may also be verified that no projection is inconsistent
in the above diagram. Since the ABC subgraph is rigid and
consistent, the only possible negative cycle would be in the
BCD subgraph. There the clockwise cycle has length y − 2
while the counter-clockwise cycle has length 4 − y. Since
y ∈ [2, 4], the cycles are non-negative in both cases.

Thus, the conjecture would say this agent problem is DC,
which seems correct for this example. Moreover, the derived
edges correspond to the intuitive dynamic strategy.

Closing Remarks

In this paper we introduced the formalism of execution se-
quences, and used it to prove a characterization of dispatch-
ability in terms of vee-paths. The sigificance of this is that
it provides an easy way of telling what needs to be done
to make an STN dispatchable; we simply need to derive
enough edges to create vee-paths.

We have also discussed potential applications of this re-
sult to temporal uncertainty. Previous methods of determin-
ing Dynamic Controllability can be interpreted as adding or-
dinary or wait edges to an STNU to make every projection
dispatchable. We conjecture that essentially the same ap-
proach could be applied to richer temporal plans by general-
izing the notion of a projection.

As a final remark, dispatchable networks have interesting
properties from the point of view of constraint satisfaction.
They have an extensibility property for partial schedules
resembling that of the d-graph (Dechter, Meiri, and Pearl
1991) but with the added twist of an asymmetry with respect
to the time parameter, i.e., an inherent “arrow of time.”

References

Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction
to Algorithms. Cambridge, MA: MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Hille, E. 1965. Analytic Function Theory. New York,
Toronto, London: Blaisdell Publishing Company. Fourth
Printing.
Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proc. of Eighteenth Nat.
Conf. on Artificial Intelligence (AAAI-02).
Hunsberger, L. 2009. Fixing the semantics for dynamic
controllability and providing a more practical characteriza-
tion of dynamic execution strategies. In Proc. of the IEEE
16th International Symposium on Temporal Representation
and Reasoning (TIME-2009), 155–162.
Hunsberger, L. 2013. Tutorial on dynamic con-
trollability. http://icaps13.icaps-conference.org/wp-
content/uploads/2013/06/hunsberger.pdf.
Moffitt, M. D., and Pollack, M. E. 2007. Generalizing tem-
poral controllability. In Proc. of IJCAI-07.
Moffitt, M. D. 2007. On the partial observability of temporal
uncertainty. In Proc. of AAAI-07.

Morris, P.; Schwabacher, M.; Dalal, M.; and Fry, C. 2013.
Embedding temporal constraints for coordinated execution
in habitat automation. In International Workshop on Plan-
ning and Scheduling for Space.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. of
IJCAI-01.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In CP, 375–389.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In CPAIOR.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before. Artificial Intelligence 103(1-2):5–48.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Refor-
mulating temporal plans for efficient execution. In Proc. of
Sixth Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’98).
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incre-
mental Dynamic Controllability Revisited. In Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS). AAAI Press.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2015. Efficient
Processing of Simple Temporal Networks with Uncertainty:
Algorithms for Dynamic Controllability Verification. Acta
Informatica.
Rossi, F.; Venable, K. B.; and Yorke-Smith, N. 2006. Un-
certainty in soft temporal constraint problems: A general
framework and controllability algorithms for the fuzzy case.
Journal of Artificial Intelligence Research 27:617–674.
Shah, J. A., and Williams, B. C. 2008. Fast dy-
namic scheduling of disjunctive temporal constraint net-
works through incremental compilation. In Proceedings
of the Eighteenth International Conference on Automated
Planning and Scheduling, ICAPS 2008, Sydney, Australia,
September 14-18, 2008, 322–329.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P.
2007. A fast incremental algorithm for maintaining dis-
patchability of partially controllable plans. In Boddy, M. S.;
Fox, M.; and Thibaux, S., eds., ICAPS, 296–303. AAAI.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution
techniques for disjunctive temporal reasoning problems. Ar-
tificial Intelligence 151:43–89.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998.
Fast transformation of temporal plans for efficient execu-
tion. In Proc. of Fifteenth Nat. Conf. on Artificial Intelli-
gence (AAAI-98).
Tsamardinos, I.; Pollack, M. E.; and Ganchev, P. 2001. Flex-
ible dispatch of disjunctive plans. In Proceedings of the 6th
European Conference on Planning, 417–422.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. JETAI 11:23–45.
Wilson, M.; Kios, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in simple temporal networks. Ar-
tificial Intelligence 214:26–44.

252


