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Abstract

Maximizing goal probability is an important objective in pro-
babilistic planning, yet algorithms for its optimal solution are
severely underexplored. There is scant evidence of what the
empirical state of the art actually is. Focusing on heuristic
search, we close this gap with a comprehensive empirical
analysis of known and adapted algorithms. We explore both,
the general case where there may be 0-reward cycles, and the
practically relevant special case of acyclic planning, like plan-
ning with a limited action-cost budget. We consider three dif-
ferent algorithmic objectives. We design suitable termination
criteria, search algorithm variants, dead-end pruning methods
using classical planning heuristics, and node selection strate-
gies. Our evaluation on more than 1000 benchmark instances
from the IPPC, resource-constrained planning, and simulated
penetration testing reveals the behavior of heuristic search,
and exhibits several improvements to the state of the art.

Introduction

Goal probability maximization in MDPs is important in
planning scenarios ranging from critical decision-making
(e. g. maximizing the probability to survive) to security tests
(analyzing the chances that an attacker may compromise a
valuable asset), and generally in problems with unavoidable
dead-ends (e. g. (Kolobov et al. 2011; Kolobov, Mausam,
and Weld 2012; Teichteil-Königsbuch 2012)). The objec-
tive partly underlies the International Probabilistic Planning
Competition (IPPC) (Younes et al. 2005; Bryce and Buffet
2008; Coles et al. 2012), when planners are evaluated by
how often they reach the goal in online policy execution.

We consider here the optimal offline setting, i. e., com-
puting the exact maximum goal probability. We refer to this
objective as MaxProb. While MaxProb certainly is relevant,
there has been little work towards developing solvers. Opti-
mal MDP heuristic search (Barto, Bradtke, and Singh 1995;
Hansen and Zilberstein 2001; Bonet and Geffner 2003;
McMahan, Likhachev, and Gordon 2005; Smith and Sim-
mons 2006; Bonet and Geffner 2006) has been successful in
expected-cost minimization, but suffers from a lack of ad-
missible heuristic estimators of goal probability. The best
known possibility is to detect dead-ends and set their esti-
mate to 0, using the trivial estimate 1 elsewhere. Another
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major obstacle are complications arising from 0-reward cy-
cles. As pointed out by Kolobov et al. (2011), MaxProb is
equivalent to a non-discounted reward maximization prob-
lem, not fitting the stochastic shortest path (SSP) framework
(Bertsekas 1995) because non-goal cycles receive 0 reward
and thus improper policies do not accumulate reward −∞.

Kolobov et al. propose FRET (find, revise, eliminate
traps), which admits heuristic search, but necessitates sev-
eral iterations of complete searches, in between which FRET
eliminates 0-reward cycles (traps). Hou et al. (2014) con-
sider several variants of topological VI (Dai et al. 2011),
solving MaxProb but necessitating to build the entire reach-
able state space. Kolobov et al. (2012) and Teichteil (2012)
consider objectives asking for the cheapest policy among
those maximizing goal probability, also requiring FRET
or VI. Other works addressing goal probability maximiza-
tion (e. g. (Teichteil-Königsbuch, Kuter, and Infantes 2010;
Camacho et al. 2016)) do not aim at guaranteeing optimality.
In summary, heuristic search for MaxProb is challenging,
and has only been addressed by Kolobov et al. (2011).

Kolobov et al.’s experiments run only one configuration
of search (LRTDP (Bonet and Geffner 2003)), with one
possibility for dead-end detection (SixthSense (Kolobov,
Mausam, and Weld 2010)), on a single domain (Exploding-
Blocks). This outperforms VI, but the dead-end detection is
not used in VI so it is unclear to what extent this is due to the
actual heuristic search, rather than the state pruning itself.

Given this: (i) What is actually the empirical state of the
art in heuristic search for MaxProb? Are there other known
algorithms, or variants thereof, that work better? (ii) What
about simpler special cases, and weaker objectives, that are
still practically relevant but that may be easier to solve?

Question (ii) is interesting because such special cases
and weaker objectives do indeed exist. A practically rel-
evant special case is probabilistic planning with acyclic
state spaces. This applies, e. g., to IPPC TriangleTireworld.
More importantly, planning with a limited action-cost bud-
get, limited-budget planning, is acyclic when action costs
are non-0, strictly decreasing the remaining budget. Fur-
thermore, simulated penetration testing (pentesting), as per
Hoffmann (2015), is acyclic. The MDP there models a net-
work intrusion from the point of view of an attacker, which is
acyclic because each exploit can be attempted at most once.
In acyclic problems, there are no 0-reward cycles so we are
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facing an SSP problem and the need for FRET disappears.
Regarding weaker objectives, in addition to MaxProb, it

is relevant to ask whether the maximum goal probability ex-
ceeds a given threshold θ, or to require computing the max-
imum goal probability up to a given accuracy δ. We refer
to these objectives as AtLeastProb and ApproxProb respec-
tively. For example, in pentesting AtLeastProb naturally as-
sesses the level of network security: Can an attacker reach
a target host (e. g. a customer data server) with probability
greater than a given security margin (e. g. 0.01)?

Both AtLeastProb and ApproxProb allow early termi-
nation based on maintaining a lower (pessimistic) bound
V L in addition to the upper (admissible/optimistic) bound
V U . This is especially promising in AtLeastProb where we
can terminate if the lower bound already is good enough
(V L ≥ θ) or if the upper bound already proves infeasibil-
ity (V U < θ). Good anytime behavior, on either or both
bounds, translates into early termination.

To answer our research questions (i) and (ii), we design
an algorithm space characterized by (a) search algorithm,
(b) dead-end pruning method, and (c) node selection strat-
egy. For (a), we design variants of AO∗ and LRTDP main-
taining upper and lower bounds for early termination, and
we design a variant of FRET better suited to problems with
uninformative initial upper bounds. We furthermore design
a new probabilistic-state-space reduction method, via deter-
minized bisimulation. For (b), we employ classical-planning
heuristic functions, a connection not made before and which
is especially promising in limited-budget planning where we
can prune against the remaining budget.1 For (c), we design
a comprehensive arsenal of simple strategies biasing node
selection to foster early termination.

Our techniques are implemented in FD (Helmert 2006).
We explore their behavior on a benchmark suite including
domains from the IPPC, resource-constrained planning, and
pentesting, comprising 1089 instances in total. Amongst
other things, we observe: substantial benefits of heuristic
search, even with trivial initial estimates (+9% total cover-
age), more so with initial estimates based on dead-end detec-
tion (+12%); substantial benefits of early termination (e. g.
for AtleastProb +8% with θ = 0.2 and +7% with θ = 0.9);
and dramatic benefits of our FRET variant (+32%). Our
state-space reduction method yields an optimal MaxProb
solver that scales just as well in TriangleTireworld as the
sub-optimal solver Prob-PRP (Muise, McIlraith, and Beck
2012; Camacho et al. 2016) – yet not only for the standard
version where the goal can be achieved with certainty, but
also for the limited-budget version where that is not so.

We omit some technical details. Full details are available
in an online TR (Steinmetz, Hoffmann, and Buffet 2016).

MDP Models

We consider a probabilistic extension of STRIPS, in two
variants, with respectively without a limited action-cost bud-
get. We specify first the unlimited-budget version. Planning
tasks are tuples Π = (F,A, I,G) consisting of a finite set F

1On the side, we discover that Domshlak and Mirkis’ (2015)
landmarks compilation is, per se, equivalent to such pruning.

of facts, a finite set A of actions, an initial state I ⊆ F , and
a goal G ⊆ F . Each a ∈ A is a pair (pre(a), O(a)) where
pre(a) ⊆ F is the precondition, and O(a) is the finite set
of outcomes o, each being a tuple (p(o), add(o), del(o)) of
outcome probability p(o), add list add(o) ⊆ F , and delete
list del(o) ⊆ F . We require that

∑
o∈O(a) p(o) = 1.

The state space of a task Π is a probabilistic transition
system (S, P, I, S�). Here, S is the set of states, each s ∈ S
associated with its set F (s) of true facts. The initial state I
is that of Π, the set of goal states S� ⊆ S contains those
s where G ⊆ F (s). The transition probability function
P : S×A×S �→ [0, 1] is defined as follows. Action a is ap-
plicable to state s if s �∈ S� (goal states are absorbing) and
pre(a) ⊆ F (s). By s�o� we denote the result of outcome o
in s, i. e., F (s�o�) = (F (s) ∪ add(o)) \ del(o). P (s, a, t)
is p(o) if a is applicable to s and t = s�o�,2 and is 0 other-
wise (there is no transition). Absorbing states are those with
no outgoing transitions (no applicable actions). The set of
non-goal absorbing states – lost states – is denoted S⊥.

For limited-budget planning, we extend the above as fol-
lows. A limited-budget task is a tuple Π = (F,A, I,G, b),
as above but now with a budget b ∈ R

+
0 , and each outcome

o being associated with a cost c(o) ∈ R
+
0 . In addition to

their true facts F (s), states s are also associated with their
remaining budget b(s) ∈ R. States with negative remain-
ing budget b(s) < 0 are legal and may occur, but are lost,
s ∈ S⊥, because: the goal states s ∈ S� are those where
G ⊆ F (s) and b(s) ≥ 0; the actions a applicable to s are
those where pre(a) ⊆ F (s) and at least one outcome fits
within the remaining budget, i. e., there exists o ∈ O(a) so
that c(o) ≤ b(s). In the outcome states s�o�, the outcome’s
cost is deduced from the budget, i. e., b(s�o�) = b(s)− c(o).

Note here that, if c(o) > 0 for all o, then the state space
is acyclic because every transition strictly reduces the re-
maining budget. Note further that the remaining budget is
local to each state. If some states in a policy violate the bud-
get, other parts of the policy (even other outcomes of the
same action) can still continue trying to reach the goal. This
differs from constrained MDPs (Altman 1999), where the
budget bound is applied globally to the expected cost of the
policy.

Compared to planning with continuous resource-
consumption uncertainty (Marecki and Tambe 2008;
Meuleau et al. 2009; Coles 2012), our form of limited-
budget probabilistic planning is restrictive. Yet it is still
natural and relevant, suiting for example any problem
asking to achieve a goal within a given number of steps.

A policy is a partial function π : S\(S�∪S⊥) �→ A∪{∗},
mapping each non-absorbing state s within its domain either
to an action applicable in s, or to the don’t care symbol ∗.
The latter will be used (only) by policies that already achieve
sufficient goal probability elsewhere, so do not need to elab-
orate on how to act on s and its descendants. That is, we
still require closed policies, and use ∗ to explicitly indicate
special cases where actions may be chosen arbitrarily. For-

2We assume here that each o ∈ O(a) leads to a different out-
come state. This is just to simplify notation (our implementation
does not make this assumption).
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mally, π(s) = ∗ extends the domain of π by picking, for
every t �∈ S� ∪ S⊥ reachable from s and where π(t) is
undefined, an arbitrary action a applicable in t and setting
π(t) := a. A policy π is closed for state s if, for every state
t �∈ S� ∪ S⊥ reachable from s under π, π(t) is defined; π is
closed if it is closed for the initial state I .

Following Kolobov et al. (2011), we formulate goal prob-
ability as maximal non-discounted expected reward where
reaching the goal gives reward 1 and all other rewards are 0.
The value V π(s) of a policy π closed for state s then is:

V π(s) =

{
1 s ∈ S�
0 s ∈ S⊥∑

t P (s, π(s), t)V π(t) otherwise

The value of state s is V ∗(s) = maxπ:π closed for s V
π(s).

For acyclic state spaces, we are facing an SSP problem
(every run ends in an absorbing state in a finite number of
steps). For cyclic state spaces, the Bellman update opera-
tor may have multiple sub-optimal fixed points, and updates
from an optimistic (upper-bound) initialization are not guar-
anteed to converge to the optimum. One can either use a
pessimistic initialization, or Kolobov et al.’s FRET method.

We consider three different objectives (algorithmic prob-
lems) for goal probability analysis:
MaxProb: Find an optimal policy, i. e., a closed π s.t.
V π(I) = V ∗(I).

AtLeastProb: Find a policy guaranteeing a user-defined
goal probability threshold θ ∈ [0, 1], i. e., a closed π s.t.
V π(I) ≥ θ. (Or prove that such π does not exist.)

ApproxProb: Find a policy optimal up to a user-defined
goal probability accuracy δ ∈ [0, 1], i. e., a closed π s.t.
V ∗(I)− V π(I) ≤ δ.

We next examine search algorithms, pruning methods, and
node selection strategies, to solve these problems.

Search Algorithms

We use VI as a baseline, and design variants of AO∗ and
LRTDP. For VI, we make one forward pass building the
reachable state space (actually its pruned subset, see next
section). We initialize the value function as 0 everywhere.
For acyclic cases, we then perform a single backward pass
of Bellman updates, starting at absorbing states and updat-
ing children before parents. For the general case, we assume
a parameter ε and run topological VI (Dai et al. 2011): We
find the strongly connected components (SCC) of the state
space, and handle each SCC individually, children SCCs be-
fore parent SCCs. VI on an SCC stops when every state is
ε-consistent, i. e. when its Bellman residual is at most ε.3

For AO∗, we restrict ourselves to the acyclic case, where
the overhead for repeated value iteration fixed points, in-
herent in LAO∗ (Hansen and Zilberstein 2001), disappears.
Figure 1 shows pseudo-code. The algorithm incrementally
constructs a subgraph Θ of the state space. The handling

3Focused topological VI eliminates sub-optimal actions in a
pre-process to obtain smaller SCCs. While this can be much more
runtime-effective, it still requires to build the entire state space, do-
ing which was the only reason for VI failures in our experiments.
So we do not consider focused topological VI here.

procedure GoalProb-AO∗

initialize Θ to consist only of I; Initialize(I)
loop do

if [MaxProb: V L(I) = 1]
[AtLeastProb:V L(I) ≥ θ]
[ApproxProb: V L(I) ≥ 1− δ or V U (I)− V L(I) ≤ δ] then

return πL endif /* early termination (positive) */
if [AtLeastProb: V U (I) < θ] then

return “impossible” endif /* early termination (negative) */
if ex. leaf state s �∈ S� ∪ S⊥ in Θ reachable using πU then

select such a state s
else return πU endif /* regular termination */
for all a and t where P (s, a, t) > 0 do

if t not already contained in Θ then
insert t as child of s into Θ; Initialize(t)

else insert s as a new parent of t into Θ endif
endfor
BackwardsUpdate(s)

endloop
procedure Initialize(s):

V U (s) :=

{
0 s ∈ S⊥
1 otherwise

V L(s) :=

{
1 s ∈ S�
0 otherwise

if s �∈ S� ∪ S⊥ then πL(s) := ∗ endif

Figure 1: AO∗ for MaxProb, AtLeastProb, and ApproxProb
(as indicated), on acyclic state spaces. πU is the current
greedy policy on V U , πL is the current greedy policy on
V L. BackwardsUpdate(s) updates all of V U , πU , V L, πL.
As states may have several parents in Θ, we first make a
backwards sweep to collect the sub-graph Θ|s ending in s.
Then we update Θ|s in reverse topological order.

of duplicates is simple, identifying search nodes with states,
as the state space is acyclic. For the same reason, simple
backward updating suffices to maintain the value function.

Adopting ideas from prior work (e. g. (McMahan,
Likhachev, and Gordon 2005; Little, Aberdeen, and
Thiébaux 2005; Smith and Simmons 2006)), we maintain
two value functions, namely both an upper bound V U and
a lower bound V L on goal probability. Both are initialized
trivially, for lack of heuristic estimators of goal probability
(dead-end detection, as a simple but non-trivial V U initial-
ization, will be discussed in the next section). Nevertheless,
both bounds can be useful for search. To refute an action,
it often suffices to reduce V U for just one of its outcomes.
Hence, even for trivial initialization, V U may allow to disre-
gard parts of the search space, in the usual way of admissible
heuristic functions. As we shall see, this kind of behavior
occurs frequently. Furthermore, there are various possibili-
ties for early termination. The lower bound enables positive
early termination when we can already guarantee sufficient
goal probability, namely 1 (MaxProb), θ (AtLeastProb), or
1−δ (ApproxProb). The upper bound enables negative early
termination in AtLeastProb, when V U < θ. In ApproxProb,
clearly we can terminate when V U (I)− V L(I) ≤ δ.4

4The V L = 1 and V L(I) ≥ 1− δ criteria are redundant when
maintaining an upper bound, i. e., for heuristic search, where they
are subsumed by regular termination respectively termination on
V U (I)−V L(I) ≤ δ. In configurations not maintaining V U , how-

301



Regarding correctness: Trivially, V U (s) and V L(s) in-
deed are upper respectively lower bounds on the goal proba-
bility of the states s in Θ, at any point in time. Furthermore,
πL is always a closed policy, because it applies the don’t
care symbol ∗ at the non-absorbing leaf states in Θ (note
also that ∗ is applied only on those states). Its goal prob-
ability V πL

(s) is at least the lower-bound goal probability,
V πL

(s) ≥ V L(s), because V L(s) is monotonic.
For LRTDP, we consider the general case, including

cyclic state spaces. We omit the pseudo-code, for space
reasons (it is available in the TR). Like in GoalProb-AO∗,
we maintain V L in addition to V U . We test the exact same
early termination criteria. Note that this is valid even in the
general/cyclic case, i. e., if early termination applies then we
can terminate the overall FRET process. We include an ad-
ditional stopping criterion for trials in the cyclic case, also
used by Kolobov et al. (2011), stopping if the current state s
is ε-consistent. This keeps trials from getting trapped in 0-
reward cycles, yet preserves the property that, upon regular
termination, all states reachable using πU are ε-consistent.

In the cyclic case, the V U fixed point found by LRTDP
may be sub-optimal, so we have to use FRET. In the acyclic
case, we use ε = 0, and a single call to LRTDP suffices.

To study early termination capabilities, for X ∈ {AO∗,
LRTDP} we will consider variants X|U and X|L, maintaining
only V U respectively only V L. Early termination criteria
involving the non-maintained bound are disabled. We write
X|LU to make explicit that both bounds are used. For AO∗|L,
all non-absorbing leaf states in Θ are open (rather than only
those reachable using πU ), and in case of regular termination
we return πL. We do not consider a variant LRTDP|L as
LRTDP without an upper bound does not make sense.

We finally design a variant of FRET, and a new state-
space reduction method. FRET performs an iteration of heu-
ristic searches, each finding a fixed point of V U . In between
iterations, FRET runs a trap elimination step, which finds
non-goal cycles in the greedy-policy graph with respect to
V U , and forces the next search iteration to avoid these cy-
cles. The “greedy-policy graph” here considers all actions
greedy with respect to V U . We refer to this design as FRET-
V U . Our alternative design, FRET-πU , instead considers the
graph induced by the actions πU selected into the current
greedy policy. This provides the same convergence guaran-
tee (see the TR for the proof). FRET-V U may require less
iterations, yet each trap elimination step may be much more
costly. In particular, in goal probability analysis, V U often is
1 almost everywhere in the first step, and the graph consid-
ered by FRET-V U is almost the entire reachable state space.

Our reduction method computes a bisimulation of the
all-outcomes determinization (e. g. (Yoon, Fern, and Givan
2007; Little and Thiebaux 2007)), using standard merge-
and-shrink methods (Helmert et al. 2014). We then run any
MDP algorithm on the bisimulated state space. This is sound
because bisimilar states have equivalent transition behavior,
and transitions in the all-outcomes determinization are ac-
tion outcomes in the original task. Thus bisimilar states are
equivalent in the probabilistic state space (the bisimulation

ever, these termination criteria can be very useful to reduce search.

is a “homogenous partition” as per Dean and Givan (1997)).

Dead-End Pruning

Dead-ends are states s where V ∗(s) = 0. One can treat such
s exactly like lost states S⊥ (except for setting πL(s) :=
∗). Apart from this pruning itself, for the heuristic search
algorithms this provides a non-trivial initialization of V U ,
typically leading to additional search reductions.

Kolobov et al. (2011) employ SixthSense (Kolobov,
Mausam, and Weld 2010), which learns dead-end detec-
tion rules by generalizing from information obtained us-
ing a classical planner. Here we instead exploit the power
of classical-planning heuristic functions run on the all-
outcomes determinization, readily available in our FD im-
plementation framework. This works especially well in
limited-budget planning, where we can use lower bounds on
determinized remaining cost to detect states with insufficient
remaining budget. Note that this is natural and effective us-
ing admissible remaining-cost estimators, yet would be im-
practical using an actual planner (which would need to be
optimal and thus prohibitively slow). For the general case,
we can use any heuristic function able to detect dead-ends
(returning ∞), which applies to most known heuristics.

We experiment with state-of-the-art heuristic functions,
namely (a) an admissible landmark heuristic as per Karpas
and Domshlak (2009), (b) LM-cut (Helmert and Domsh-
lak 2009), (c) several variants of merge-and-shrink heuris-
tics, and (d) hmax (Bonet and Geffner 2001) as a simple
and canonical option. (a) turned out to perform consistently
worse than (b), so we will report only on (b) – (d).

For limited-budget planning, we also considered to adopt
the problem reformulation by Domshlak and Mirkis (2015)
for oversubscription planning, which reduces the budget b
using landmarks and in exchange allows to traverse yet non-
used landmarks at a reduced cost during search. Somewhat
surprisingly, however, pruning states whose reduced budget
is < 0 is equivalent to the much simpler method pruning
states whose heuristic (a) exceeds the remaining budget. The
added value of Domshlak and Mirkis’ reformulation thus
lies, not in its pruning per se, but in its compilation into
a planning language and the resulting combinability with
other heuristics. We give more details in the TR.

Node Selection Strategies

In both GoalProb-AO∗ and GoalProb-LRTDP, good anytime
behavior on V L and/or V U may translate into early termina-
tion. We explore the potential of fostering this via (1) biasing
the tie-breaking in the selection of “best” actions πU greedy
with respect to V U , and (2) biasing the choice of outcome
states (AO∗), respectively the outcome-state sampling dur-
ing trials (LRTDP). AO∗|L is a special case where (1) does
not apply but (2) is especially important as we are free to
choose any open leaf state in the current search graph Θ.

We experimented with a variety of strategies. We give a
brief summary only; details are available in the TR.

Our default strategy uses the standard in AO∗ and LRTDP.
Tie-breaking for (1) is arbitrary, but fixed, i. e., πU (s)
changes only if some other action becomes strictly better in
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s. Open outcome states (2) in AO∗ are selected arbitrarily,
and the bias in LRTDP is by outcome probability. Our most-
prob-outcome bias strategy in AO∗ prefers likely outcomes.

Our h-bias strategy prefers states with smaller h value,
where the heuristic h is the same one used for dead-end
pruning. In (1), we break ties in favor of actions mini-
mizing the expected heuristic value, in (2) we weigh (and
renormalize) the outcome probabilities by 1

h(t) ∗ P (s, a, t).
Inspired by BRTDP (McMahan, Likhachev, and Gordon
2005), our gap-bias strategy breaks ties in (1) by maximal
expected gap, and weighs the outcome probabilities in (2)
by [V U (t)−V L(t)]∗P (s, a, t). Inspired by common meth-
ods in classical planning, e. g. (Hoffmann and Nebel 2001;
Helmert 2006), our preferred actions strategy prefers in (1)
actions used by delete-relaxed determinized plans.

In AO∗|L, the default strategy is depth-first, the rationale
being to try to reach absorbing states quickly. The h-bias
strategy selects a deepest leaf with minimal h value, the pre-
ferred actions strategy selects a deepest open leaf reachable
using only preferred actions. We furthermore experiment
with a breadth-first strategy, just for comparison.

Experiments

We implemented the algorithms in Fast Downward (FD)
(Helmert 2006). FD’s pre-processes were extended to han-
dle PPDDL. The state of the art in optimal goal probability
analysis is represented by particular points in our configura-
tion space: topological VI and (FRET-V U using) LRTDP|U
with dead-end pruning. The implementation by Kolobov et
al. (2011), which uses the different dead-end detector Sixth-
Sense, is not available anymore (personal communication
with Andrey Kolobov). The TR includes a detailed compar-
ison against the results reported by Kolobov et al.

Our aim being to comprehensively explore the relevant
problem space, we designed a broad suite of benchmarks,
1089 instances in total, based on domains from the IPPC,
resource-constrained planning, and pentesting. From the
IPPC, we selected those PDDL domains in STRIPS for-
mat, or with moderate non-STRIPS constructs easily com-
pilable into STRIPS. This resulted in 10 domains from
IPPC’04 – IPPC’08; we selected the most recent benchmark
suite for each of these. For resource-constrained planning,
we adopted the NoMystery, Rovers, and TPP benchmarks
by Nakhost et al. (2012), more precisely those suites with
a single consumed resource (fuel, energy, money), which
correspond to limited-budget planning.5 We created prob-
abilistic versions by adding uncertainty about the under-
lying road map, akin to the Canadian Traveler scenario,
each road segment being present with a given probability
(this is encoded through a separate, probabilistic, action at-
tempting a segment for the first time). For simplicity, we
set that probability to 0.8 throughout. For pentesting, we
modified the POMDP generator by Sarraute et al. (2012),

5To make the benchmarks feasible for optimal probabilistic
planning, we had to reduce their size parameters (number of lo-
cations etc). We scaled all parameters with the same number < 1,
chosen to get instances at the borderline of feasibility for VI.

which itself is based on a test scenario used at Core Secu-
rity (http://www.coresecurity.com/). The generator uses a net-
work consisting of an exposed part, a sensitive part, and a
user part. It scales the numbers H of hosts and E of ex-
ploits. We modified the generator to output Hoffmann’s
(2015) attack-asset MDP pentesting models. Sarraute et al.’s
POMDP model and solver (SARSOP (Kurniawati, Hsu, and
Lee 2008), which is not optimal) scale to H = 6, E = 10.
For our benchmarks, we fixed H = E for simplicity (and to
obtain a number of instances similar to the other benchmark
domains). We scaled the instances from 6 . . . 20 without
budget limit, and from 10 . . . 24 with budget limit.

From each of the above benchmark task Π, except the
pentesting ones, we obtained several limited-budget bench-
marks, as follows. We set outcome costs to 1 where not
otherwise specified. We determined the minimum budget,
bmin, required to achieve non-0 goal probability. For the
resource-constrained benchmarks, bmin is determined by the
generator itself, as the minimum amount of resource re-
quired to reach the goal in the deterministic domain version.
For all other benchmarks, we ran FD with A∗ and LM-cut
on the all-outcomes determinization of Π. If this failed, we
skipped Π, otherwise we read bmin off the cost of the opti-
mal plan and created several limited-budget tasks Π[C], dif-
fering in their constrainedness level C. Namely, following
Nakhost et al. (2012), we set the global budget b in Π[C] to
b := C ∗ bmin, so that C is the factor by which the available
budget exceeds the minimum needed (to be able to reach the
goal at all). We let C range in {1.0, 1.2, . . . , 2.0}.

For AtleastProb, we let θ range in {0.1, 0.2, . . . , 1.0}
(θ = 0 is pointless). For ApproxProb, we let δ range in
{0.0, 0.1, . . . , 0.9} (δ = 1 is pointless). On cyclic problems,
the convergence parameter ε was set to 0.00005 (the same
value as used by Kolobov et al. (2011)). All experiments
were run on a cluster of Intel E5-2660 machines running at
2.20 GHz, with time/memory cut-offs of 30 minutes/4 GB.

Acyclic Planning

We consider first acyclic planning. This pertains to all
budget-limited benchmarks, to pentesting with and without
budget limit, as well as to IPPC TriangleTireworld (moves
can be made in only one direction so the state space is
acyclic). We consider the 3 objectives MaxProb, AtLeast-
Prob, and ApproxProb. We run all 6 search algorithm vari-
ants, each with up to 5 node selection strategies as explained.
For dead-end pruning, we run LM-cut, as well as merge-
and-shrink (M&S) with the state-of-the-art shrinking strate-
gies based on bisimulation and an abstraction-size bound N ;
we show data for N = ∞ and N = 100k (we also tried
N ∈ {10k, 50k, 200k} which resulted in similar behavior).
We also run variants without dead-end pruning. We use the
deterministic-bisimulation (BS) reduced state space with VI
(the cases where BS succeeds are easily solved by VI). Over-
all, we get 217 different algorithm configurations.

We first examine the behavior of search algorithms and
pruning on MaxProb. We fix the node selection to default,
and we omit AO∗|LU and LRTDP|LU as, for MaxProb heuris-
tic search, maintaining V L is redundant (early termination is
dominated by regular termination). Table 1 shows coverage

303



VI AO∗|L AO∗|U LRTDP|U VI
– LM M&S – LM M&S – LM M&S – LM M&S on

Domain # N ∞ N ∞ N ∞ N ∞ BS
IPPC Benchmarks

TriaTire 10 4 4 4 4 4 4 4 4 10 10 10 10 10 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 66 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24 24
Boxworl-b 18 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0
Drive-b 90 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52 52
Elevator-b 90 71 82 72 33 70 82 72 33 65 77 67 33 79 86 79 33 33
ExpBloc-b 84 32 46 38 37 32 46 38 37 39 57 39 37 38 65 39 37 37
Random-b 60 27 33 35 33 27 33 35 33 35 44 36 33 36 44 36 33 33
RecTire-b 36 30 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36 36
Tirewor-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriaTire-b 60 45 52 52 52 45 52 52 52 46 55 55 55 47 57 57 57 60
Zenotra-b 36 15 16 16 18 15 16 16 18 14 16 16 17 15 17 16 17 17

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 60 11 37 43 44 11 36 42 43 12 39 47 47 12 41 50 50 51
Rovers-b 60 23 39 31 40 23 38 31 40 23 44 33 45 25 46 35 46 50
TPP-b 60 18 35 25 25 16 35 24 24 15 37 26 22 19 38 27 25 26

Pentesting Benchmarks
Pentest 15 9 9 9 8 9 9 9 8 9 9 9 8 9 9 9 8 8
Pentest-b 90 57 63 62 37 57 63 62 37 57 63 63 37 57 63 63 37 37∑

925 546 658 627 533 543 656 625 531 559 693 641 546 581 718 661 555 564

Table 1: MaxProb coverage (number of tasks solved within
time & memory limits) in acyclic planning. Best values in
boldface. Domains “-b” modified with budget limit. “#”:
number of instances. “–”: no pruning; else pruning, against
remaining budget on “-b” domains, based on h = ∞ on
other domains. “LM”: LM-cut; “M&S”: merge-and-shrink,
“N” size bound N = 100k, “∞” no size bound. “VI on
BS”: VI run on reduced (bisimulated) state space.

data (runtime results are qualitatively similar, see the TR).
Of the pruning methods, LM-cut clearly stands out. For

every search algorithm, it yields the by far best overall cover-
age. M&S has substantial advantages only in RectangleTire-
world and NoMystery-b. Note that, for N = ∞, overall cov-
erage is worse than for using no pruning at all. This is due
to the prohibitive overhead, in some domains, of computing
a bisimulation on the determinized state space. And, hav-
ing invested this effort, it pays off more to use the bisimula-
tion as a reduced MDP state space (“VI on BS”), rather than
only for dead-end pruning. An extreme example is Triangle-
Tireworld. Far beyond the standard benchmarks in Table 1
(triangle-side length 20), VI on BS scales to side length 74
in both the original domain and the limited-budget version.
For comparison, the hitherto best solver by far was Prob-
PRP (Camacho et al. 2016), which scales to side length 70
on the original domain,6 and is optimal only for goal proba-
bility 1, i. e., in the presence of strong cyclic plans.

Of the search algorithms, AO∗|L is better than VI only in
case of early termination on V L = 1, when a full-certainty
policy is found before visiting the entire state space. This
happens very rarely here, and AO∗|L is dominated by VI
(this changes for AtLeastProb, Figures 3 (a) and 4 below).
LRTDP|U clearly outperforms AO∗|U, presumably because
it tends to find absorbing states more quickly.

To gauge the efficiency of heuristic search vs. blind search
on MaxProb, compare LRTDP|U vs. VI in Table 1. Contrary
to the intuition that a good initial goal probability estima-
tor is required for heuristic search to be useful, LRTDP|U
is clearly superior. Its advantage does grow with the qual-

6We could not run the limited-budget domain as Prob-PRP does
not natively support a budget, and hard-coding the budget into
PPDDL resulted in encodings too large to pre-process.
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Figure 2: Number of states visited, for VI (x) vs. LRTDP|U
(y), with no pruning (left) and with LM-cut pruning (right).

ity of the initialization; LM-cut yields the largest coverage
increase by far. However, even without dead-end pruning,
i. e., with the trivial initialization of V U , LRTDP|U domi-
nates VI throughout, and improves coverage in 8 of the 16
domains. Figure 2 sheds additional light on this by com-
paring the respective search space sizes directly. The non-
trivial initialization using LM-cut clearly helps. But even
without it, gains of around 1 order of magnitude occur fre-
quently, and larger gains (up to 3 orders of magnitude) occur
in rare cases. As previously hinted, these observations have
not been made in this clarity before: While Kolobov et al.
(2011) also report LRTDP to beat VI on MaxProb, they con-
sider only a single domain; they do not experiment with triv-
ially initialized V U ; and they do not use dead-end pruning
in VI, so that LRTDP already benefits from a smaller state
space, and the impact of heuristic search remains unclear.

We now turn to the weaker objectives, AtLeastProb and
ApproxProb. We fix LM-cut for the (almost always most ef-
fective) dead-end pruning. We examine the power of early
termination for different search algorithms and node selec-
tion strategies. This is best viewed as a function of the goal
probability threshold θ in AtLeastProb, and of the desired
goal probability accuracy δ in ApproxProb. VI forms a base-
line independent of θ. Consider Figure 3.

For AtLeastProb (Figure 3 (a)), one clear feature is again
the superiority of LRTDP over AO∗. There is now the strik-
ing exception of AO∗|L, however, which for small values of
θ approaches (and in one case, surpasses) the performance
of LRTDP. The depth-first expansion strategy is quite effec-
tive for anytime behavior on V L and thus for termination
via V L(I) ≥ θ. It is way more effective than the heuris-
tic search in AO∗|LU. As we shall see below (Figure 4), it
is often also more effective than LRTDP. In general, for all
algorithms, using V L is a clear advantage for small θ. For
larger θ, maintaining V L can become a burden, yet V U is
of advantage due to early termination on V U (I) < θ. Algo-
rithms using both bounds exhibit an easy-hard-easy pattern.

The spike at the left-hand side in Figure 3 (a), i. e., signif-
icantly worse performance for θ = 0.1 than for θ = 0.2, is
an outlier due to the Pentest domains (without them, AO∗|LU
and LRTDP|LU exhibit a strict easy-hard-easy pattern). In
contrast to typical probabilistic planning scenarios, in pen-
etration testing the goal probability – the chances of a suc-
cessful attack – are typically small, and indeed this is so in
our benchmarks. Searches using an upper bound quickly ob-
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Figure 3: Total coverage in acyclic planning, for AtLeastProb as a function of θ in (a) and (c), for ApproxProb as a function of
δ in (b). Node selection varies in (c), default used in (a) and (b). All configurations use LM-cut dead-end pruning.

tain V U (I) < 0.2, terminating early based on V U (I) < θ
for θ = 0.2. But it takes a long time to obtain V U (I) < 0.1.

For ApproxProb (Figure 3 (b)), smaller values of δ con-
sistently result in worse performance. We see again the su-
periority of LRTDP over AO∗, with a similar though not as
pronounced exception for AO∗|L in δ regions allowing ag-
gressive early termination. We also see again the superiority
of algorithms using both bounds over those that don’t.

Figure 3 (c) examines the effect of different node selec-
tion strategies in AtLeastProb (the relative performance of
node selection strategies is the same in ApproxProb, so we
do not include a separate figure for that). For readability,
we show only the most competitive base algorithms, AO∗|L,
AO∗|LU, and LRTDP|LU (as well as the VI baseline). For
LRTDP, we show only default node selection, which consis-
tently works a little better than the alternatives. For AO∗|L,
we see that the depth-first strategy is important (and way be-
yond breadth-first, which does worse than VI). The h-bias
strategy is generally on par with depth-first. For AO∗|LU,
the main observation is that the most-prob-outcome bias is
helpful, improving over the default strategy except for high
values of θ. The h-bias consistently improves a bit on de-
fault AO∗. The gap-bias and preferred actions strategies are
not shown as they were consistently slightly worse (appar-
ently, the gap-bias leads to a more breadth-first style behav-
ior, while preferred actions mainly cause runtime overhead).

To conclude our discussion of acyclic planning, Figure 4
exemplifies typical anytime behavior, i. e., the development
of the V L(I) and V U (I) bounds on the initial state value,
as a function of runtime, for LRTDP|LU and AO∗|L (using
default node selection because the alternatives are not bene-
ficial for these algorithms). The benefit of LM-cut pruning
is evident. Observe that AO∗|L is way more effective than
LRTDP in quickly improving the lower bound. Indeed, the
runs shown here find an optimal policy very quickly. Across
the benchmarks solved by both AO∗|L and LRTDP, omitting
those where both took < 1 second, in 56% of cases AO∗|L
finds an optimal policy faster than LRTDP. On (geometric)
average, AO∗|L takes 66% of the time taken by LRTDP for
this purpose. On the downside, unless V ∗(I) ≥ θ, AO∗|L
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Figure 4: Anytime behavior in LRTDP|LU (V U and V L)
and AO∗|L (V L only), as a function of runtime. Elevators
instance 11, without pruning and with LM-cut pruning, for
constrainedness levels C = 1.4 (left) and C = 1.8 (right).

must explore the entire state space. Its runs in Figure 4 ex-
haust memory for MaxProb. In summary, heuristic search is
much stronger in proving that the maximum goal probability
is found, but is often distracting for improving V L quickly.

As both parts of Figure 4 use the same base instance but
with different constrainedness levels C, we can also draw
conclusions on the effect of surplus budget. With more bud-
get, more actions can be applied before reaching absorbing
states. This adversely affects the upper bound (consistently
across our experiments), which takes a much longer time to
decrease (cf. C = 1.8 vs. C = 1.4 in Figure 4). The lower
bound, on the other hand, often increases more quickly with
higher C as it is easier to find goal states.

Cyclic Planning with FRET

We now consider cyclic planning, pertaining to the standard
IPPC benchmarks, and to probabilistic NoMystery, Rovers,
TPP without budget (nor resource-) limit. We run only
LRTDP, as AO∗ is restricted to acyclic state spaces. We
use the two different variants of FRET described earlier:
FRET-V U as per Kolobov et al. (2011), and our new vari-
ant FRET-πU . We consider all 3 objectives, and the same
4 dead-end pruning methods (as LM-cut returns ∞ iff the
cheaper heuristic hmax does, we use hmaxhere).
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VI FRET-V U FRET-πU

– hmax M&S on – hmax M&S on – hmax M&S on
Domain # N ∞ BS N ∞ BS N ∞ BS

IPPC Benchmarks
Blocksworld 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Boxworld 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drive 15 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6
Elevators 15 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5
ExplodingBlocks 15 4 6 4 4 4 4 6 4 4 4 5 14 5 4 4
Random 15 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0
RectangleTireworld 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

Tireworld 15 10 10 10 10 11 10 11 10 10 11 15 15 15 12 11
Zenotravel 15 3 3 3 1 0 3 3 3 1 1 3 3 3 1 1

Probabilistic Resource-Constrained Benchmarks
NoMystery 10 5 5 5 5 5 5 5 5 5 5 4 4 4 4 1
Rovers 10 5 5 5 5 9 5 5 5 5 9 9 9 9 8 9

TPP 10 6 6 6 6 6 6 6 6 6 6 8 8 8 6 6
∑

164 81 83 81 60 64 81 84 81 60 65 96 105 92 64 61

Table 2: MaxProb coverage in cyclic planning. Best val-
ues in boldface. FRET-V U is as per Kolobov et al. (2011),
FRET-πU is our modified version. Both use LRTDP|U.
Dead-end pruning variants: “–” none, else based on heuris-
tic value ∞, for hmax respectively merge-and-shrink (“N”
size bound N = 100k, “∞” no size bound). “on BS”: run
on reduced (bisimulated) state space.
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Figure 5: Number of states visited, for VI (x) vs. FRET-πU

(y), with no pruning (left) and with hmax pruning (right).

Table 2 shows coverage data for MaxProb. FRET-πU out-
performs both VI and FRET-V U substantially. Note that,
in all domains except ExplodingBlocks and Rovers, the ad-
vantage over VI is obtained even without dead-end pruning,
i. e., for trivial initialization of V U . This strongly confirms
the power of heuristic search even in the absence of good
admissible goal probability estimators. Figure 5 compares
search space sizes. Initialization using hmax is useful, but
gains of 3 orders of magnitude are possible even without it.

The search space size gains in FRET-πU result in simi-
lar runtime gains (see the TR). The single exception is No-
Mystery, where VI and FRET-V U visit the same states and
FRET-πU visits ca. 5 times less states, but the larger number
of FRET-πU iterations results in worse runtime, ca. 20 times
compared to VI and ca. 5 times compared to FRET-V U .

With respect to Kolobov et al.’s (2011) experiments on
ExplodingBlocks – the previous empirical state of the art
– we observe (see TR for details): VI with hmax pruning
performs similarly to FRET-V U with hmax pruning, showing
that Kolobov et al.’s choice to not use pruning in VI indeed
obfuscates the possible conclusions; Kolobov et al.’s FRET-
V U also performs similarly, except on the largest instances
where SixthSense detects more dead-ends yet this is more
than outweighed by the larger runtime overhead; FRET-πU
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Figure 6: AtLeastProb coverage in cyclic planning, as a
function of θ, using hmax pruning and default node selection.
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Figure 7: Anytime behavior of FRET-πU with LRTDP|LU,
without pruning for ExplodingBlocks instance 04 (left), and
with hmax pruning for instance 15 (right).

convincingly outperforms all other algorithms.
For the weaker objectives AtLeastProb and ApproxProb,

as before we examine coverage as a function of θ respec-
tively δ. Figure 6 shows the data for default node selec-
tion in AtLeastProb (the behavior for ApproxProb is qualita-
tively similar). By FRET|U respectively FRET|LU, we refer
to FRET using LRTDP|U respectively LRTDP|LU.

For FRET-V U , the picture is similar to Figure 3 (a),
FRET|LU-V U exhibiting an easy-hard-easy pattern due to
the advantages of early termination. For FRET-πU , though,
the curves are flat over θ. This is due to benchmark scaling:
in each domain, there is an instance number x so that, be-
low x, FRET-πU can solve all instances completely (solving
MaxProb), while above x neither V L(I) nor V U (I) can be
improved at all, up to the time/memory limit. On smaller
instances, we do get the expected anytime behavior. Fig-
ure 7 exemplifies this. The easy-hard-easy pattern would
thus emerge for smaller runtime/memory limits.

Conclusion

Optimal goal probability analysis is a notoriously hard prob-
lem, to the extent that the amount of work addressing it is
limited. We clarified the empirical state of the art, and sub-
stantially improved it through a novel variant of FRET and
through a novel state-space reduction method. We showed
that there are opportunities arising from naturally acyclic
problems, and from early termination on criteria weaker than
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maximum goal probability. We hope that this will inspire
renewed interest in this important problem. Promising fu-
ture directions include advanced admissible goal probability
estimators, e. g. from abstractions interpreted as bounded-
parameter MDPs (Givan, Leach, and Dean 2000); hybrids
of heuristic search with Monte-Carlo tree search, geared at
good anytime behavior and thus early termination; and the
exploitation of goal probability monotonicity as a function
of remaining budget. Simulated pentesting is an application
worth algorithms research in it own right. Partial-order re-
duction appears especially promising there.
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