
Online Algorithms for the
Linear Tape Scheduling Problem

Carlos Cardonha, Lucas C. Villa Real
IBM Research

Rua Tutoia 1157, Vila Mariana
Sao Paulo, SP, Brazil

Abstract

Even in today’s world of increasingly faster storage technolo-
gies, magnetic tapes continue to play an essential role in the
market. Yet, they are often overlooked in the literature, de-
spite the many changes made to the underlying tape architec-
ture since they were conceived. In this article, we introduce
the LINEAR TAPE SCHEDULING PROBLEM (LTSP), which
aims to identify scheduling strategies for read and write op-
erations in single-tracked magnetic tapes that minimize the
overall response times for read requests. Structurally, LTSP
has many similarities with versions of the Travelling Repair-
man Problem and of the Dial-a-Ride Problem restricted to
the real line. We investigate several properties of LTSP and
show how they can be explored in the design of algorithms
for the online version of the problem. Computational experi-
ments show that the resulting strategies deliver very satisfac-
tory scheduling plans, which in most cases are clearly supe-
rior (potentially differing by one order of magnitude) to those
produced by a strategy currently used in the industry.

Introduction

Magnetic tapes play a significant role as a medium for stor-
age of digital data. Even though they frequently go unno-
ticed, the industry continues to adopt them due to their re-
markable cost-effectiveness; price per bit ratios in magnetic
tapes are still typically smaller than those offered by other
technologies (Fontana, Decad, and Hetzler 2013). Addition-
ally, tapes are optimized for streaming operations; in par-
ticular, sequential data transfer speeds are relatively high
(around 300MB/second in some scenarios), which makes
tapes specially suitable for several classes of applications as
e.g., audio/video streaming, automated backups, and long-
term archiving.

The demand for long-term archiving of digital data can
be easily observed in the media and entertainment indus-
try, where high-resolution digital content produced often
needs to be stored for eventual accesses in the future (e.g., a
replay of a soccer game); frequently that content remains
archived for many years without ever being read (Frank
et al. 2012). Another instance happens in the oil industry,
in which sonar systems aboard vessels routinely capture
more data from deep oceans than the available computers

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can process, resulting in the archival of that data for even-
tual processing – akin to situations faced by large scientific
organizations (Murray et al. 2012) and renowned projects
such as the Large Hadron Collider (Cavalli et al. 2010).
Finally, we remark that tapes are key components of dis-
tributed computing-based storage solutions (Prakash et al.
2013) and are used for online reading and writing of data
files (Real et al. 2015) just like more popular removable me-
dia types (Pease et al. 2010).

Operationally, a modern magnetic tape works as follows.
Since the reading/writing head is in a fixed position, the tape
drive first needs to rewind or fast-forward the tape to the re-
quested location. Next, the head needs to be moved up or
down to select the correct track before the requested opera-
tions can execute. Because access in tapes is sequential, the
response times for write and read requests depend strongly
on the tape position at the head and on the order in which
operations are executed (Sandstå and Midtstraum 1999). We
also note that, differently from read operations, writes are of-
ten handled asynchronously by storage systems through the
use of caching memories. As a consequence, readers may
experience higher response times from the tape drive than
writers, and thus need to be processed with special care to
prevent task starvation.

In this work, we investigate challenges associated with
the scheduling of read and write requests in magnetic tapes.
Since data stored within a partition of a modern enterprise
tape cannot be updated without causing data loss to the
tracks nearby, we do not consider scenarios where files
can be overwritten, modified, or removed from the tape.
Writes are always handled at the end of the tape through ap-
pend operations, as in Write-Once, Read-Many storage de-
vices (Hasan et al. 2005).

Limited computational power and rigorous time restric-
tions prohibit the applicability of complex (i.e., time-
consuming) algorithms in the practical settings. Namely,
scheduling plans are expected to be produced in less than
one second (two hundred milliseconds is the rule-of-thumb),
a limitation that hinders the application of traditional op-
erational research techniques such as mixed-integer linear
programming and constraint programming. For this reason,
most techniques reported on related work simply sort the
list of requests according to their offset relative to the cur-
rent position of the tape (Schaeffer and Casanova 2011;

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

70

Zhang et al. 2006). More complex approaches incorporate
the cost of repositioning the tape on different tape mod-
els, but they rely on time-consuming characterizations of the
physical tapes and on access to low level hardware informa-
tion (Sandstå and Midtstraum 1999; Hillyer and Silberschatz
1996).

We restrict our attention in this work to scenarios where
the tape has a single track, that is, it moves only to the left
and to the right with the reading/writing head fixed at a cer-
tain vertical offset. Although strong, this assumption reflects
situations where batches of requests are relatively “local”
(i.e., associated with files which are part of the same work-
ing set, thus close to each other in the tape). Moreover, one
can find in the literature tape partitioning schemes to enable
better spatial arrangements of groups of files (Oracle 2011)
and that support the scenarios we describe. Additionally, we
assume that the velocity with which the tape is moved is al-
ways constant; in practice, tape acceleration and momentum
do have an impact on the velocity in which the request is
served, though, so this implies in a simplification of the real
problem. The main contributions of this article are the in-
troduction of the LINEAR TAPE SCHEDULING PROBLEM,
the study of its structural properties, and the algorithms we
propose for the online version of the problem.

The article is organized as follows. First, we present a list
of related problems that have been studied already in the
literature. Then, after providing a formal description of the
problem, we investigate some algorithms and properties of
the offline LTSP. Afterwards, we investigate structural prop-
erties of the online LTSP and present five algorithms for the
problem. Finally, we report on the results of computational
experiments involving the algorithms for the online LTSP
and finish the article with our conclusions.

Background and related work
The LINEAR TAPE SCHEDULING PROBLEM is related to
the TRAVELLING REPAIRMAN PROBLEM (TRP), a vari-
ant of the TRAVELLING SALESMAN PROBLEM (TSP) in
which requests are generated on (a subset of) the vertices of
a graph and the goal is to minimize the sum of their wait-
ing times (Afrati et al. 1986). The TRP has been largely
studied in the literature (eventually with different names,
such as DELIVERY MAN PROBLEM or MINIMUM LA-
TENCY PROBLEM). Afrati et al. showed that the TRP is
NP-complete in the general case and that the line-TRP—
a version of the problem in which all requests are distributed
in a line—can be solved in polynomial time if requests do
not have deadlines and their servicing times are insignifi-
cant (or are equal for all machines) (Afrati et al. 1986). Re-
cently, Bock presented the state-of-the-art of the line-TRP
with respect to the computational complexity of its various
versions (and of the line-TSP as well, in which the goal is
to minimize the tour duration) (Bock 2015); in particular,
the complexity of the line-TRP without time-windows (i.e.,
without release times and due dates) and with general pro-
cessing times is still unknown.

The LINEAR TAPE SCHEDULING PROBLEM is also re-
lated to the SINGLE-VEHICLE SCHEDULING PROBLEM ON
A LINE (LINE-VSP or VSP-PATH); in this problem, the

goal is to minimize the completion time of jobs associated
with vertices, while eventually taking into account elements
such as release time, deadlines, handling (or service) time,
and initial/final position of the vehicle. The version with
handling times and time windows is NP-complete (Garey
and Johnson 1979). In scenarios where service times are
equal to zero and only release times are considered, the prob-
lem can be solved in polynomial time (Psaraftis et al. 1990).
Karuno, Nagamochi, and Ibaraki presented a polynomial-
time 1.5 approximation algorithm for LINE-VSP with re-
lease and handling times (Karuno, Nagamochi, and Ibaraki
1998); additionally, Karuno and Nagamochi showed that the
same problem admits a Polyonomial-Time Approximation
Scheme (PTAS) if the number of vehicles is fixed and larger
than one (Karuno and Nagamochi 2001). For other related
results, see e.g. Tsitsiklis (Tsitsiklis 1992) and Karuno and
Nagamochi (Karuno and Nagamochi 2005).

The DIAL-A-RIDE PROBLEM is also similar to the LTSP;
in this problem, fleets of vehicles are used to transport prod-
ucts between vertices in a graph. De Paepe et al. provide an
extensive classification of Dial-a-Ride problems (Paepe et
al. 2004); in particular, they show that the minimization of
the sum of all completion times is NP-complete even in sce-
narios where there is just one vehicle of capacity one (i.e.,
can only carry one product at any point in time) servicing all
requests and all vertices are positioned in a line (i.e., R1).

In practical settings, the LINEAR TAPE SCHEDULING
PROBLEM is inherently online, that is, decisions are taken
(and executed) in real-time, before all requests become
available. Moreover, there is no fixed execution order for
read requests, thus making our problem related to the ON-
LINE TRAVELLING SALESMAN PROBLEM (OLTSP), a
variation of the TRAVELLING SALESMAN PROBLEM in
which new vertices to be visited are informed to the sales-
man during the tour. In particular, the LTSP is related to
the Homing-OLTSP, defined by Ausiello et al. (Ausiello et
al. 2001), since the end of the tape needs to be sought to
from time to time in order to execute writing requests. In
the same work, the authors present a 1.75-competitive al-
gorithm for the Homing-OLTSP in a line and show that no
online algorithm can be better than 1.64-competitive for the
problem. Handling times are zero for the Homing-OLTSP,
but Augustine shows that any c-competitive online algo-
rithm for the problem with zero handling times yields a
(c + 1)-competitive online algorithm for non-negative han-
dling times (Augustine 2002).

Problem description
Let T be a single-track magnetic tape with infinite (or suffi-
ciently large) storage capacity. Each operation taking place
on T is the response to one or more jobs (or requests) associ-
ated with exactly one file f ; the set of jobs is denoted by J ,
the set of files stored in T is denoted by F , and J(f) ⊆ J
is the set of jobs associated with f . Each job j in J has a
type, given by function t : J → {r, w}; t(j) = w if j is a
write request, and t(j) = r if j is a read request. The file
associated with job j is given by f(j).

All operations take place from the left to the right. That is,
in order to execute all currently pending requests associated

71

with some file f of size s(f), the tape drive’s head needs to
move from f ’s leftmost bit, denoted by l(f), to f ’s right-
most bit, denoted by r(f) and given by r(f) = l(f) + s(f).
We assume that different files may have different sizes. For
f1, f2 ∈ F , we say that f1 is on the left of f2 if l(f1) <
l(f2). For write requests, the head needs to be on the left-
most unoccupied bit of the tape (or, more informally, in the
end of T), denoted by m. The velocity with which the head
moves is constant and independent from the execution of op-
erations (i.e., the velocity does not change if read and write
operations are executed during the movement).

Because each job is associated with exactly one file
(whereas several jobs may be associated with the same file),
we overload notation and apply the functions defined in F to
jobs in J (referring obviously to the associated files) with-
out risks of ambiguity. A pending request is a request that
has not been serviced yet; the number of pending requests
associated with file f is denoted by n(f).

For any file f , let J (f) ⊂ J \ J(f) be the set of pend-
ing requests which are not associated with f . Moreover,
J L(f) ⊂ J (f) and J R(f) ⊂ J (f) are the subsets of
J (f) containing all pending requests associated with files
located to the left and to the right of l(f), respectively.

Write requests are executed according to a FIFO policy
and their response times are irrelevant; namely, the execu-
tion of a write job becomes urgent only after the arrival of a
read job associated with the same file. In order to explore this
aspect, tape systems use a buffer area to temporarily store
file chunks associated with write requests, postponing hence
the execution of these requests. We assume in this work that
the buffer has infinite capacity. Finally, there is no enforced
policy dictating how read requests should be processed, and
this is the point where a scheduling strategy plays a role in
LTSP. Informally, we can say that LTSP is about the identifi-
cation of scheduling plans that deliver low overall response
times (the sum of all response times) to read requests; for ex-
ample, if two read requests associated with some file f are
released at times 1 and 5 and f starts to move from l(f) to
r(f) at time 10, the response time will be equal to 10−1 = 9
for the first request and to 10 − 5 = 5 for the second one,
leading thus to an increment of 14 on the cost (or objective
value) of the associated scheduling plan. Formally, LTSP is
defined as follows:

Definition 1 (LINEAR TAPE SCHEDULING PROBLEM -
LTSP). Given a set of files F , a set of jobs J , a type function
t, and a size function s, schedule all jobs in J in a way that
the sum of response times for read requests is minimized.

Theoretical and algorithmic aspects

Real-world scenarios of LTSP are actually online optimiza-
tion problems, since scheduling decisions must be taken in
situations where knowledge about J might still be incom-
plete (that is, decisions must be taken before all jobs are
released). Nevertheless, online problems frequently share
structural properties with their offline counterparts, and
LTSP is no exception to this rule. Therefore, in this section,
we investigate theoretical and algorithmic aspects of the of-
fline and of the online versions of LTSP.

The Offline LTSP

The offline LTSP is the version of the problem in which the
head is initially positioned at the end of T , J contains only
read requests, and all jobs are released at time 0. One impor-
tant characteristic of LTSP is the fact that execution times
and tape movements are “merged”, since a read operation in
a file necessarily takes the tape to the leftmost bit of the next
file. Moreover, after this movement, nothing can be assumed
about the direction it should move afterwards; in some cases
the tape should keep moving to the right (in order to service
other requests and/or to return to the end of the tape), and in
other cases it should move backwards. This aspect leads to
a subtle but significant difference between the offline LTSP
and the Travelling Repairman Problem in a line with gen-
eral processing times and no time windows (that is, without
release times and due dates for jobs): note that, in the latter,
the repairman’s position will not change from the time she
visits a node to the time she is done repairing the entity that
node represents. The complexity of this version of the TRP
is still unknown.

The offline LTSP is equivalent to the special case of the
Dial-a-Ride Problem in a line with a single vehicle in which
the trajectories described by each route are pairwise non-
intersecting, the sources are always on the left of their asso-
ciated destinations, and the vehicle starts to the right of the
right-most destination. The reduction employed by de Paepe
et al. (based on the Circular Arc Colouring Problem) cannot
be used in this special case, leaving hence the complexity of
this problem open (Paepe et al. 2004).

We were not able to identify the complexity of the of-
fline LTSP, but we present below some identities and prop-
erties that have been explored in the design of the algo-
rithms proposed in this work. First, we observe that optimal
scheduling plans for instances of the offline LTSP can be
divided in two phases. In Phase 1, the tape is sought from
its end (position m) to its beginning (position 1), i.e., from
the right to the left. Phase 1 may be intercalated by one or
more mini-batches; a mini-batch b is composed of an exe-
cution movement (or execution phase) from l(b) to r(b) and
a return movement (or return phase) from r(b) to l(b). A
mini-batch b′ cannot be executed between the end of the ex-
ecution movement and the start of the return movement of
some other mini-batch b; in these situations, we say that all
movements are associated with the same mini-batch. We ex-
tend the notation used for files and jobs to mini-batches; that
is, a mini-batch b has a size s(b), a leftmost bit l(b), and a
rightmost bit r(b), with s(b) = r(b) − l(b). If l(b) and r(b)
coincide with the leftmost and the rightmost bits of some file
in F , we say that b is an atomic mini-batch.

In Phase 2, the head of T moves from position 1 to po-
sition m, servicing all the remaining pending requests (i.e.,
those not executed during Phase 1). In any optimal solution
for LTSP, all pending jobs associated with file f are serviced
(simultaneously) whenever f is traversed from the left to the
right, so we incorporate this behaviour in all algorithms pre-
sented in the article. Moreover, as a consequence, it follows
that the tape never moves to the left in Phase 2.

We assume in this subsection w.l.o.g. that the leftmost file
is associated with at least one request in J . If this is not

72

the case, the movement of the head to position 1 should be
substituted for a movement to the leftmost bit of the leftmost
file associated with a request in J . The following results
hold for the offline LTSP:
Observation 1. In any optimal scheduling plan for the of-
fline LTSP, every mini-batch b is such that l(b) and r(b) coin-
cide with the leftmost and rightmost bits of (not necessarily
distinct) files in F , respectively.
Proposition 1. In any optimal scheduling plan for the of-
fline LTSP, the executions of any pair of mini-batches do not
intersect in time.

Proof. Let b and b′ be mini-batches such that l(b) ≤ l(b′).
Their execution intersect in time if b′ starts before b is fin-
ished, so we have two cases to analyse.

If b′ starts during the return phase of b, we have
l(b′) ∈ [l(b), r(b)]. Moreover, the tape head traverses re-
gion [l(b′),min(r(b), r(b′)] three times and, in particular,
the second movement from the left to the right clearly in-
creases the response time of pending requests unnecessar-
ily, since it does not involve the execution of any pend-
ing job. Under these circumstances, a plan employing b
and b′ can be improved if this pair of mini-batches is sub-
stituted for a single mini-batch b∗ such that l(b∗) = l(b) and
r(b∗) = max(r(b), r(b′)).

Finally, if b′ starts during the execution phase of b, then
the behaviour of the head will be similar to the one resulting
from the substitution of b and b′ for b∗. Therefore, we con-
clude that mini-batches do not intersect in time in optimal
solutions for the offline LTSP.

Proposition 2. In any optimal scheduling plan for the offline
LTSP, every mini-batch starts from a position that is being
visited for the first time.

Proof. Let P be an optimal scheduling plan containing a
mini-batch b such that l(b) is not being traversed for the first
time; moreover, let p′ < l(b) be the leftmost bit that has been
visited by the time b will start.

In the offline LTSP, the head of T visits a position for
the second time either during the execution of a mini-batch
or in Phase 2. Since mini-batches do not take place during
Phase 2, this second visit is associated with the execution of
a mini-batch whose leftmost bit is p′. However, it follows
from the definition of mini-batches and from Proposition 1
that two mini-batches do not intersect in time in any optimal
scheduling plan for the offline LTSP, contradicting therefore
the optimality of P .

Observe that Propositions 1 and 2 do not necessarily hold
in online settings, since modifications in a mini-batch might
be motivated by the release of new requests.

The minimization of the makespan (time when all jobs
are serviced) is trivial for the offline LTSP; an optimal solu-
tion for the problem with this optimization criteria consists
of moving the head from position m directly to position 1,
withouth mini-batches, and then returning to the end of the
tape while servicing all requests. Clearly, the same algorithm
also minimizes the distance traversed on tape. Karuno, Nag-
amochi, and Ibaraki showed that this strategy, to which they

refer as simple schedule, yields a 1.5-approximation algo-
rithm for the Single-Vehicle Scheduling Problem on a line
with release and handling times (Karuno, Nagamochi, and
Ibaraki 1998). The proposition below shows that this strat-
egy may deliver arbitrarily bad plans for the offline LTSP.
Proposition 3. The simple schedule strategy is not a c-
approximation for the offline LTSP for any constant c.

Proof. Let m be a perfect square integer. Let F =
{f1, f2, . . . , f√m} be such that l(f1) = s(f1) = 1, l(f2) =
2, s(f2) = m−√

m, l(fi) = m−√
m+i−1 and s(fi) = 1

for i in [3,
√
m], and assume that J contains exactly one

read request associated with each file in F\{f2}. According
to the simple schedule strategy, the head moves to position 1
and returns to position m, executing f1, f2, . . . , f√m in the
order defined by their indices. Asymptotically, the resulting
overall request time yielded by this strategy is

m
√
m+O(

√
m(m−√

m)) +O

(√
m
√
m

2

)
;

first, all
√
m jobs wait for the head to move from position m

to 1 (resulting in a penalty of m
√
m); then, after the execu-

tion of J(f1), the remaining O(
√
m) pending jobs wait for

the head to move forward O(m −√
m) positions (resulting

in a penalty of O (m
√
m−m)); finally, these O(

√
m) jobs

are serviced sequentially (with aggregate penalty given by√
m + (

√
m − 1) + . . . + 1 = O(

√
m

√
m

2)), resulting in an
overall response time of O (m

√
m).

Alternatively, if a mini-batch b such that l(b) = m−√
m+

2 and r(b) = m is performed in Phase 1, leaving only the
job associated with f1 to be executed during Phase 2, the
resulting overall request time is asymptotically equal to

√
m
√
m+

√
m
√
m

2
+m,

which is O(m). The ratio between the penalties of both
strategies for this family of scenarios converges asymptot-
ically to O(

√
m), and since m can be made arbitrary large,

we conclude that the simple schedule strategy is not c-
competitive for the offline LTSP for any constant c.

A second strategy consists of having one atomic mini-
batch in Phase 1 for each file f in the tape such that n(f) > 0
(except for the file in the first position of T , which is left
for Phase 2). We refer to this as the greedy strategy, and
the proposition below shows that it is better than the simple
schedule strategy with respect to worst-case scenarios.
Proposition 4. The greedy strategy is a 3-approximation for
the offline LTSP.

Proof. For any instance of the offline LTSP, a lower bound
for the response time of any job j in J is given by

m− l(j) = z(j) +
∑
f ′∈F

l(f ′)>l(j) and n(f ′)>0

s(f ′); (1)

the left-hand side of Equality 1 shows clearly that this lower
bound is equal to the distance between the leftmost bit of

73

file f(j) and the end of the tape. This value is decomposed
on the right-hand side in two parts; the sum of the sizes
of all files associated with pending requests in J R(j) and
z(j) ≥ 0, which represents the region of the tape containing
files that have not been requested but need to be nevertheless
traversed for f(j) to be reached.

In the greedy strategy, all requests in J R(j) are serviced
in atomic mini-batches before l(j) is reached; consequently,
the response time of j in the resulting plan is given by

z(j) +
∑
f ′∈F

l(f ′)>l(j) and n(f ′)>0

3s(f ′), (2)

since the head of the tape traverses each file associated with
jobs in J R(j) exactly three times before moving to l(j).
These observations hold for every j ∈ J , and since z(j) ≥
0, it follows that the greedy strategy is a 3-approximation for
the offline LTSP. Below, we show that this factor is tight.

Let us assume that |F| = 2, with l(f1) = s(f1) = 1,
l(f2) = 2, s(f2) = m− 1, n(f1) = m− 1, and n(f2) = 1,
that is, there are two files in T , with m − 1 requests asso-
ciated with the first and one with the second. The overall
request time delivered by the greedy strategy for this family
of scenarios is m(m−1)+2(m−1)2+1 = 3m2−5m−1,
whereas the plan delivered by the simple schedule strategy
yields an overall response time of m2+1; asymptotically, the
ratio between both solutions converge to 3, showing hence
that this approximation rate is tight for the offline LTSP.

The online LTSP

In the online LTSP, release times of jobs are unknown and J
contains both write and read requests. Moreover, preemption
is not allowed, that is, once a file associated with pending
jobs starts to be traversed, its end must be reached. Schedul-
ing plans for the online LTSP consist of batches, and each
batch is composed of one Writing Phase, one Phase 1, and
one Phase 2. As the name suggests, pending writing requests
are moved from the buffer and executed during the Writing
Phase. Phase 1 and Phase 2 have the same behaviour we de-
scribed for the offline LTSP. The proposition below shows
that the online LTSP is hard from the theoretical standpoint.
Proposition 5. There is no algorithm able to produce c-
competitive solutions for the online LTSP for any constant c
even if preemption is allowed.

Proof. Let A be an arbitrary algorithm for the online LTSP,
and let us consider a scenario in which F = {f1, f2}, with
l(f1) = 1, s(f1) = k, l(f2) = k + 1, and s(f2) = k2. As
m = k2 + k, it follows that the amount of time the head of
the tape needs to reach any position in the tape is O(k2). Let
us suppose that some job j is released with f(j) = f2.

If A consumes time ω(k2) to start servicing j, no more
jobs are released; in this case, an optimal algorithm start ser-
vicing j in time O(k2), yielding thus a performance ratio
for A which is not bounded by any constant value.

Conversely, if A starts traversing f2 in time O(k2), k
jobs associated with f1 are released as soon as the head
of the tape reaches position r(f2) after servicing f2. In
this case, the overall response time produced by A would

be O(O(k2) + k(k2 + k)) = O(k3), whereas an optimal
solution would have moved the head of T to l(f1) first
and from there to r(f2), with an overall response time of
O(k2) + k = O(k2). Again, the ratio between the solution
of A and the optimal is not bounded by any constant value.

Since no assumption was made about A, we conclude that
there is no algorithm able to produce c-competitive solutions
for the online LTSP for any constant c. Finally, the same
constructions and results are achieved even if preemption is
allowed, so the result extends to these scenarios as well.

Proposition 5 is based on competitive analysis, which typ-
ically relies on worst-case scenarios that might not be com-
mon in practice. Below, we discuss aspects of the problem
that will be explored in the scheduling strategies presented
in the next section.

First, observe that the execution of a mini-batch b ex-
tends the response time of all requests in J (b) by 2s(b).
Moreover, it follows directly from Proposition 2 that files
in J L(b) have not been visited in the current batch by the
time l(b) is visited for the first time, so J L(b) = {j ∈
J : l(j) < l(b)} and the extension in response times is
not smaller than s(b)|J L(b)|.

Conversely, if the execution of job j is postponed to
Phase 2, its response time increases by some value in
[2l(j), 2l(j)2] from the time l(j) has been visited for the first
time in the current batch. The lower bound follows from the
fact that 2l(j) is the minimum amount of time the head needs
to go from l(j) to position 1 and back. The response time in-
creases if mini-batches starting at files associated with jobs
in J L(j) are executed during the Phase 1 of this batch; in
the worst case, O(l(j)) mini-batches of length O(l(j)) are
executed, yielding thus an upper bound of 2l(j)2.
Proposition 6. For any instance of offline LTSP, jobs asso-
ciated with file f should be serviced in Phase 1 if

l(f)n(f) > s(f)(|J L(f)|).
Proof. If l(f)n(f) > s(f)(|J L(f)|) and f is left to be exe-
cuted in Phase 2, the resulting penalty on J(f) will be larger
than the penalty associated with the waiting time of all re-
quests in J L(f) if f were included in a mini-batch; analo-
gously, any scheduling plan which postpones the execution
of f to Phase 2 can be improved with the inclusion of a mini-
batch b such that l(b) = l(f) and r(b) = r(f).

Proposition 6 is a formalization of the following intu-
itive characteristics of the problem; short files and files with
a large number of associated requests should be visited in
Phase 1. Observe that, if the inequality is not valid, though,
no conclusion can be reached if the time spent by the head
to reach the first position of the tape is unknown. A similar
argument can be used to show when the read operation on a
certain file should be postponed to Phase 2.
Proposition 7. For any instance of the offline LTSP, jobs
associated with file f should be serviced in Phase 2 if

l(f)2n(f) < s(f)|J L(f)|.
Solutions with non-atomic mini-batches may yield bet-

ter overall response times than those containing only atomic

74

mini-batches; this phenomenon can be observed in the fam-
ily of instances presented in the proof of Proposition 3, for
example. In general, given two mini-batches b1 and b2 such
that r(b1) < l(b2), having both merged on a unique mini-
batch leads to a smaller overall response time if

s(b2)n(b1) > (s(b1) + l(b2)− r(b1))n(b2) + (3)
|J (b1) ∩ J (b2)|(l(b2)− r(b1)),

that is, if the penalty on the n(b1) tasks covered by b1
caused by the execution of b2 is larger than the additional
penalty on the n(b2) tasks covered by b2 and on all tasks in
J (b1) ∩ J (b2). Observe that this bound is not tight if there
are pending requests associated with files located between
r(b1) and l(b2); in this case, the benefits of merging b1 with
b2 increases, as these requests would be serviced earlier.

Algorithms for the online LTSP

The algorithms for the online LTSP presented in this work
are adaptive, since they incorporate jobs “on-the-fly”, that
is, they do not wait for the end of the current batch; the up-
date of J with new requests is indicated in the pseudo-codes
by operation update(J). During the execution of the al-
gorithms, the current position of the head is denoted by h
(initialized as h = m); f(h) is the file over which the head
is located. Operation MiniBatch(F ′) represents the exe-
cution of a mini-batch on the files belonging to set F ′ ⊆ F .
More precisely, the head moves from the leftmost bit of the
leftmost file to the rightmost bit of the rightmost file in F ′.

Operation WritePhase(J) is presented in Algorithm 1
and is used for the execution of all pending write requests
in J . This phase takes place in the beginning of each batch
if and only if there are pending write requests in J , and
requires h to be placed in the last position of T .

Algorithm 1 WRITEPHASE

procedure WritePhase(J)
while {j ∈ J : t(j) = w}
= ∅ do

select first incoming job j such that t(j) = w
write j on end of tape
m := m+ s(j) � update end of tape
h := m
F := F ∪ {f(j)} � update set of files
J := J \ {j} � remove write request j from J
update(J)

Algorithm 2 is the pseudo-code for Phase 2 and repre-
sents the movement of the head towards the end of the tape.
Phase 2 is finished earlier if some file f is reached such that
J R(f) = 0, that is, if there are no pending requests asso-
ciated with files located to the right of f ; note that h nec-
essarily reaches m if there are pending write requests in J .

Algorithm 3 contains the pseudo-code for full greedy
strategy (FGS), the online extension of the greedy strategy
presented for the offline LTSP. In each batch, an atomic
mini-batch is executed for each file associated with some
job in J .

Algorithm 2 PHASE2
� Move head from the beginning to the end of tape
procedure Phase2(J)

� Stop if there are no more requests to the right
while J R(f(h)) > 0 do

h := r(f(h))
J := J \ J(f) � execute all requests in J(f)
update(J)

Algorithm 3 FULL GREEDY STRATEGY (FGS)
while J
= ∅ do

WritePhase(J)
� Stop if there are no more requests to the left
while J L(f(h)) > 0 do

f := f(h)
h := l(f)
if n(f)
= 0 then � File f has pending job

MiniBatch({f})
J := J \ J(f)

update(J)

Phase2(J)

Algorithm 4 contains the pseudo-code for the unique
queue strategy (UQS), a procedure that is currently being
used in the magnetic tape industry. This algorithm employs
a FIFO (first-in, first-out) strategy, that is, the order in which
jobs are serviced is defined by their release times, regardless
of their type; for this reason, UQS does not have its opera-
tions divided into phases. All pending requests in J(f(j))
are serviced together with j, and whenever the head moves
to the right, all requests associated with files traversed dur-
ing this movement are also executed. UQS moves the head
to the left only when it needs to traverse a file positioned to
the left of its current position, so it does not execute mini-
batches. Finally, if J becomes empty, the head stands still
until a new request appears.

Algorithm 4 UNIQUE QUEUE STRATEGY (UQS)
while J
= ∅ do

select j ∈ J with minimum release time
� Head moves to the right
if h ≤ l(j) then

� While moves head to the right, service jobs
while h ≤ l(j) do

h := r(f(h)) + 1
J := J \ J(f(h))
update(J)

� Head moves to the left
else

h := l(f(j))
update(J)
h := r(f(h)) + 1
J := J \ J(f(j))
update(J)

75

The inequalities derived previously are valid for the of-
fline LTSP, but we are going to employ them here in order
to create variations of the full greedy strategy. The first one,
denoted selective greedy strategy (SGS), is described in Al-
gorithm 5 and employs Proposition 6 in order to select files
to be executed as atomic mini-batches during Phase 1.

Algorithm 5 SELECTIVE GREEDY STRATEGY (SGS)
while J
= ∅ do

WritePhase(J)
� Stop if there are no more requests to the left
while J L(f(h)) > 0 do

f := f(h)
h := l(f)
if n(f)
= 0 then � File f has pending job

� Condition of Proposition 6
if l(f)n(f) > s(f)|J L(f)| then

MiniBatch({f})
J := J \ J(f)

update(J)

Phase2(J)

The merging greedy strategy (MGS), described in Algo-
rithm 6, has two differences from SGS. First, it estimates the
amount of time d(f) the head will need to move from l(f) to
the first position of the tape and back assuming that all files
will be subject to the verification of Proposition 6, given by

d(f) = l(f) +
∑

f ′∈F :l(f ′)<l(f) and
l(f ′)n(f ′)>s(f ′)|JL(f ′)|

s(f ′);

that is, both SGS and MGS employ Proposition 6, but the
former uses l(f), whereas the later uses d(f). Second, MGS
uses Inequality 3 in order to check whether the current
file should be merged with its left neighbour in a single
mini-batch. For the later feature, the algorithm maintains a
queue Q, which contains all jobs that should be included on
the next mini-batch.

The hybrid greedy strategy (HGS), described in Al-
gorithm 7, results from a small modification of SGS,
where l(f) is substituted for d(f) in the verification of the
condition described by Proposition 6. Similarly, HGS is a
variation of MGS which employs only atomic mini-batches,
so HGS can be interpreted as a hybrid algorithm that com-
bines ideas from SGS and MGS.

Computational experiments

We present in this section the results of the computational
evaluation we performed on the algorithms described for the
online LTSP. We were not able to identify previous work
addressing the problem, except for the ones that simply sort
requests based on their corresponding files’ offsets on tapes,
so we used UQS as the reference for the state of the art.

The dataset used as benchmark is composed of synthetic
scenarios, each parametrized by the number of files |F| and
a time-horizon H , which represents the number of time units

Algorithm 6 MERGING GREEDY STRATEGY (MGS)
while J
= ∅ do

WritePhase(J)
� Stop if there are no more requests to the left
while J L(f(h)) > 0 do

f := f(h)
h := l(f)
update(J)
f ′ := f(h− 1) � Left neighbour of f
� Check merge of mini-batches
if n(f)
= 0 then

� Condition of Inequality 3
z := (l(f)− l(f ′))n(f)
z := z + |J (f ′) ∩ J (f)|(l(f)− r(f ′))
if n(f ′) > 0 and s(f)n(f ′) > z then

Q := Q ∪ {f}
J := J \ J(f)

else
� Modified condition of Proposition 6
if d(f)n(f) > s(f)|J L(f)| then

Q := Q ∪ {f}
� Execute mini-batch if |Q| > 0
if |Q| > 0 then

MiniBatch(Q)
J := J \ J(f)
Q := ∅

Phase2(J)

Algorithm 7 HYBRID GREEDY STRATEGY (HGS)
while J
= ∅ do

WritePhase(J)
� Stop if there are no more requests to the left
while J L(f(h)) > 0 do

f := f(h)
h := l(f)
if n(f)
= 0 then � File f has pending job

� Modified condition of Proposition 6
if d(f)n(f) > s(f)|J L(f)| then

MiniBatch({f})
J := J \ J(f)

update(J)

Phase2(J)

within which all requests are released. These scenarios were
generated as follows.

In order to construct the sequence of requests associ-
ated with f in F , we initially drawn an integer value λf

uniformly from interval [H/50, H/5]; values for different
files are independent and identically distributed. Afterwards,
we drawn H/λf samples from the Poisson distribution
parametrized with λf and generate the sequence of release
times for requests associated with f by setting the arrival
time of the i-th request as the sum of the first i values drawn
from the distribution; the first request associated with f is a
write request, whereas the others are read requests. Requests
whose release times are larger than H are discarded. We as-

76

sume that the tape is completely empty in the beginning of
the simulation. Finally, the size of each file (in “blocks”) is
drawn uniformly from interval [1, 20]; the velocity in which
the head processes requests is equal to one block per time
unit, that is, each file f is traversed in s(f) time units.

The results of our computational experiments are pre-
sented in Table 1. The first column describes the parameters
of the family of instances using the format |F|-H , and the
other columns show the sum of the overall response times
produced by algorithms UQS, FGS, SGS, MGS, and HGS.
In order to reduce bias, we generated 10 instances for each
configuration |F|-H , and each entry of the table contains
the sum of all results. The overall response times entries are
reported as the ratio between the results of the respective
algorithm and the best result obtained by that family of in-
stances; the result of the best algorithm for each instance is
marked in bold and is always equal to 1.000.

Overall, the experiments show a clear superiority of the
strategies based on Proposition 6, with SGS being the win-
ner among them. These results can be seen as the empirical
counterparts of Propositions 3 and 4 for the online LTSP.

A key difference between MGS and SGS is the incorpo-
ration of merging operations in the former, through which
a file is incorporated to a mini-batch whenever it satisfies
the condition of Inequality 3 with its left neighbour. Note,
though, that the condition of Proposition 6 is not checked
for these files; moreover, the verification performed for the
merging operations is local, i.e., involves only pairs of con-
secutive files, and not all pairs of files composing a mini-
batch. For these reasons, MGS may choose sub-optimal
mini-batches, and we believe that this explains the (rela-
tively small) superiority of SGS over MGS. Moreover, HGS
frequently delivered better results than MGS, which sug-
gests that our strategy to construct non-atomic mini-batches
was indeed not effective for this dataset.

UQS and FGS had relatively poor performances, with
UQS having a considerably unstable behaviour. Namely, it
delivered the best results in one scenario (beating the other
strategies by more than 19%) and unacceptable results in
others; for family 1000-100, for instance, the overall re-
sponse times were more than 40 times larger than the others.

Finally, we observe that the implementation of Phase 2
had a significant impact on the results of FGS, SGS, MGS,
and HGS. In preliminary versions of these algorithms, h
was always moved to the end of the tape in Phase 2, but
as write requests stop being generated relatively early in the
simulations, this strategy was yielding losses that were be-
ing avoided by UQS. By setting the end of Phase 2 to the
rightmost file with associated jobs, the performance of these
algorithms increased considerably, making them clearly su-
perior to UQS.

Conclusion
We investigated in this article the Linear Tape Scheduling
Problem, which aims to identify strategies for the execu-
tion of read and write operations in single-tracked magnetic
tapes that minimize the overall response times for read re-
quests. LTSP is similar to classic combinatorial optimiza-
tion problems, such as the Travelling Repairman Problem

Instance UQS FGS SGS MGS HGS
5-100 1.270 1.515 1.000 1.008 1.003
5-1000 1.033 1.197 1.000 1.094 1.052
5-10000 1.101 1.871 1.000 1.003 1.001
5-100000 1.264 2.076 1.000 1.000 1.000
25-100 2.597 1.200 1.009 1.000 1.000
25-1000 1.170 1.319 1.000 1.030 1.029
25-10000 1.131 1.088 1.000 1.011 1.038
25-100000 1.000 1.860 1.197 1.190 1.197
50-100 4.182 1.092 1.001 1.000 1.000
50-1000 1.401 1.796 1.000 1.021 1.020
50-10000 1.063 1.161 1.000 1.010 1.006
50-100000 1.065 1.101 1.000 1.021 1.015
100-100 4.808 1.047 1.000 1.000 1.000
100-1000 1.631 1.594 1.000 1.001 1.001
100-10000 1.153 1.285 1.002 1.000 1.002
100-100000 1.326 1.018 1.013 1.026 1.000
1000-100 43.933 1.003 1.000 1.000 1.000
1000-1000 5.127 1.036 1.001 1.000 1.000
1000-10000 1.693 1.540 1.000 1.002 1.002
1000-100000 1.263 1.276 1.000 1.011 1.011

Table 1: Computational results for the online LTSP

and the Dial-a-Ride Problem in a line, but peculiarities on
the behaviour of magnetic tapes make LTSP an interesting
problem on its own.

In practical settings, LTSP is an online problem, so we in-
vestigated both its offline and its online versions. From our
analysis, we were able to identify structural properties of
LTSP which helped us to design scheduling strategies that
performed well on the synthetic dataset used as benchmark
in this work. The complexity of the offline LTSP remains
open, but the excellent performance of SGS, a relatively sim-
ple scheduling strategy, suggests that the “hard” scenarios
might not occur so frequently in practice.

We also note that even with the simplifications we intro-
duced to our model, it captures real-life arrangements of files
on tapes. Yet, a natural next step would be to extend the
model to capture the layout of multi-track serpentine tapes,
where two consecutive tracks have different reading/writing
directions, thus enabling our model to deal with a greater
class of workloads. In future work, we also intend to further
investigate the theoretical aspects of the problem (both on-
line and offline) and to experiment the proposed algorithms
and datasets with different behaviours.

References

Afrati, F.; Cosmadakis, S.; Papadimitriou, C. H.; Papageor-
giou, G.; and Papakonstantinou, N. 1986. The complexity
of the traveling repairman problem. Informatique Théorique
et Applications 20(1):79–87.
Augustine, J. 2002. Offline and online variants of the trav-
eling salesman problem. Master thesis, Dept. of Electrical
and Computer Engineering, Louisiana State University.
Ausiello, G.; Feuerstein, E.; Leonardi, S.; Stougie, L.; and
Talamo, M. 2001. Algorithms for the on-line travelling
salesman. Algorithmica 29(4):560–581.
Bock, S. 2015. Solving the traveling repairman problem on a

77

line with general processing times and deadlines. European
Journal of Operational Research 244(3):690–703.
Cavalli, A.; Dell’Agnello, L.; Ghiselli, A.; Gregori, D.;
Magnoni, L.; Martelli, B.; Mazzucato, M.; Prosperini, A.;
Ricci, P. P.; Ronchieri, E.; Sapunenko, V.; Vagnoni, V.;
Vitlacil, D.; and Zappi, R. 2010. Storm-gpfs-tsm: A
new approach to hierarchical storage management for the
lhc experiments. Journal of Physics: Conference Series
219(7):072030.
Fontana, R. E.; Decad, G. M.; and Hetzler, S. R. 2013.
The impact of areal density and millions of square inches
(MSI) of produced memory on petabyte shipments of TAPE,
NAND flash, and HDD storage class memories. In Mass
Storage Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on, 1–8.
Frank, J. C.; Miller, E. L.; Adams, I. F.; and Rosenthal,
D. C. 2012. Evolutionary trends in a supercomputing tertiary
storage environment. In Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MASCOTS),
2012 IEEE 20th International Symposium on, 411–419.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Hasan, R.; Tucek, J.; Stanton, P.; Yurcik, W.; Brumbaugh,
L.; Rosendale, J.; and Boonstra, R. 2005. The techniques
and challenges of immutable storage with applications in
multimedia. In Electronic Imaging 2005, 41–52. Interna-
tional Society for Optics and Photonics.
Hillyer, B. K., and Silberschatz, A. 1996. On the modeling
and performance characteristics of a serpentine tape drive.
SIGMETRICS Perform. Eval. Rev. 24(1):170–179.
Karuno, Y., and Nagamochi, H. 2001. A polynomial
time approximation scheme for the multi-vehicle scheduling
problem on a path with release and handling times. In Al-
gorithms and Computation, volume 2223 of LNCS, 36–48.
Springer Berlin Heidelberg.
Karuno, Y., and Nagamochi, H. 2005. Scheduling vehicles
on trees. Pacific Journal of Optimization 1(3):527–543.
Karuno, Y.; Nagamochi, H.; and Ibaraki, T. 1998. A 1.5-
approximation for single- vehicle scheduling problem on a
line with release and handling times. In Japan-U.S.A. Sym-
posium on Flexible Automation, 1363–1366.
Murray, S.; Bahyl, V.; Cancio, G.; Cano, E.; Kotlyar, V.;
Presti, G. L.; Re, G. L.; and Ponce, S. 2012. Tape write-
efficiency improvements in CASTOR. Journal of Physics:
Conference Series 396(4):042042.
Oracle. 2011. Redefining tape usage with storagetek tape
tiering accelerator and storagetek in drive reclaim accelera-
tor. Technical report, Oracle.
Paepe, W. D.; Lenstra, J.; Sgall, J.; Sitters, R.; and Stougie,
L. 2004. Computer-aided complexity classification of
dial-a-ride problems. INFORMS Journal on Computing
16(2):120–132.
Pease, D.; Amir, A.; Real, L. V.; Biskeborn, B.; Richmond,
M.; and Abe, A. 2010. The Linear Tape File System. In

Khatib, M. G.; He, X.; and Factor, M., eds., MSST, 1–8.
IEEE Computer Society.
Prakash, V.; Zhao, X.; Wen, Y.; and Shi, W. 2013. Back
to the future: Using magnetic tapes in cloud based storage
infras- tructures. In Eyers, D. M., and Schwan, K., eds.,
Middleware, volume 8275 of LNCS, 328–347. Springer.
Psaraftis, H.; Solomon, M.; Magnanti, T.; and Kim, T.-U.
1990. Routing and scheduling on a shoreline with release
times. Management Science 36(2):212–223.
Real, L. C. V.; Richmond, M.; Biskeborn, B.; and Pease, D.
2015. An I/O scheduler for dual-partitioned tapes. In Net-
working, Architecture and Storage (NAS), 2015 IEEE Inter-
national Conference on, 234–243.
Sandstå, O., and Midtstraum, R. 1999. Low-cost access time
model for serpentine tape drives. In Mass Storage Systems,
1999. 16th IEEE Symposium on, 116–127. IEEE.
Schaeffer, J., and Casanova, A. G. 2011. TReqS: The Tape
REQuest Scheduler. Journal of Physics: Conference Series
331(4):042040.
Tsitsiklis, J. N. 1992. Special cases of traveling sales-
man and repairman problems with time windows. Networks
22(3):263–282.
Zhang, X.; Du, D.; Hughes, J.; and Kavuri, R. 2006. HPTFS:
A High Performance Tape File System. In Proceedings of
14th NASA Goddard/23rd IEEE conference on Mass Storage
System and Technologies.

78

