
Strict Theta*: Shorter Motion Path Planning Using Taut Paths

Shunhao Oh and Hon Wai Leong
Department of Computer Science
National University of Singapore

ohoh@u.nus.edu, leonghw@comp.nus.edu.sg

Abstract

A common way to represent dynamic 2D open spaces in
robotics and video games for any-angle path planning is
through the use of a grid with blocked and unblocked cells.
The Basic Theta* algorithm is an existing algorithm that pro-
duces near-optimal solutions with a running time close to A*
on 8-directional grids. However, a disadvantage is that it of-
ten finds non-taut paths that make unnecessary turns. In this
paper, we demonstrate that by restricting the search space of
Theta* to taut paths, the algorithm will, in most cases, find
much shorter paths than the original. We describe two novel
variants of the Theta* algorithm, which are simple to imple-
ment and use, yet produce a remarkable improvement over
Theta* in terms of path length, with a very small running time
trade-off. Another side benefit is that almost all paths found
will be taut, which makes more convincing paths.

Introduction

A popular way to represent dynamic 2D open spaces in
robotics and video games for path planning is through the
use of a uniform square grid (Algfoor, Sunar, and Kolivand
2015). An advantage of this representation is that the open
space can be dynamic - obstacles can be added, removed or
shifted easily by simply updating the boolean array to rep-
resent the new state of the grid. This is in contrast to other
representations like the navigation mesh. Updating a navi-
gation mesh in response to changes in the environment can
be a complicated process.

The need for dynamic mazes is common in many applica-
tions. In Real-Time Strategy games, players are allowed to
construct structures on the map. In robotics, a room’s layout
may change as objects like chairs are moved, changing the
geometry of the map. These cases show the advantage of on-
line pathfinding algorithms over offline algorithms. Offline
algorithms are algorithms that make use of a costly prepro-
cessing step, which may need to be repeated whenever the
grid is updated, losing one of the main advantages of grid-
based representations over navigation meshes.

Many fast online algorithms like the Jump Point Search
Algorithm (Harabor and Grastien 2011) exist for computing
optimal shortest paths when movement is restricted to the
four cardinal directions and 45-degree diagonals. Any-angle

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

paths however do not have this movement restriction, and
can thus move in any direction across unblocked tiles. In
addition to being shorter, any-angle paths also avoid having
the unnecessary heading changes 8-directional paths have.

Optimal algorithms for any-angle pathfinding like A* on
visibility graphs or Anya (Harabor and Grastien 2013) exist,
but are much slower and more complex than 8-directional
pathfinding algorithms. Online Heuristic algorithms like
Theta* (Nash et al. 2007), however are simplier, run faster,
in exchange for returning non-optimal paths. There are also
offline heuristic algorithms like Block A* (Yap et al. 2011)
and Subgoal Graphs (Uras and Koenig 2015b) which can,
through the use of preprocessing, find short any-angle paths
with faster running times than Theta*.

In this paper, we describe Strict Theta*, a variant of
Theta*, that bears the same characteristics, while finding
paths that are much closer to optimal than Theta*. An addi-
tional benefit is that almost all paths found by the algorithm
are taut. While a taut path is not guaranteed to be optimal,
taut paths are more convincing as a non-taut path is clearly
suboptimal, due to the possibility of shortcutting a non-taut
path to make a shorter path.

In practice, slight suboptimalities in the found path is
often not an issue, but non-taut paths would contribute to
the perceived irrationality of the agent, as the agent takes
paths with clearly better alternatives. A good grid-based
any-angle pathfinding algorithm is fast, can compute near-
optimal paths, and is online. The Strict Theta* algorithm
meets all of these requirements.

Basic Theta*

We first describe the Basic Theta* algorithm as our algo-
rithm is an extension of Theta*. The principle behind Theta*
is simple. The algorithm is based on the A* algorithm on 8-
directional grids, with one small modification.

When relaxing a vertex u with successor v, two paths are
considered, as shown in Figure 1. Path 1 is the path from
vertex u to v, and Path 2 is the direct path from the parent
p of u the vertex v. If the algorithm chooses Path 2 over
Path 1, the parent of v will be set to the vertex p instead of
the vertex u like A* in the relaxation step. By the triangle
inequality, Path 2 is guaranteed to be no longer than Path 1.
Path 2 is thus chosen if and only if there is line of sight from
the vertex p to v.

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

253



Figure 1: The two paths considered by Theta* when relaxing
v from current vertex u.

Figure 2: Theta* taking an suboptimal, non-taut path.

Figure 3: Taut paths are more believable, and are often
shorter than non-taut paths.

Suboptimality of Basic Theta*

There are however many examples like Figure 2 that clearly
show that Theta* is not an optimal algorithm. A common
reason why these paths are not optimal they are not taut. A
taut path is defined as a path where every heading change in
the path “wraps” tightly around some obstacle.

The paths found by Theta* are often close to the optimal
path length. However, the found paths may not be very con-
vincing as there are clearly unneeded heading changes made
in the paths. Some of these examples, like Figure 2 can be
especially jarring, due to the large detour the agent makes
to “touch” the opposite corner before making a sharp turn
back. This is in contrast to the taut path in Figure 3. Though
taut paths are not necessarily optimal, they are often shorter,
and more believable.

Main Idea

Assuming the goal is reachable, there will be a taut path to
the goal. Notably, the optimal path will always be taut. A
simplified version of our algorithm is thus as follows: Use
the Theta* algorithm, but before relaxing any vertex v with
predecessor u, we first check if the sub-path parent(u)-u-v
is taut. If it is not taut, we do not relax vertex v. The algo-
rithm will thus be unable to construct any non-taut paths.

In terms of path length, this simple change improves per-
formance significantly. However, as Theta* is not an optimal

algorithm, and the algorithm restricts itself to finding only
taut paths, this occasionally causes the algorithm to fail to
find the goal.

To fix this, instead of not relaxing the vertex when the path
from u to v is not taut, we do the relaxation as usual, but add
a temporary penalty b > 0 to the path length. This penalty
pushes the vertex v further back in the priority queue, and
slightly longer taut paths towards v may also replace the
found path to v. This penalty is removed when the vertex
is visited. This algorithm, Strict Theta*, obtains the same
results as before, but is always guaranteed to find the goal.

Strict Theta*

Strict Theta* is implemented the same way Theta* is im-
plemented, except with an additional constant-time tautness
check in the relaxation step. Before a vertex v is relaxed with
parent u, the sub-path (parent(u), u, v) is first checked for
tautness. If the path is not taut, an additional penalty value is
added to distance(v) after relaxation. The vertex v is addi-
tionally marked as not taut, so that the increase in the g-value
can be reversed later when the vertex v is extracted from the
priority queue.

Algorithm 1 Update successor v from the current vertex u

1: procedure UPDATEVERTEX(u, v)
2: if LINEOFSIGHT(parent(u), v) then
3: return RELAX(parent(u), v) � Path 2
4: else
5: return RELAX(u, v) � Path 1

The pseudocode of Strict Theta* is separated into two
parts. When a vertex u is removed from the OPEN list and
explored, UpdateVertex is called on each of its successors
v. Just like in Theta*, we check for line-of-sight from the
parent of u to v. If there is line of sight, we call Relax on
parent(u), v, corresponding to taking Path 2. Otherwise, we
call Relax on u, v, corresponding to taking Path 1.

Algorithm 2 Attempt to update the parent of v to u

1: procedure RELAX(u, v)
2: newWeight← distance(u) + c(u, v)
3: if newWeight < distance(v) then
4: if ISTAUT(parent(u), u, v) then
5: distance(v)← newWeight
6: parent(v)← u
7: mark v as taut
8: else
9: distance(v)← newWeight + PENALTY

10: parent(v)← u
11: mark v as not taut
12: return True
13: return False

Checking whether a sub-path (w, u, v) is taut only re-
quires a single tile to be checked. From the four tiles adja-
cent to the vertex u, we check the tile on the side containing
the non-reflex angle ∠wuv. The sub-path is taut if and only

254



(a) (b)

Figure 4: A single obstacle is checked to determine tautness.

(a)

(b)

Figure 5: Decision point where Strict Theta* chooses the
taut path, over the longer, non-taut path.

if this tile is blocked (Figure 4a). If ∠wuv is acute, the path
cannot be taut (Figure 4b). If (w, u, v) is a straight line, the
path is always taut.

This simple modification corrects many of the errors
made by Theta*, like the path in Figure 2. As shown in Fig-
ure 5, due to Strict Theta*’s preference for the taut path at
this decision point, it is able to find the optimal path (Figure
3) to the goal. Note that while the algorithm is not guaran-
teed to find a taut path, it has a low probability of finding a
non-taut path towards the goal.

Recursive Strict Theta*

The algorithm can be further improved by using a recur-
sive form of Strict Theta*. When relaxing a vertex v with
parent u, instead of considering only the two paths (u, v)
and (parent(u), v), we search backward from u to find the
first ancestor w (with line-of-sight) where parent(w)-w-u
is taut. Notably, if (parent(u), u, v) is taut from the start,
Path 2 from the algorithm will not even be considered.

If we lose line-of-sight before we find a taut parent, we
assign the last node with line-of-sight as the parent of u, add
a penalty value to the distance of v, and mark v as not taut.

A side effect of stopping the search when a taut path is
found is that because collinear points also make a taut path,

Figure 6: In this example, the parent of v would be set to w
by the Recursive Strict Theta* algorithm.

Algorithm 3 Update successor v from the current vertex u

1: procedure UPDATEVERTEX(u, v)
2: if ISTAUT(parent(u), u, v) then
3: return RELAX(u, v, True)
4: else
5: if LINEOFSIGHT(parent(u), v) then
6: return UPDATEVERTEX(parent(u), v)
7: else
8: return RELAX(u, v, False)

Algorithm 4 Attempt to update the parent of v to u

1: procedure RELAX(u, v, isTaut)
2: newWeight← distance(u) + c(u, v)
3: if newWeight < distance(v) then
4: if isTaut then
5: distance(v) := newWeight
6: parent(v) := u
7: mark v as taut
8: else
9: distance(v)← newWeight + PENALTY

10: parent(v)← u
11: mark v as not taut
12: // collinear path optimisation
13: if ISCOLLINEAR(parent(u), u, v) and
14: ¬ISOUTERCORNER(u) then
15: parent(v)← parent(u)

16: return True
17: return False

Figure 7: Taut Path with multiple collinear points.

a single straight-line path could be split into many small seg-
ments of collinear points (Figure 7). This makes the algo-
rithm run slower due to an increased recursion depth, mean-
ing more line-of-sight checks.

255



Figure 8: Strict Theta*, with a sufficiently high penalty
value, finds a shorter, taut path to v through exploring w.

To remedy this, in the Relax step, when setting the parent
of v to u, if the path parent(u)-u-v is collinear, parent(u)
is connected directly to v instead. This inductively removes
all collinear points from the path found. Note that collinear-
ity checks are constant-time operations. However, we make
an exception for when a collinear point u lies on an outer
corner of an obstacle. Points at outer corners are important
to keep as they allow the path to pivot around obstacles.

Choosing the Penalty Value

The results of the algorithm vary based on the penalty value.
A penalty value close to 0 makes the algorithm behave ex-
actly like Theta*, and a penalty value too high can occasion-
ally make the algorithm prefer to construct a much longer
path over a shorter, non-taut path to the goal. Assuming the
straight-line distance heuristic is used, penalty values above√
2−1 (around 0.42) make a significant improvement in the

algorithm’s performance, and increasing the penalty value
past
√
2− 1 yields little further benefit.

This can be explained by the most common way Strict
Theta* finds alternate, shorter taut paths than Theta*. Refer-
ring to Figure 8, the algorithm finds a non-taut path to the
vertex v via u, and thus adds a penalty to v. The parent of
vertex w is on the outer corner on the top left of the obsta-
cle. If the algorithm holds off on exploring vertex v until w
is explored, a taut path from the parent of w to v will be
found. However, as vertex w is out of the way, Theta* is un-
likely to explore w before vertex v. Using the straight-line-
distance heuristic, the heuristic weight h(w) of w is at most√
2 more than that of v, and thus the f -value of w is approx-

imately (L +
√
2) − (

√
L2 + 1 + 1) more than the f -value

of v, which is an increasing sequence with limit
√
2 − 1. A

penalty value of
√
2− 1 ≈ 0.42 is thus sufficient for vertex

w to be explored before vertex v.

Results

The algorithms are compared over both randomly generated
grids and game maps. The penalty values of both versions
of Strict Theta* are fixed to 0.42 ≈ √2 − 1. The results
in terms of path length, percentage taut, percentage optimal,
and running time are given in Tables 1 to 4.

The algorithms tested are Basic Theta*, Strict Theta*
(S.Theta*), Recursive Strict Theta* (RS.Theta*). Theta*
with post-smoothing (Botea, Müller, and Schaeffer 2004)

Theta* Theta*PS S.Theta* RS.Theta*
Rand 6% 1.000725 1.000708 1.000431 1.000262
Rand 20% 1.002020 1.001911 1.000320 1.000137
Rand 40% 1.001685 1.001506 1.000140 1.000077
Obstacles 1.002269 1.002112 1.001339 1.000708
Maze 1.000379 1.000379 1 1
Game 1.000506 1.000466 1.000014 1.000003

Table 1: Average path length as a ratio to the optimal.

Theta* Theta*PS S.Theta* RS.Theta*
Rand 6% 2.65 2.65 3.11 3.33
Rand 20% 5.89 5.90 6.23 6.65
Rand 40% 17.84 17.91 18.98 20.52
Obstacles 9.08 9.04 9.65 10.12
Mazes 71.48 71.18 74.24 79.51
Game 11.08 11.01 11.64 12.21

Table 2: Average running time (in ms) averaged over 450
runs per test case.

Theta* Theta*PS S.Theta* RS.Theta*
Rand 6% 0.173 0.220 0.867 0.993
Rand 20% 0.033 0.067 0.607 1
Rand 40% 0.067 0.113 0.573 1
Obstacles 0.050 0.100 0.650 1
Maze 0.000 0.000 1 1
Game 0.581 0.733 0.939 1

Table 3: Percentage of paths found that are taut.

is also included for comparison. Post-smoothing is a post-
processing step that improves path lengths and the percent-
age of taut/optimal paths using negligible extra time.

Algorithms like A* and Field D* have not been included
as Theta* has been shown to give superior path lengths to
these algorithms (Uras and Koenig 2015a). A Recursive ver-
sion of Theta* was also tested, but it consistently obtained
poorer results than even Theta*, in terms of both path length
and running time. The pathfinding algorithms were imple-
mented in Java on a 2.60 GHz Intel i5 processor.1

Maps

The maps used are divided into categories. Randomly gen-
erated maps used are of size 500x500, with either 6%, 20%
or 40% blocked tiles. “Obstacles” maps and maze maps are
of size 512x512. Game maps are taken from games like Bal-
dur’s Gate, Starcraft and Warcraft III.2. Planning is simpler
on game maps, due to their reduced complexity.

Each test case is a randomly selected pair of start and end
points one of the maps tested on. There are a total of 1000
test cases: 150 each for Rand 6%, Rand 20% and Rand 40%,
60 for Obstacles, 100 for Mazes, and 390 for Game Maps.

1The implementations are available at github.com/
Ohohcakester/Any-Angle-Pathfinding

2“Obstacles”, maze and game maps are taken from Nathan
Sturtevant’s Moving AI Lab benchmarks (Sturtevant 2012) at http:
//www.movingai.com/benchmarks/

256



Theta* Theta* PS S.Theta* RS.Theta*
Rand 6% 0.067 0.073 0.280 0.440
Rand 20% 0.027 0.053 0.313 0.587
Rand 40% 0.067 0.113 0.407 0.713
Obstacles 0.000 0.000 0.017 0.117
Maze 0.000 0.000 1 1
Game 0.584 0.733 0.934 0.992

Table 4: Percentage of paths found that are optimal.

Path Quality

All path lengths found are computed as a ratio to the opti-
mal path length, computed using A* on Visibility Graphs, a
known optimal algorithm (Lozano-Pérez and Wesley 1979).
As shown in Table 1, the path lengths found by Strict Theta*
are a lot closer to optimal than those found by Theta*. Re-
cursive Strict Theta* improves this even further.

Strict Theta* also produces a much higher proportion of
taut and optimal paths than Theta*. Furthermore, out of the
1000 test cases, only one path found by the Recursive Strict
Theta* algorithm was not taut.

We see the greatest improvement in dense maps. Notably,
Theta* performs better on sparse maps than on dense maps,
while Strict Theta* performs better on dense maps than on
sparse maps. This is as restricting the search space to taut
paths leaves few suboptimal paths in dense grids. Interest-
ingly, from the 100 test cases over the 5 maze maps, almost
none of the paths found by the Theta* are optimal, while all
of the paths found by both Strict Theta* are optimal.

Post-smoothing is able to slightly improve path lengths
and percentage taut for both Theta* and Strict Theta*
that are taut, the improvement is however very small, and
nowhere near that of Strict Theta* over Theta*.

Running Time

We can see from Table 2 that there is a slight cost to run-
time when the Strict Theta* algorithms are used over Theta*.
Strict Theta* runs slightly slower than Theta*, and Recur-
sive Strict Theta* runs slightly slower than Strict Theta*.

Empirically, the running times of Strict Theta* as a ratio
to Theta* is between 95% and 108%. The running times of
Recursive Strict Theta* as a ratio to Theta* is between 103%
and 116%. While Theta* and Strict Theta* execute a con-
stant number of line-of-sight checks per relaxation, Recur-
sive Strict Theta* does not. However, the slowdown appears
to be by a constant factor, and is a small trade-off compared
to improvement in path quality over Theta*.

Conclusions

We can see that Strict Theta*, a simple change from Theta*
and thus does not take significant time to implement, is able
to find significantly shorter paths than Theta*, with a small
cost to running time. The Recursive Strict Theta* algorithm
improves this even further, and has the added bonus of al-
most always finding a taut, and thus believably optimal path
towards the goal.

Anya, an optimal any-angle pathfinding algorithm (Hara-
bor and Grastien 2013), restricts its search space to taut paths

as we know that the optimal any-angle path is guaranteed
to be taut. We have shown that, even in non-optimal algo-
rithms, the idea of taut path restriction can be applied to con-
struct much shorter paths, at little runtime cost. A possible
direction of further work would be to try applying similar
ideas to other online or offline heuristic algorithms to find
shorter and more taut paths with litle runtime cost.

References

Algfoor, Z. A.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1(1):1–22.
Harabor, D., and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In AAAI.
Harabor, D., and Grastien, A. 2013. An optimal any-angle
pathfinding algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling, 308–
311.
Lozano-Pérez, T., and Wesley, M. A. 1979. An algorithm
for planning collison-free paths among polyhedral obstacles.
Communications of the ACM 22:560–570.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007. Any-
angle path planning on grids. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 1117–1183.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Uras, T., and Koenig, S. 2015a. An empirical comparison of
any-angle path-planning algorithms. In Proceedings of the
Annual Symposium on Combinatorial Search.
Uras, T., and Koenig, S. 2015b. Speeding-up any-angle path-
planning. In Proceedings of the International Conference on
Automated Planning and Scheduling.
Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011. Block
a*: Database-driven search with applications in any-angle
path-planning. In AAAI.

257


