
Placement of Loading Stations for Electric Vehicles: Allowing Small Detours

Stefan Funke and André Nusser
Universität Stuttgart

Institut für Formale Methoden der Informatik
70569 Stuttgart, Germany

{funke,nusser}@fmi.uni-stuttgart.de

Sabine Storandt
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
79110 Freiburg, Germany

storandt@cs.uni-freiburg.de

Abstract

We consider the problem of covering a street network with
loading stations for electric vehicles (EVs) such that EVs
can travel along shortest paths and only require small detours
(e.g., at most 3 km) to recharge along the route. We show
that this problem can be formulated as a Hitting Set problem.
Unfortunately, it turns out that even the explicit problem in-
stance construction requires too much time and space to be
practical. Therefore, we develop several approximation algo-
rithms and heuristics to solve the problem. Our experiments
show that even though small, the allowed detours lead to a
considerable reduction in the number of required loading sta-
tions. Moreover, we devise an algorithm for planning high-
quality EV-routes in a network with loading stations placed
by our approach. We empirically show the usability of the
routes by evaluating the number of reloading stops and the
actually induced detour.

Introduction

Route planning for electric vehicles (EVs) still requires spe-
cial care compared to route planning for conventional cars.
With the latter, one typically decides for the shortest or
quickest route from A to B, and relies on a sufficient density
of gas stations nearby in case the car runs out of fuel. The
situation for battery-powered EVs is quite different, though.
Firstly, EVs have a relatively small cruising range due to
their limited battery capacity. Hence reloading on longer
trips (e.g., more than 150 kilometers) is mandatory for most
EVs. Secondly, the network of loading stations is still too
sparse to allow for cruising around without a priori taking
into account recharging – not only is this inconvenient but
also limits the usability of conventional route planning en-
gines and navigation systems for EVs.

In previous work, different objectives were investigated
for covering a street network with loading stations: In
(Storandt and Funke 2013; Lam, Leung, and Chu 2013) a
placement of loading stations was computed such that there
exists a path between any two points in the network on which
the EV does not run out of energy. So every destination is
reachable from every source (assuming a fully charged EV at
the source), but reasonability of routes was not considered.
The resulting routes might require long detours compared to

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

≤ D
la

· · ·≤ D

≤ D

lb

l∗

v1

vkva v′a

v′b

v′∗

vb

v∗

Figure 1: Shortest path (black) along with loading stations
(red) that introduce a detour (blue) respecting the bound D.

the shortest path, and also might require numerous reloading
stops. Quite differently, the approach described in (Funke,
Nusser, and Storandt 2014) assures that every shortest path
in the network can be travelled with an EV by placing suf-
ficiently many loading stations in the network. While this
allows EV drivers to travel the very same routes as conven-
tional drivers, it also requires a rather large number of load-
ing stations.

We propose a new variant of placing loading stations in
the network, respecting both, reasonability of routes and
sparsity of the loading station set. Our goal is to place
loading stations such that EV drivers only need to leave
shortest path trips briefly on small detours for recharging.
More formally, we are given a street network G(V,E), edge
costs d : E → R

+ (euclidean distances), and B ∈ R
+

specifying the maximum distance an EV can drive with-
out running out of energy (e.g., B = 150km). Addition-
ally, we are given a detour bound D (e.g., D = 3km). A
loading station l ∈ L is accessible from a shortest path
π = v1, v2, · · · , vk, if there are vertices v, v′ on π with
d(v, l) + d(l, v′) ≤ D, v �= vk, v

′ �= v1. We refer to v
as the shortest path exit vertex, and to v′ as the shortest path
(re-)entry vertex for l. We call π feasible, if there exists a se-
quence of such loading stations la, lb, · · · , l∗ and respective
exit/entry vertices va/v′a, vb/v

′
b, · · · , v∗/v′∗ such that

• d(v1, va)+d(va, la) ≤ B, i.e., the first loading station can
be reached from the source without running out of energy

• d(la, v
′
a) + d(v′a, vb) + d(vb, lb) ≤ B, i.e., the second

loading station lb can be reached without running out of
energy, and so forth for lc, ld · · ·

• d(l∗, v′∗) + d(v′∗, vk) ≤ B, i.e., the target vertex can be
reached from the last loading station l∗.

See Figure 1 for an illustration.

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

131

We want to compute the smallest set L ⊆ V of loading
station positions, such that every shortest path in G becomes
feasible wrt B and D – i.e., traversable without running out
of energy, assuming the vehicle starts fully charged, and gets
fully recharged whenever a loading station is visited. Note
that by choosing D = 0 we have the same problem as con-
sidered in (Funke, Nusser, and Storandt 2014). Choosing
a large detour bound D the problem converges to the pure
reachability problem as described in (Storandt and Funke
2013; Lam, Leung, and Chu 2013). Hence D can be also
interpreted as trade-off parameter between the two extreme
models considered in previous work.

Note that previous work often distinguished between the
metric determining the shortest/quickest route from A to B,
and the edge metric that models energy consumption of the
EV. Indeed, the energy consumption does not solely depend
on the euclidean distance but also on other factors as the
height profile of the underlying terrain (driving uphill con-
sumes more energy than driving downhill). For sake of a
cleaner presentation, we decided for a simplified model with
both metrics being the same. But one can adapt our ap-
proaches to work also in the two metric setting, as we will
describe briefly towards the end of the paper.

Related Work

In (Artmeier et al. 2010) the problem of finding energy-
optimal routes for EVs was introduced, drawing attention
to the fact that EVs might run out of energy on convention-
ally planned routes. Since then, numerous papers consid-
ered more complicated settings, like including reloading de-
cisions and finding paths which are good in both aspects,
energy consumption and travel time/distance. An algorithm
for computing paths with the minimum number of neces-
sary reloading events was introduced in (Storandt and Funke
2012) but without taking into account travel time or dis-
tance. In (Sweda and Klabjan 2012), dynamic program-
ming was used to find an optimal recharging policy for a
given route (assuming loading stations are placed directly
on that route). In (Storandt 2012), multi-criteria queries, as
finding a feasible path with a minimal number of reload-
ing events and bounded distance/travel time were answered.
In (Goodrich and Pszona 2014) two-phase routes were sug-
gested, which in the first phase minimize travel time (so con-
ventional route planners can be used), and only switch when
necessary to the second phase where energy-consumption is
minimized on the remaining path section. Here, also reload-
ing is incorporated, again using two-phase paths between
loading stations. Many other routing and reloading poli-
cies have been investigated, see e.g. (Baouche et al. 2014;
Wang, Cassandras, and Pourazarm 2014; Hayakawa et al.
2014). But in all those papers, loading station positions were
assumed to be given.

There is also related work that takes a traffic and city plan-
ning point of view on loading station placement. In (Xiong
et al. 2015; He et al. 2013) the authors choose a game the-
oretical approach to take selfishly optimizing EV drivers
into account. An approach where recharging is assumed
to happen during parking was taken in (Chen et al. 2013;
Frade et al. 2011), while (Liu, Wen, and Ledwich 2013;

Wang et al. 2010) focus on the nodes in the road network
with the highest charging demand. In all those approaches
the number of loading stations is either assumed to be given
or upper bounded by some given number. In contrast, we
try to find an exhaustive placement of loading stations, such
that EVs can drive around like conventional cars – (almost)
deliberated from specialized a priori route planning.

Contribution

We introduce a new model for placing electric vehicle load-
ing stations which is more practical than previously consid-
ered models, but also more complex. We show that a careful
formulation of our covering problem can be interpreted as
an instance of the Hitting Set problem. This, in theory, en-
ables the usage of the standard machinery to solve Hitting
Set problems, like the greedy algorithm (which guarantees a
log(s) approximation with s being the number of sets). But
we will show, that already the explicit Hitting Set instance
construction is challenging as the time and space consump-
tion is huge for large networks. We first investigate ways to
reduce the space and time consumption without losing the
approximation guarantee provided by the greedy algorithm.
Subsequently we introduce heuristics that solve our problem
even more efficiently, but at the cost of having no a priori ap-
proximation guarantee. We therefore propose new ways of
computing lower bounds for the optimum, which then serve
as quality indicators for our heuristic solutions. Finally we
propose a simple and fast algorithm for computing actual
routes for given loading station locations that minimize the
number of recharging stops on the route.

Hitting Set Formulation

The classical Hitting Set problem is defined as follows:

Definition 1 (Hitting Set). Given a set system (U,S) with
U being a universe of elements and S a collection of subsets
of U , the goal is to find a minimum cardinality subset L ⊆ U
such that each set S ∈ S is hit by an element in L, i.e.,
∀S ∈ S : L ∩ S �= ∅ .

In (Funke, Nusser, and Storandt 2014) a Hitting Set for-
mulation was used to make all shortest paths feasible with-
out allowing detours. There, the universe is the set of nodes
in the network (U = V), and the sets are minimal shortest
paths where the EV runs out of energy (excluding source
and target vertices, as placing loading stations there obvi-
ously does not help feasibility).

In our scenario with detours being allowed, a naive Hit-
ting Set formulation would be to also extract all minimal
shortest paths where the EV runs out of energy (so paths
longer than B), but then ’thicken’ these paths by computing
all possible loading station positions around the path, that
respect the detour bound D. Unfortunately, this would not
induce global feasibility of all paths, as shown in Figure 2.
We take care of this problem, by not extracting, thickening,
and hitting all paths longer than B, but all paths longer than
B− 2D. Lemma 2 shows that this indeed leads to a feasible
route wrt B and D between any two nodes in the network.
Note, that for correctness, we assume that the length of a

132

s

t

10 10
10

10
90 5

10

5
90

B = 100
D = 20

la

lb

va
vb

v′a
v′b

Figure 2: While all subpaths of the shortest path π from s
to t on which the EV would run out of energy are hit with
a loading station respecting the detour bound D, the overall
path π is not feasible. Starting at s with a fully loaded battery
and using la, we end up with a battery load of 90 at v′a. This
does not suffice to reach t, as the remaining costs are 95. The
loading station lb cannot be reached from s, as the battery
load of 5 at vb is not enough. We cannot use both loading
stations as vb comes before v′a on π.

single edge is less than B − 2D. For reasonable parame-
ter settings, this is naturally fulfilled in real-world instances.
Otherwise, too long edges can be subsampled first.

Lemma 2. If for every shortest path π ∈ G with d(π) >
B − 2D, there is a loading station l ∈ V which induces a
detour of at most D from π, the exit vertex for l is not the
target vertex of π, and the re-entry vertex for l is not the
source vertex of π, then every shortest path in G is feasible.

Proof. Let π∗ be some shortest path in G, with the source
vertex s and the target vertex t. If π∗ requires reloading, let
π′ be the minimal prefix of π∗ with a distance exceeding
B − 2D. Let l be the loading station that hits π′, and v′
the respective re-entry vertex. At v′ the EV has a battery
load of at least B −D, as the load at l is B (because of the
recharging at l) and driving back to the shortest path can
cost no more than D. Now consider the subpath π′′ of π∗
starting at v′ that exceeds a distance of B − 2D. This path
has to be hit as well. The battery load at v′ is sufficient to
use the next loading station, as the distance to the exit vertex
has to be less than B − 2D and the distance from the exit
vertex to the loading station is less than D. Therefore, we
have a new reachable re-entry vertex v′′ later on π∗ than v′,
and we can repeat the whole argumentation until the target
is directly reachable from the current re-entry vertex.

Alternatively, we could demand that the distance from the
exit vertex to the loading station is bounded by D/2 and the
distance from the loading station to the re-entry vertex as
well. Then it would obviously suffice to place loading sta-
tions on all thickened paths which exceed a length of B−D.
Note, that this automatically is true if we consider undirected
graphs.

Not also, that for real-world application one would possi-
bly not use the real battery capacity B as bound but some
B′ < B to accommodate for uncertainties in the energy
consumption along the routes and also to allow for driving
around safely when the battery is not fully charged in the
beginning.

Approximation Algorithms

Based on the Hitting Set formulation, the placement of load-
ing stations can be computed via the standard greedy algo-
rithm. We first describe in detail how to construct the set
system in order to apply greedy. Unfortunately, it turns out
that the naive construction demands too much memory to be
practical. We therefore propose a modified algorithm, which
still exhibits the same approximation guarantee as the con-
ventional greedy algorithm but consumes less space.

Explicit Thickening

Let us assume we already constructed the set Π of minimal
shortest paths πi in the network, which exceed a length of
B − 2D. Efficient methods to compute Π were described
in (Funke, Nusser, and Storandt 2014), so we use them as
a black box here. Our Hitting Set instance construction
demands the computation of ’thickened’ paths. In the fol-
lowing, we describe our thickening algorithm in detail. The
pseudo-code is given in Algorithm 1.

Algorithm 1 Explicit Thickening
1: explicit thickening(B, D):
2: Π ← set of minimal shortest paths ≥ B − 2D
3:
4: for all (πi = si . . . ti) ∈ Π do � construct set system
5: Si ← ∅
6: for all v ∈ πi \ {ti} do
7: forward Dijkstra from v until distance D
8: end for
9: for all v ∈ πi \ {si} do

10: backward Dijkstra from v until distance D
11: end for
12:
13: for all settled vertices v do
14: cf (v) ← minimal forward distance to v
15: cb(v) ← minimal backward distance to v
16: if cf (v) + cb(v) ≤ D then
17: Si ← Si ∪ {v}
18: end if
19: end for
20: S ← S ∪ {Si}
21: end for
22:
23: H ← hitting set for (V,S)
24: return H

For every πi ∈ Π with source si and target ti, we have to
compute all loading station positions which make this path
feasible to get the respective set Si ∈ S (l. 4-21 in Algorithm
1). To that end, we run from every vertex on πi a forward
Dijkstra (excluding ti) and a backward Dijkstra (excluding
si), restricting the search spaces to paths of length D (l. 6-
11). For every vertex we remember the minimal distance
assigned to it in a forward run and in a backward run, re-
spectively. If these costs sum up to at most D, this vertex
belongs to Si (l. 13-19). Note, that for real-world applica-
tion, we might like to enforce a no-going-backwards-rule,
i.e., the re-entry vertex v′ for a loading station l should not

133

be earlier on πi than the exit vertex v. In that case, we only
check for combined distances of source vertices fulfilling
this rule.

Once all thickened path sets in the system are known, any
algorithm for Hitting Set computation can be applied (l. 23).
We use the standard greedy one. So in every round of the
algorithm, the vertex that hits most so far unhit sets is deter-
mined, usually by a sweep over all elements in all sets, in-
crementing suitable counters. Then the best vertex (i.e., the
one with the highest count) is added to the solution, and all
sets that contain this vertex are removed from the set system,
triggering another sweep over the sets to find those (during
this sweep already the new hit counters for the reduced set
system can be computed). As soon as there are no sets left
in the system, the algorithm found a feasible solution.

Even for a moderate detour bound D, the sets in our sys-
tem become much larger than the shortest paths themselves,
rendering this approach only viable for extremely small net-
works as we will see in the experimental section. In (Funke,
Nusser, and Storandt 2014), only shortest paths were ex-
tracted, but nevertheless for larger networks it was infeasible
to store the set system explicitly (even using sophisticated
compression tools). Hence in our scenario, the explicit in-
stance construction method will reach its limits for consid-
erably smaller input networks.

Implicit Thickening

To reduce the space consumption of greedy without losing
its approximation guarantee, we want to compute faithful hit
counters without storing the thickened sets explicitly.

We realize this with an implicit thickening approach
which is described in the following. The respective pseudo-
code is provided in Algorithm 2; line numbers will be noted
in brackets.

Again, we assume Π to be available (l. 2). Then, for every
vertex v, we want to know how many paths in Π are hit by
v via a detour ≤ D (l. 5-20). Therefore, we first associate
with each vertex the IDs of paths it directly hits (l. 6), and
a counter. Then for every v ∈ V , we run a forward and
backward Dijkstra from v with a distance bound of D (l.
8,9). Subsequently, we search for all paths of which at least
one vertex was settled in the forward run, and one in the
backward run, with the combined distance being at most D.
If the ID of such a path is not associated with v directly,
we increment the respective counter for v (l. 11-17). The
true number of paths hit by v is then the number of paths v
directly hits plus the counter value (l. 19).

So using implicit thickening, the set of thickened paths
does no have to be stored anymore. This reduces the space
consumption significantly, but at the same time complicates
the greedy algorithm (l. 22-36): If the best vertex is iden-
tified via comparing the number of hit paths, we have to
remove all newly hit paths from the set and update the as-
sociated path IDs for every affected vertex as well as the
counters. For directly hit paths, this can be done conven-
tionally via a sweep over the affected paths (not the whole
set system Π!). To identify the paths πi indirectly hit (via a
detour), we have to repeat the procedure described to deter-
mine the counter value (implying a forward and backward

Algorithm 2 Implicit Thickening
1: implicit thickening(B, D):
2: Π ← set of minimal shortest paths ≥ B − 2D
3: H ← ∅
4:
5: for all v ∈ V do � Initial count of hit numbers
6: direct count ← |{π ∈ Π|v ∈ π}|
7:
8: cf (·) ← forward Dijkstra from v until dist. D
9: cb(·) ← backward Dijkstra from v until dist. D

10: indirect count ← 0
11: for all π ∈ Π do � Calculate indirect count
12: if π contains settled vertices w, z
13: and cf (w) + cb(z) ≤ D
14: and π is not directly hit by v then
15: indirect count ← indirect count +1
16: end if
17: end for
18:
19: count(v) ← direct count + indirect count
20: end for
21:
22: while Π �= ∅ do � Until every set is hit
23: vmax ← node with highest value for count(v)
24: H ← H ∪ {vmax}
25:
26: cf (·) ← forward Dijkstra from vmax until dist. D
27: cb(·) ← backward Dijkstra from vmax until dist. D
28: for all π ∈ Π do � Remove sets containing vmax

29: if π is directly hit by vmax

30: or (π contains settled vertices w, z
31: and cf (w) + cb(z) ≤ D) then
32: Π ← Π \ {π}
33: Adjust count(v) for all nodes v hit by π
34: end if
35: end for
36: end while
37:
38: return H

Dijkstra run from v and a sweep over Π). Now every path
πi that would increment the counter is removed from Π. To
find all vertices with affected counters by those removals,
we run the explicit thickening procedure for every such πi

(l. 28-35). For the nodes in the temporarily constructed set
Si, we decrement their counters (l. 33). Hence at the end of
the round, we again have the correct hit numbers available
for each vertex. Therefore the greedy algorithm picks the
same solution when applying implicit thickening as when
using explicit thickening.

Heuristic Solutions

Our experiments show that while implicit thickening re-
duces the space consumption compared to explicit thicken-
ing, it is still very time consuming to update the counters
during the greedy algorithm. We now introduce heuristics
which have the potential to be more efficient than explicit or

134

implicit thickening; but unfortunately they no longer guar-
antee an a priori approximation factor. To show that the
computed solutions are still close-to-optimal for real-world
instances, we devise an algorithm to compute good instance
based lower bounds for the optimal solution, and later on
compare our solutions to these lower bounds.

Batched Computation

The space consumption as well as the runtime of the greedy
algorithm depend on the size of the system. One idea to re-
duce the computational effort is to construct the Hitting Set
in batches by partitioning the vertex set V into V1, V2, . . . Vk.
First we compute a Hitting Set L for the Hitting Set in-
stance induced by the B − 2D violating paths originating
from nodes of V1. Then we continue with the Hitting Set
instance induced by paths originating from nodes of V2 but
discarding all sets that are already hit by L from the first
round. We add the new hitters to L, and repeat the proce-
dure up to Vk. The smaller the partitions are, the faster the
individual hitting set computations can be performed and the
less space is required. On the other hand, if we use too small
partitions, we expect the resulting Hitting Sets to be of worse
quality since we lose the global view on the problem. A nat-
ural choice for the partitioning is along a space-filling curve
such that the individual instances fit well into main memory.

Lazy Greedy

To speed up the instance construction as well as the greedy
algorithm, we could just ignore detours in the first place.
So we extract the set of minimal shortest paths longer than
B − 2D and compute hit counters for the greedy algorithm
on that basis. But now, if we have decided for a vertex v to
be part of the solution, we do not only remove paths from the
set that are directly hit by v, but also the ones indirectly hit.
For that purpose, we proceed like in the implicit thickening
approach. All directly and indirectly hit paths are removed
and the hit counters of contained nodes are updated accord-
ingly. This algorithm does not do justice to vertices which
hit very few paths directly and many indirectly. But as in
general it can be assumed that these two values are strongly
correlated, the solution quality should not be affected too
severely.

Pruning

Going one step further, we could compute a preliminary so-
lution without allowing detours at first. For this scenario
efficient algorithms (e.g., an incremental method) were de-
scribed in (Funke, Nusser, and Storandt 2014). Then, in a
post-processing step, we try to decrease the solution size by
removing hitters that are superfluous when allowing detours.
For that purpose, we consider the hitters in the preliminary
solution in some order. For every hitter we check whether
there exists a so called witness path in the network which
is solely hit by this particular hitter, now also considering
indirect hitting wrt D. If such a path exists, the hitter has
to be part of the final solution. Otherwise we can prune the
hitter away, as the remaining set is still a valid loading sta-
tion cover. To find a witness path, we again use the method

Figure 3: Set of three paths, on the left, and five (stylized)
paths on the right. As for both instances all contained paths
intersect, the naive lower bound is 1, respectively. But ob-
serving that there is no intersection vertex for more than two
paths, we get an improved lower bound of 3/2� = 2 for the
left instance and 5/2� = 3 for the right one.

described for implicit thickening: We first identify all paths
directly and indirectly hit by this node. Then we use explicit
thickening for all these paths.

Note, that pruning can be also be used for post-processing
a Hitting Set retrieved by batched computation.

Lower Bounds

A naive lower bound can be computed by extracting a set
of pairwise non-intersecting thickened paths. Obviously, for
every path in this set an extra hitter is required. But the larger
D is chosen, the looser this lower bound might become.

Another way of constructing a lower bound is to find the
hitter that hits most paths, let’s say k, and divide the number
of paths in the set system by k. But again, this lower bound
might be far from tight if some vertex hits many paths, but
most of the others only a few. However, this approach can
also be applied to a subset of paths. So we aim for extract-
ing a large subset of paths with the best vertex hitting not
too many paths at once. Computing a set of disjoint paths
can also be seen as an incarnation of that idea. In that case
we have a subset, where the best vertex hits only a single
path (i.e., k = 1). We can generalize the naive lower bound
calculation for arbitrary k as follows. We iteratively extract
thickened paths. For every vertex v ∈ V we store a counter,
that initially is set to zero, and increments if a path contain-
ing v is selected. If for some extracted path a counter would
increase above k, we disregard the path. Otherwise we say
the path is valid. Let q be the number of paths that are de-
clared valid. Then q/k� is a lower bound for the optimal
solution, as obviously no vertex can hit more than k paths
at the same time. In Figure 3, small examples are provided,
where k = 2 yields a better (larger) lower bound than k = 1.

Route Planning in Covered Networks

Having placed loading stations with our or an alternative ap-
proach we are still faced with the question on how to actu-
ally plan stops at loading stations when travelling with an
EV. For a given set of loading stations one is typically inter-
ested in minimizing the number of recharging stops as well
as the incurred detour. In the following, we briefly sketch
the idea of our planning algorithm.

135

For given s, t ∈ V , we first compute the shortest path π
from s to t conventionally by a Dijkstra run. Let R denote
the length of the shortest path. If R ≤ B, reloading is not
necessary at all and we are done. Otherwise, we consider
the prefix π′ of length B − 2D of the shortest path. For
each node in π′, we start a Dijkstra run up to distance D
to identify the set of potential first loading stations L′ and
their minimal distance d(l ∈ L′) from π′. From each load-
ing station l ∈ L′ we also run Dijkstra, now up to distance
D − d(l), to get the possible re-entry vertices vl on π. We
choose the loading station with the latest re-entry vertex v∗
(i.e. with the largest distance from s) as the first loading
station to visit on the route. Then, we consider the subpath
from this re-entry vertex v∗ to t as our new π and proceed
recursively. The procedure stops when the distance R of the
remaining shortest path to t drops below B −D.

Note that both the Dijkstras from each node in π′ as well
as the Dijkstras from all loading stations can be unified and
implemented by a single Dijkstra with adjusted initial dis-
tance labels to accelerate the computation

We now prove that our planning algorithm always finds a
route from s to t such that the EV never runs out of energy.

Lemma 3. The described heuristic always returns a feasible
route.

Proof. The battery load in a re-entry vertex v∗ is always
≥ B − D (as the path from the loading station back to
π is no longer than D). Our loading station placement
guarantees that for every shortest path of length B − 2D
there is a usable loading station which induces a detour of
at most D. So the set L′ is never empty and we can always
reach every loading station in L′ from v∗ as the distance is
bounded by B−2D+D = B−D. Therefore, our planning
algorithm always returns a feasible route to the target t.

In addition to feasibility, we prove an upper bound on the
number of reloading stops on the returned route.

Lemma 4. The described planning algorithm returns a
route with at most 2R/(B − 3D) reloading stops.

Proof. Let l1, l2, · · · , lk be the sequence of reloading
stops computed by our algorithm, and v1, v2, · · · , vk the
respective re-entry vertices on π. By construction, vi+1

always appears later on π than vi. For consecutive re-entry
vertices vi, vi+1 with a distance d, we know that vi+2 is
at least B − 3D − d away from vi+1. Otherwise vi and
vi+2 would be less than B − 3D apart from each other,
and as the exit vertex vex for li+2 can be no more than D
away from vi+2, vi and vex would be within a distance
of B − 2D. But in that case li+2 would have been in
the set of potential loading stations at the moment vi was
considered. And as vi+2 comes later on π than vi+1, the
loading station li+2 would have been chosen instead of li+1.
Hence, on every path section of length B − 3D that starts
in a re-entry vertex, there can be at most one other re-entry
vertex. Therefore, we can subdivide π into intersection-free
segments of length ≥ B − 3D, each containing at most
2 re-entry vertices from loading stations. No more than

nodes # edges avg. path B

SA 78,413 151,009 12.5 km 5km
SL 279,268 553,662 30.6 km 15 km
TU 669,875 1,375,845 64.5 km 30 km
ST 1,012,381 2,059,668 64.4 km 30 km
SWG 2,362,948 4,833,341 132.7 km 60 km
SG 6,546,614 13,367,955 193,7 km 100 km
GER 21,721,465 44,108,723 364.0 km 150 km

Table 1: Benchmarks graphs (SA – Saarbrücken, SL – Saar-
land, TU – Tübingen, ST – Stuttgart, SWG – South-West-
Germany, SG – Southern Germany, GER – Germany). The
average path length in kilometers was computed by running
10,000 random shortest path queries in the graph.

R/(B − 3D) such segments can be on a path of length R,
so there at most 2R/(B−3D) reloading stops on the route.

This directly implies that the maximal detour induced by
visiting loading stations is bounded by 2DR/(B−3D). Our
experimental evaluation will show that in practice the solu-
tion quality is even better.

Modifications for the Two Metric Case

If the metric which determines on which paths the EV runs
out of energy is different from the euclidean distance, e.g.
taking the underlying terrain into account, we have to make
certain modifications for our algorithms to work. So now
the cruising bound B denotes the maximal allowed energy
consumption (e.g., in kWh), while the detour bound D is
still a distance. For the correct Hitting Set formulation, we
first have to compute the maximal energy consumption E of
a path of length D in the network. Then hitting all short-
est paths with an energy consumption of B−2E guarantees
global feasibility. To extract these shortest paths we run con-
ventional Dijkstra and check every time we settle a node if
the respective path has an energy consumption ≥ B − 2E.
As soon as every node in the Dijkstra priority queue lies on
a path which is B − 2E violating, we can abort the Dijk-
stra run and backtrack the paths. Thickening and all other
methods can then be performed as described above.

Experimental Study

In this section, we evaluate our proposed algorithms on real-
world instances, providing results on space consumption,
runtime and solution quality.

Data and Settings

We implemented all described algorithms in C++ and bench-
marked them on an Intel(R) i7-3770K CPU with 3.40GHz
and 32GB RAM. For evaluation we used real-world street
networks of varying size extracted from OSM1. Table 1 lists
the characteristics of the networks. Furthermore, we fixed
for every network a cruising range bound B for the EV,
which is about half of the average path length in the respec-
tive network. For GER, the resulting bound B = 150km

1http://www.openstreetmap.org

136

sets ∅ set size space time
SA 2.43M 1,253 14.8 GB 6 min
SL [17.94M] [3,988] [286.1 GB] [2 h]
TU [56.28M] [9,084] [2.0 TB] [21 h]
ST [114.94M] [13,716] [6.3 TB] [89 h]
SWG [396.61M] [18,797] [29.8 TB] [538 h]
SG [2313.78M] [33,085] [306.2 TB] [291 d]
GER [12420.95M] [47,176] [2343.0 TB] [7 y]

Table 2: Experimental results for the explicit construction
of the set system using thickening. M denotes millions, h
hours, d days and y years. Values in brackets are extrapo-
lated, as the complete experiment would have required too
much space.

sets ∅ set size space time
SA 2.43M 120 1.4 GB 1 min
SL 17.94M 328 23.5 GB 30 min
TU [56.28M] [510] [114.8 GB] [2 h]
ST [114.94M] [576] [264.8 GB] [6 h]
SWG [396.61M] [1,222] [1.9 TB] [55 h]
SG [2313.78M] [2,018] [18.7 TB] [695 h]
GER [12420.95M] [2,768] [137.6 TB] [278 d]

Table 3: Experimental results for constructing the set system
without thickening. Values in brackets are extrapolated.

roughly corresponds to the real bound for an average EV.
The smaller graphs are considered to illustrate the scalabil-
ity of our approaches. If not indicated otherwise, the detour
bound is fixed to D = 1km for SA, D = 2km for SL, and
D = 5km for the larger graphs. We think that a maximum
detour of 5km per reloading event reflects best what an EV
driver deems acceptable when going on longer tours.

Instance Construction and Greedy Solution

We first evaluated the explicit thickening approach on our
benchmark graphs. The results are collected in Table 2.

We observe that already for small graphs (SL, TU) the
(extrapolated) space consumption is enormous. For larger
graphs this approach is not applicable at all since storage
for the set system as well as extraction time explode. Only
for the very small SA graph complete construction of the set
system is possible.

For implicit thickening we only have to extract and store
all minimal B − 2D violating paths. The respective results
are shown in Table 3. The average set sizes and therefore the
total space consumption are significantly reduced compared
to Table 2. Therefore the SL graph can be tackled with im-
plicit thickening while explicit thickening is not applicable.
For the larger graphs implicit thickening also demands way
too much space to be practical.

For the SA graph, running greedy on the explicit set sys-
tem took 44 seconds, and results in a solution of size 205. As
we have an approximation guarantee of ln(|S|), we know
that in the SA graph 205 is at most a factor of 14.7 away
from the optimal solution. For implicit thickening, the solu-
tion size was the same, of course, but the runtime increased
to 1.5 hours as updating the hit counters in every round is

batched greedy lower bound APX
batch size runtime |L| k=1 k=10

SA 55,260 6 min 212 86 94 2.25
SL 8,677 1.9 h 255 64 73 3.49
TU 2,603 22.5 h 308 49 64 4.81
ST 1,214 76.5 h 428 61 81 5.93
SWG – – – 56 73 –
SG – – – 60 89 –
GER – – – 104 165 –

Table 4: Batched greedy Hitting Set computation. APX de-
picts the ratio of |L| and the largest lower bound, hence APX
is an upper bound on the approximation quality.

much more costly. For SL implicit thickening led to a so-
lution of size 248 with a runtime of 62 hours. The approx-
imation guarantee for SL using greedy is 19.0. We will see
that this a priori approximation guarantee is in fact too pes-
simistic, as our instance based lower bounds show.

Heuristic Solutions

Next we study our heuristics which were designed to im-
prove on the approximation algorithms in space or time.

Batched Computation For the graphs in Table 2 with a
manageable extraction time but way too high space con-
sumption, we can use batched computation to construct a
solution. We used batches such that according to our extrap-
olations the respective set systems fit into 8GB of RAM, see
Table 4. This allowed us to tackle the TU and the ST graphs
which were intractable before.

Along with those results, in Table 4 we provide lower
bounds for the size of L by applying our improved lower
bound construction. We see that for k = 10 the lower
bounds are clearly larger than for k = 1. Comparing the
size of L to this lower bound on an instance basis, we can
make a statement about the quality of the obtained solution.
The resulting approximation ratios (APX in the Table), are
all below 6, indicating that our computed sets of loading sta-
tions are close-to-optimal.

Lazy Greedy Lazy greedy improves on implicit thicken-
ing by the ability to compute hit counters much faster. For
SA we computed a solution of size in 232 in 2 minutes, for
SL a solution of size 487 in 34 minutes (including set extrac-
tion, see Table 3). So the solution quality decreases com-
pared to the other greedy approaches but we require signif-
icantly less space and time. We can also combine batched
computation and lazy greedy to tackle larger graphs. Using
both approaches, we can handle besides TU (552 hitters in
1.8 hours) and ST (762 hitters in 4.8 hours) even the SWG
network (642 hitters in 38.1 hours).

Pruning Having an initial solution available which hits all
B − 2D violating paths, we can apply pruning. We ex-
tracted such initial solutions for all our test graphs using the
methods described in (Funke, Nusser, and Storandt 2014).
The results for post-processing with pruning are presented
in Table 5. We observe that in contrast to the previously dis-
cussed approaches, pruning can be applied to all benchmark

137

initial solution pruning
time |L| time |L| Δ APX

SA 24 s 445 1 s 312 -29.9% 3.32
SL 235 s 459 14 s 370 -19.4% 5.07
TU 19 min 573 6 min 412 -28.1% 6.44
ST 45 min 777 19 min 544 -30.0% 6.72
SWG 5.5 h 523 6 min 488 -6.7% 6.68
SG 2.7 h 920 31 min 834 -9.4% 9.37
GER 11.5 h 1809 5 h 1618 -10.6% 9.81

Table 5: Results for applying the pruning approach to pre-
computed Hitting Sets.

Figure 4: Initial loading stations (black) and remaining load-
ings stations after pruning (red). The green nodes indicate a
thickened path which is only hit by the red loading station
on the right, indicating its necessity for the final solution.

instances. On average pruning decreases the initial solution
size by about a fifth. An illustration of the pruning approach
can be found in Figure 4. When considering the smaller
graphs it is evident that the greedy algorithm produces con-
ciser Hitting Sets. But for the larger graphs pruning is the
only applicable method. Still, our lower bounds imply that
we obtain solutions of good quality using pruning; the APX
ratio stays below 10.

If we increase the allowed detour, valid solutions natu-
rally become even smaller. For example, for the SG graph, a
detour of D = 10 km resulted in a solution of |L| = 792, a
detour of 20 km led to a solution of size 722. When apply-
ing pruning to the solution from the batched computation,
we could decrease its size for SWG from 642 to 451, result-
ing in an improved approximation ratio of 6.17.

Route Planning

Finally, we use our computed loading station placement
for ST (with B=30km, D=5km, 428 loading stations) as
basis for route planning. We applied the described planning
algorithm to compute feasible routes with few reloading
stops. Table 6 summarizes the results. We observe that the
average number of reloading events per route is never more
than 1 above the lower bound (computed by comparing the
shortest path length to the bound B) on average, and no
more than 3 in the worst case. Furthermore, we see that the
detour induced by reloading only increases the route length
by 7% to 9% compared to the shortest path. Query times
never exceeded 500 milliseconds. The results show that our
model and our computed routes are practical.

|π(s, t)| LB avg. # LS max # LS ratio
0 - 30 km 0 0.00 0 1.0000

31 - 60 km 1 1.22 2 1.0713
61 - 90 km 2 2.41 4 1.0812

91 - 120 km 3 3.61 6 1.0879
121 - 150 km 4 4.71 6 1.0891
151 - 180 km 5 5.91 6 1.0838

Table 6: Experimental results for our route planning rou-
tine on the ST network, subdivided by shortest path length
|π(s, t)|. ’LB’ indicates the lower bound for the number of
reloading events, avg. and max # LS denote the average
and maximal number of loading stations in the computed
solution. The ratio is defined by the route length (including
detours) and the shortest path length. Avg./max # LS and
ratio are based on 1,000 random queries.

We also computed the average distance between two
reloading stops, which is 24,079.5 meters and hence almost
equals B −D = 25,000 meters. So the natural strategy for
driving on the shortest path without planning ahead would
be to just look for close-by loading stations when the battery
load approaches D plus some safety margin (very similar to
the scenario with a conventional car).

Conclusions and Future Work

We introduced a new graph covering problem in the e-
mobility context motivated by the desire of EV-drivers to be
somewhat oblivious to the location of loading stations when
planning their trips with the EV but accepting moderate de-
tours for recharging. Modeling this problem as a Hitting
Set problem we were facing various challenges even setting
up the problem instance, so specialized algorithms avoiding
the explicit instance construction had to be developed. We
designed greedy-like algorithms which achieve very good
results but are currently limited to smaller networks. For
such networks, e.g. the road network of the metropolitan
area around Stuttgart, the approach by (Funke, Nusser, and
Storandt 2014) which does not allow detours constructs 777
loading stations, our new pruning approach 544, and our
new batched approach 428, so in total a more than 40%
reduction of required loading stations by allowing detours
(for a parameter set aims at short-range EVs like the elec-
tric bike ELMOTO HR-2 (Elmoto 2015)). The pruning ap-
proach computes solutions even for country-sized networks
but unfortunately of worse quality. Our current focus is on
tuning the greedy-type algorithms to deal with the largest
networks as well. While our algorithms can be quite easily
adapted to other energy consumption models or car charac-
teristics, the incorporation of traffic volume estimations and
route popularity are interesting further research venues. Our
current route planning algorithm requires the execution of
several Dijkstra runs, which is acceptable for a single route
computation. In a client-server scenario, where thousands
of users ask for route suggestions at the same time, some
preprocessing scheme must be developed to answer these
queries more efficiently.

138

References

Artmeier, A.; Haselmayr, J.; Leucker, M.; and Sachen-
bacher, M. 2010. The shortest path problem revisited: Op-
timal routing for electric vehicles. In KI 2010: Advances in
Artificial Intelligence, 33rd Annual German Conference on
AI, Karlsruhe, Germany, September 21-24, 2010. Proceed-
ings, 309–316.
Baouche, F.; Billot, R.; Trigui, R.; and El Faouzi, N. E.
2014. Electric vehicle green routing with possible en-route
recharging. In Intelligent Transportation Systems (ITSC),
2014 IEEE 17th International Conference on, 2787–2792.
Chen, T. D.; Kockelman, K. M.; Khan, M.; et al. 2013.
The electric vehicle charging station location problem: a
parking-based assignment method for seattle. In Transporta-
tion Research Board 92nd Annual Meeting, volume 340, 13–
1254.
Elmoto. 2015. Hr-2 evo. http://www.elmoto.com/en/en-
bikes/en-hr2-evo/.
Frade, I.; Ribeiro, A.; Gonçalves, G.; and Antunes, A. 2011.
Optimal location of charging stations for electric vehicles
in a neighborhood in lisbon, portugal. Transportation re-
search record: journal of the transportation research board
(2252):91–98.
Funke, S.; Nusser, A.; and Storandt, S. 2014. Placement
of loading stations for electric vehicles: No detours neces-
sary! In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada., 417–423.
Goodrich, M. T., and Pszona, P. 2014. Two-phase bicriterion
search for finding fast and efficient electric vehicle routes.
CoRR abs/1409.3192.
Hayakawa, T.; Ishikawa, K.; Imura, J.-i.; Tanaka, H.;
Toyoshima, M.; and Iwai, A. 2014. Incentive based multi-
objective optimization in electric vehicle navigation includ-
ing battery charging. In Proc. 19th World Congress of the
Int. Federation of Automatic Control.
He, F.; Wu, D.; Yin, Y.; and Guan, Y. 2013. Optimal deploy-
ment of public charging stations for plug-in hybrid electric
vehicles. Transportation Research Part B: Methodological
47:87–101.
Lam, A.; Leung, Y.-W.; and Chu, X. 2013. Electric vehicle
charging station placement. In International Conference on
Smart Grid Communications (SmartGridComm), 510–515.
Liu, Z.; Wen, F.; and Ledwich, G. 2013. Optimal planning
of electric-vehicle charging stations in distribution systems.
Power Delivery, IEEE Transactions on 28(1):102–110.
Storandt, S., and Funke, S. 2012. Cruising with a battery-
powered vehicle and not getting stranded. In Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada.
Storandt, S., and Funke, S. 2013. Enabling e-mobility: Fa-
cility location for battery loading stations. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, July 14-18, 2013, Bellevue, Washington, USA.
Storandt, S. 2012. Quick and energy-efficient routes: com-
puting constrained shortest paths for electric vehicles. In

5th ACM SIGSPATIAL International Workshop on Compu-
tational Transportation Science 2011, CTS’12, November 6,
2012, Redondo Beach, CA, USA, 20–25.
Sweda, T. M., and Klabjan, D. 2012. Finding minimum-cost
paths for electric vehicles. In Electric Vehicle Conference
(IEVC), 2012 IEEE International, 1–4. IEEE.
Wang, H.; Huang, Q.; Zhang, C.; and Xia, A. 2010. A novel
approach for the layout of electric vehicle charging station.
In Apperceiving Computing and Intelligence Analysis (ICA-
CIA), 2010 International Conference on, 64–70. IEEE.
Wang, T.; Cassandras, C. G.; and Pourazarm, S. 2014.
Energy-aware vehicle routing in networks with charging
nodes. arXiv preprint arXiv:1401.6478.
Xiong, Y.; Gan, J.; An, B.; Miao, C.; and Bazzan, A. L. C.
2015. Optimal electric vehicle charging station placement.
In Yang, Q., and Wooldridge, M., eds., Proc. 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, 2662–2668. AAAI Press.

139

