
Hierarchical Linearly-Solvable Markov Decision Problems

Anders Jonsson and Vicenç Gómez
Department of Information and Communication Technologies

Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain
{anders.jonsson,vicen.gomez}@upf.edu

Abstract

We present a hierarchical reinforcement learning framework
that formulates each task in the hierarchy as a special type
of Markov decision process for which the Bellman equa-
tion is linear and has analytical solution. Problems of this
type, called linearly-solvable MDPs (LMDPs) have interest-
ing properties that can be exploited in a hierarchical setting,
such as efficient learning of the optimal value function or
task compositionality. The proposed hierarchical approach
can also be seen as a novel alternative to solving LMDPs with
large state spaces. We derive a hierarchical version of the so-
called Z-learning algorithm that learns different tasks simul-
taneously and show empirically that it significantly outper-
forms the state-of-the-art learning methods in two classical
hierarchical reinforcement learning domains: the taxi domain
and an autonomous guided vehicle task.

1 Introduction

Hierarchical reinforcement learning (HRL) is a general
framework for addressing large-scale reinforcement learn-
ing problems. It exploits the task (or action) structure of a
problem by considering policies over temporally extended
actions that typically involve a reduced subset of the state
components. For example, the MAXQ approach (Dietterich
2000) decomposes a Markov decision process (MDP) and
its value function into a hierarchy of smaller MDPs such
that the value function of the target MDP corresponds to an
additive combination of the value functions of the smaller
MDPs. Another example is the options approach for which
different tasks can be learned simultaneously in an online
fashion (Sutton and Precup 1998). HRL methods have also
been used to explain human and animal behavior (Botvinick,
Niv, and Barto 2009).

Independently, a class of stochastic optimal control prob-
lems was introduced for which the actions and cost func-
tion are restricted in ways that make the Bellman equation
linear and thus more efficiently solvable (Todorov 2006;
Kappen 2005). This class of problems is known in the dis-
crete setting as linearly-solvable MDPs (LMDPs), in the
continuous setting as path-integral control or more gener-
ally, as Kullback-Leibler (KL) control (Kappen, Gómez, and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Opper 2012). Optimal control computation for this class of
problems is equivalent to a KL-divergence minimization.

The original LMDP formulation considers a single action
that changes the stochastic laws of the environment. An al-
ternative interpretation (that we adopt in this work) is to con-
sider a stochastic policy over deterministic actions. LMDPs
have many interesting properties. For example, optimal con-
trol laws for LMDPs can be linearly combined to derive
composite optimal control laws efficiently (Todorov 2009a).
Also, the power iteration method, used to solve LMDPs,
is equivalent to the popular belief propagation algorithm
used for probabilistic inference in dynamic graphical mod-
els (Kappen, Gómez, and Opper 2012). The optimal value
function for LMDPs can be learned efficiently using an off-
policy learning algorithm, Z-learning, that operates directly
in the state space instead of in the product space of states
and actions (Todorov 2009b).

In the continuous setting, the KL-divergence reduces to
the familiar quadratic energy cost, widely used in robotic ap-
plications. Examples of such applications include robot nav-
igation (Kinjo, Uchibe, and Doya 2013) and motor skill re-
inforcement learning (Theodorou, Buchli, and Schaal 2010).
This class of problems is also relevant in other disciplines,
such as cognitive science and decision making theory (Fris-
ton et al. 2013; Ortega and Braun 2013). However, in gen-
eral, application of LMDPs to real-world problems is chal-
lenging, mainly due to the curse dimensionality (Abbasi-
Yadkori et al. 2015; Matsubara, Gómez, and Kappen 2014;
Todorov 2009c).

In this paper, we propose to combine both HRL and
LMDP frameworks and formulate a reinforcement learn-
ing problem as a hierarchy of LMDPs. Surprisingly, despite
LMDPs were introduced already ten years ago, no unifying
framework that combines both methodologies has been pro-
posed yet. The benefits of this combination are two-fold. On
one hand, HRL problems expressed in this way can benefit
from the same properties that LMDPs enjoy. For example,
one can use Z-learning as an efficient alternative to the state-
of-the-art HRL methods. Another example is task composi-
tionality, by which a composite task can be learned at no cost
given the optimal solution for the different composing tasks.
This is useful in tasks that have several terminal states, as
we will show later. On the other hand, LMDPs can also ben-
efit from the HRL framework, for example, by addressing

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

193

the curse of dimensionality in an alternative way to the pre-
viously mentioned approaches or by simultaneous intra-task
learning from HRL.

The paper is organized as follows. We review HRL and
LMDPs in Section 2. The main contribution of this work is
the hierarchical formulation for LMDPs, which we present
in Section 3. We empirically illustrate its benefits on two
benchmarks in Section 4 We conclude this work in Sec-
tion 5.

2 Preliminaries

In this section we introduce preliminaries and notation. We
first define MDPs and Semi-MDPs, then explain the idea be-
hind MAXQ decomposition, and finally describe linearly-
solvable MDPs.

2.1 MDPs and Semi-MDPs

An MDP M = 〈S,A, P,R〉 consists of a set of states S,
a set of actions A, a transition probability distribution P :
S × A× S → [0, 1] satisfying

∑
s′ P (s′|s, a) = 1 for each

state-action pair (s, a) ∈ S × A, and an expected reward
function R : S × A → R. The aim is to learn an optimal
policy π : S → A, i.e. a mapping from states to actions that
maximizes expected future reward.

MDPs are usually solved by defining a value function V :
S → R that estimates the expected future reward in each
state. In the undiscounted case, the optimal value is obtained
by solving the Bellman optimality equation:

V (s) = max
a∈A

{R(s, a) + Es′ [V (s′)]}

= max
a∈A

{
R(s, a) +

∑
s′

P (s′|s, a)V (s′)

}
.

To bound the optimal value function, we only consider first
exit problems that define a set of terminal states T ⊆ S. A
function g : T → R defines the final reward V (t) ≡ g(t) of
each terminal state. As an alternative to the value function V ,
one can define an action-value function Q : S×A → R that
estimates the expected future reward for each state-action
pair (s, a) ∈ S ×A.

The Bellman optimality equation can be solved globally
using algorithms such as value iteration and policy itera-
tion. However, for large state spaces this is not feasible. Al-
ternative algorithms make local updates to the value func-
tion online. Arguably, the most popular online algorithm
for MDPs is Q-learning (Watkins 1989). Given a transition
(st, at, rt, st+1) from state st to state st+1 when taking ac-
tion at and receiving reward rt, Q-learning makes the fol-
lowing update to the estimate Q̂ of the optimal action-value
function:

Q̂(st, at) ← (1− α)Q̂(st, at) + α(rt +max
a

Q̂(st+1, a)),

where α is a learning rate.
A Semi-MDP generalizes an MDP by including actions

that take more than one time-step to complete. In this case,

ROOT

PICKUP NAVIGATE(t) PUTDOWN

NORTH SOUTH EAST WEST

Figure 1: The task graph of the Taxi domain.

the Bellman optimality equation becomes

V (s) = max
a∈A

Eτ

{
R(s, a, τ) +

∑
s′

P (s′, τ |s, a)V (s′)

}

= max
a∈A

∑
τ

∑
s′

P (s′, τ |s, a) {R(s, a, τ) + V (s′)} ,

where τ is the duration of action a, R(s, a, τ) is the expected
reward when a applied in s lasts for τ steps, and P (s′, τ |s, a)
is the probability of transitioning to s′ in τ steps. By defining
R(s, a) ≡ ∑

τ,s′ P (s′, τ |s, a)R(s, a, τ) and P (s′|s, a) =∑
τ P (s′, τ |s, a), we get

V (s) = max
a∈A

{
R(s, a) +

∑
s′

P (s′|s, a)V (s′)

}
,

i.e. a Semi-MDP can be treated and solved as an MDP.

2.2 MAXQ Decomposition

MAXQ decomposition (Dietterich 2000) decomposes an
MDP M = 〈S,A, P,R〉 into a finite set of tasks M =
{M0, . . . ,Mn} with root task M0, i.e. solving M0 is equiva-
lent to solving M . Each task Mi = 〈Ti, Ai, R̃i〉, 0 ≤ i ≤ n,
consists of a termination set Ti ⊂ S, an action set Ai ⊂ M
and a pseudo-reward R̃i : Ti → R.

A task Mi is primitive if it has no subtasks, i.e. if Ai = ∅.
A primitive task Mi corresponds to an action a ∈ A of the
original MDP M , defined such that Mi is always applica-
ble, terminates after one time step and has pseudo-reward 0
everywhere. A non-primitive task Mi can only be applied in
non-terminal states (i.e. states not in Ti). Terminating in state
t ∈ Ti produces pseudo-reward R̃i(t). Mi corresponds to a
Semi-MDP with action set Ai, i.e. actions are other tasks.

MAXQ defines a task graph with tasks in M as nodes.
There is an edge between nodes Mi and Mj if and only if
Mj ∈ Ai, i.e. if Mj is an action of task Mi. To avoid infinite
recursion, the task graph has to be acyclic. Figure 1 shows a
simplified task graph of the Taxi domain, commonly used to
illustrate MAXQ decomposition.

The aim of MAXQ decomposition is to learn a hier-
archical policy π = (π0, . . . , πn), i.e. a separate policy
πi : S → Ai for each individual task Mi, 0 ≤ i ≤ n.
Each task Mi defines its own value function Vi that, for each
state s ∈ S, estimates the expected cumulative reward until
Mi terminates. The reward associated with applying action
Mj ∈ Ai in state s of task Mi equals the value of Mj in

194

s, i.e. Ri(s,Mj) = Vj(s). Hence the Bellman optimality
equation for Mi decomposes as

Vi(s) = max
Mj∈Ai

{
Vj(s) +

∑
s′

P (s′|s,Mj)Vi(s
′)

}
,

where P (s′|s,Mj) is the probability of transitioning from
s to s′ when applying the (possibly composite) action Mj .
If Mj is a primitive task corresponding to an action a ∈ A
of the original MDP M , its value is the expected immediate
reward, i.e. Vj(s) = R(s, a). The pseudo-reward R̃i is only
used for learning the policy πi of Mi and does not contribute
to the value function.

Dietterich (2000) proposed an online algorithm for
MAXQ decomposition called MAXQ-Q learning. The al-
gorithm maintains two value functions for each task Mi: an
estimate V̂i of the value function Vi defined above, and an
estimate Ṽi of the expected cumulative reward that includes
the pseudo-reward R̃i. The estimate Ṽi defines the policy πi

for Mi, while the estimate V̂i is passed as reward to parent
tasks of Mi. MAXQ-Q learning achieves recursive optimal-
ity, i.e. each policy πi is locally optimal with respect to Mi.
Dietterich (1999) also showed how to use state abstraction
to simplify learning in MAXQ decomposition.

2.3 Linearly-Solvable MDPs

Linearly-solvable MDPs (LMDPs) were first introduced by
Todorov (2006; 2009b). The original formulation has no ex-
plicit actions, and control consists in changing a predefined
uncontrolled probability distribution over next states. An al-
ternative interpretation is to view the resulting probability
distribution as a stochastic policy over deterministic actions.
Todorov’s idea was to transform the discrete optimization
problem over actions to a continuous optimization problem
over transition probabilities, which is convex and analyti-
cally tractable.

Formally, an LMDP L = 〈S, P,R〉 consists of a set of
states S, an uncontrolled transition probability distribution
P : S × S → [0, 1] satisfying

∑
s′ P (s′|s) = 1 for each

state s ∈ S, and an expected reward function R : S → R.
Given a state s ∈ S and any next state distribution D, we
define the set of next states under D as N(s,D) = {s′ :
D(s′|s) > 0}. For first-exit problems, LMDPs also have a
subset of terminal states T ⊂ S.

The control in LMDPs is a probability distribution a(·|s)
over next states; for a given next state s′ ∈ S, a(s′|s) can
be non-zero only if P (s′|s) is non-zero. The reward R(s, a)
for applying control a in state s is

R(s, a) = R(s)− λ ·KL(a(·|s)‖P (·|s))

= R(s)− λ · Es′∼a(·|s)

[
log

a(s′|s)
P (s′|s)

]
,

where R(s) is the (non-positive) reward associated with
state s. KL(a(·|s)‖P (·|s)) is the Kullback-Leibler diver-
gence between a and P , penalizing controls that are sig-
nificantly different from P . Typically, P is a random walk
and λ acts as a temperature parameter. Large values of λ

(high temperature) lead to solutions which are more stochas-
tic, since deviating from the random dynamics is penalized
more. Conversely, very small values of λ (low temperature)
result in deterministic policies, since the state-dependent
term dominates the immediate cost. LMDPs, in a sense, re-
place deterministic policies defined over stochastic actions
with stochastic policies defined over deterministic actions.
In what follows, unless otherwise stated, the next state s′ is
always drawn from the distribution a(·|s).

We can now define the Bellman optimality equation:
1

λ
V (s) =

1

λ
max

a∈A(s)
{R(s, a) + Es′ [V (s′)]}

=
1

λ
R(s) + max

a∈A(s)
Es′

[
1

λ
V (s′)− log

a(s′|s)
P (s′|s)

]
.

For a given state s ∈ S, the set A(s) consists of control
inputs that satisfy

∑
s′ a(s

′|s) = 1 and a(s′|s) > 0 →
P (s′|s) > 0 for each s′ ∈ S. To bound the values V (s)
in the absense of a discount factor, terminal states are ab-
sorbing, i.e. P (t|t) = 1 for each t ∈ T .

Introducing Z(s) = eV (s)/λ we obtain

1

λ
V (s) =

1

λ
R(s) + max

a
Es′

[
− log

a(s′|s)
P (s′|s)Z(s′)

]

=
1

λ
R(s)−min

a
Es′

[
log

a(s′|s)
P (s′|s)Z(s′)

]
.

To obtain a KL divergence on the right-hand side, introduce
a normalization term G[Z](s) =

∑
s′ P (s′|s)Z(s′) and in-

sert it into the Bellman equation:
1

λ
V (s) =

1

λ
R(s)−min

a
Es′

[
log

a(s′|s)G[Z](s)

P (s′|s)Z(s′)G[Z](s)

]

=
1

λ
R(s) + log G[Z](s)

−min
a

KL

(
a(·|s)

∥∥∥∥P (·|s)Z(·)
G[Z](s)

)
.

The KL term achieves a minimum of 0 when the distribu-
tions are equal, i.e. the optimal policy is

a∗(s′|s) = P (s′|s)Z(s′)
G[Z](s)

.

Exponentiating the Bellman equation gives

Z(s) = eR(s)/λG[Z](s).

We can write this equation in matrix form as

z = ΩΠz, (1)

where Ω is a diagonal matrix with the terms eR(s)/λ on
the diagonal and Π is the transition probability matrix de-
rived from the distribution P . Unlike the Bellman optimality
equation, this is a system of linear equations.

Since Equation (1) is linear, we can solve its eigenvec-
tor problem using, for example, the power iteration method.
As an alternative, Todorov (2006; 2009b) proposed an on-
line learning algorithm for LMDPs called Z-learning. Simi-
lar to Q-learning for MDPs, the idea of Z-learning is to fol-
low a trajectory, record transitions and perform incremental
updates to the value function.

195

Since LMDPs have no explicit actions, each transition
(st, rt, st+1) consists of a state st, a next state st+1 and a
reward rt recorded during the transition. Z-learning main-
tains an estimate Ẑ of the optimal Z value, and this estimate
is updated after each transition as

Ẑ(st) ← (1− α)Ẑ(st) + αert/λẐ(st+1), (2)

where α is a learning rate.
Naive Z-learning samples transitions from the passive dy-

namics P , which essentially amounts to a random walk and
leads to slow learning. A better alternative is to use impor-
tance sampling to guide exploration by sampling transitions
from a more informed distribution. A natural choice is the
estimated optimal policy â derived from Ẑ, resulting in the
following corrected update rule (Todorov 2006):

Ẑ(st) ← (1− α)Ẑ(st) + αert/λẐ(st+1)wâ(st, st+1),

wâ(st, st+1) =
P (st+1|st)
â(st+1|st) . (3)

Note that the importance weight wâ(st, st+1) requires ac-
cess to the passive dynamics P .

2.4 LMDPs With Transition-Dependent Rewards

In the original formulation of LMDPs, reward is state-
dependent. To develop a hierarchical framework based on
LMDPs, we have to account for the fact that each task
may accumulate different amounts of reward. Hence reward
is transition-dependent, depending not only on the current
state but also on the next state. In this section we extend
LMDPs to transition-dependent reward, i.e. the expected re-
ward function R : S×S → R is defined over pairs of states.
Then the reward R(s, a) of applying control a in state s is

R(s, a) = Es′ [R(s, s′)]− λ ·KL(a(·|s)‖P (·|s))

= Es′

[
R(s, s′)− λ · log a(s′|s)

P (s′|s)
]
.

The Bellman equation becomes

1

λ
V (s) =

1

λ
max

a
{R(s, a) + Es′ [V (s′)]}

= max
a

Es′

[
1

λ
(R(s, s′) + V (s′))− log

a(s′|s)
P (s′|s)

]
.

Letting Z(s) = eV (s)/λ and O(s, s′) = eR(s,s′)/λ yields

1

λ
V (s) = −min

a
Es′

[
log

a(s′|s)
P (s′|s)O(s, s′)Z(s′)

]
.

Normalizing as G[Z](s) =
∑

s′ P (s′|s)O(s, s′)Z(s′) yields
V (s)/λ = log G[Z](s) and results in the policy

a∗(s′|s) = P (s′|s)O(s, s′)Z(s′)
G[Z](s)

.

Exponentiating the Bellman equation gives Z(s) = G[Z](s)
which can be written in matrix form as

z = Γz, (4)

where each entry of Γ equals Γ(s, s′) = P (s′|s)O(s, s′).
To solve Equation (4) we can either apply the power iter-

ation method or Z-learning. It is trivial to extend Z-learning
to LMDPs with transition-dependent reward. Each transi-
tion is still a triplet (st, rt, st+1), and the only difference
is that the reward rt now depends on the next state st+1

as well as the current state st. If we compare to the target
value Z(s) = G[Z](s), we see that the update rule in Equa-
tion (2) causes Ẑ to tend towards the optimal Z value when
using the uncontrolled distribution P to sample transitions.
The update for importance sampling in Equation (3) can also
be directly applied to LMDPs with transition-dependent re-
ward.

3 Hierarchical LMDPs

In this section we formalize a framework for hierarchical
LMDPs based on MAXQ decomposition. We assume that
there exists an underlying LMDP L = 〈S, P,R〉 and a set
of tasks L = {L0, . . . , Ln}, with L0 being the root task.
Each task Li = 〈Ti, Ai, R̃i〉, 0 ≤ i ≤ n, consists of a
termination set Ti ⊂ S, a set of subtasks Ai ⊂ L and a
pseudo-reward R̃i : Ti → R. Each state t ∈ Ti is absorbing
and produces reward R̃i(t). For clarity of presentation, we
first assume that each task Li is deterministic, i.e. for each
state s ∈ S \ Ti, Li terminates in a unique state ti(s) ∈ Ti.
We later show how to extend hierarchical LMDPs to non-
deterministic tasks.

In MAXQ decomposition, since the actions of the origi-
nal MDP M = 〈S,A, P,R〉 are included as primitive tasks,
the action set Ai of task Mi contains a subset of actions in
A. The analogy for hierarchical LMDPs is that each task Li

contains a subset of the allowed transitions of the original
LMDP L = 〈S, P,R〉, i.e. transitions with non-zero prob-
ability according to P . Intuitively, the optimal control ai of
each task Li can be viewed as a stochastic policy that selects
between deterministic tasks and deterministic next states.

We associate each task Li with an LMDP 〈S, Pi, Ri〉 with
transition-dependent rewards. Task Li is primitive if and
only if Ai = ∅. For each state s ∈ S, let Ns ⊆ N(s, P)
be the subset of next states of the original LMDP L that are
also present in Li. Further let As = {Lj ∈ Ai | s /∈ Tj}
be the set of subtasks of Li that are applicable in s, i.e. for
which s is not a terminal state. Clearly, As = ∅ if Li is
primitive.

For a given state s ∈ S, the passive dynamics Pi and
immediate reward Ri of the task LMDP Li are defined in
terms of transitions due to Ns

Pi(s
′|s) = P (s′|s)∑

s′′∈Ns
P (s′′|s) ·

|Ns|
|Ns|+ |As| , ∀s′ ∈ Ns,

Ri(s, s
′) = R(s), ∀s′ ∈ Ns,

and transitions due to As

Pi(tj(s)|s) = 1

|Ns|+ |As| , ∀Lj ∈ As, (5)

Ri(s, tj(s)) = Vj(s), ∀Lj ∈ As. (6)

Just as in MAXQ decomposition, the reward associated with
applying a subtask Lj ∈ Ai of Li in state s equals the value

196

ROOT

PICKUP NAVIGATE(t) PUTDOWN

NORTH SOUTH EAST WEST

Figure 2: The LMDP task graph of the Taxi domain.

function of Lj in s, i.e. Ri(s, tj(s)) = Vj(s). The transi-
tion (s, tj(s)) associated with subtask Lj ∈ Ai has uniform
probability, while transitions in Ns have probabilities pro-
portional to those of P and produce the same reward as in
the original LMDP L.

For each task Li, the value function Vi estimates the ex-
pected cumulative reward until Li terminates and defines the
immediate reward for higher-level tasks. We can write the
Bellman optimality equation for Li as

Vi(s)

λ
= max

ai

Es′

[
1

λ
(Ri(s, s

′) + Vi(s
′))− log

ai(s
′|s)

Pi(s′|s)
]
.

(7)

The task graph for hierarchical LMDPs is defined as
for MAXQ decomposition, and has to be acyclic. Figure 2
shows the LMDP task graph of the Taxi domain. Compared
to Figure 1, primitive actions no longer appear as tasks, and
new sink nodes, e.g. NAVIGATE(t), correspond to primitive
tasks of the hierarchical LMDP.

The above definitions implicitly consider the following
assumptions that differ from the MAXQ formulation and are
required for hierarchical LMDPs:

1. First, we assume that terminal states of subtasks are mu-
tually exclusive and do not overlap with next states in
Ns. The reason is that an LMDP is not allowed to have
more than one transition between two states with different
rewards: if this happens, the optimal policy is not iden-
tifiable, since one has to collapse both transitions into
one and determine what the resulting immediate reward
should be, an ill-defined problem.

2. Another difference is that each LMDP task Li needs the
equivalent of a no-op action, i.e. Pi(s|s) > 0, so that the
corresponding Markov chain is aperiodic, needed for con-
vergence of the power-iteration method.

3. Finally, unlike MAXQ decomposition, the value function
Vi in Equation (7) includes KL terms due to differences
between the control ai and uncontrolled dynamics Pi. The
reward Ri(s, tj(s)) = Vj(s) also includes subtask depen-
dent KL terms. Consequently, the value function V0(s) of
the root task L0 includes KL terms from all other tasks.
Although this introduces an approximation, we can con-
trol the relative importance of KL terms by adjusting the
value of λ.

3.1 Task Compositionality for Non-Deterministic
Tasks

In this subsection, we extend the definition of hierarchical
LMDPs to non-deterministic tasks. As before, we associate
with each task Li an LMDP 〈S, Pi, Ri〉 with the important
difference that Li (and it subtasks) can have more than one
terminal state. Primitive subtasks (or transitions Ns) are ad-
dressed as before, and we omit them for clarity. We thus have
to define passive dynamics and immediate rewards for non-
primitive subtasks Lj that can have more than one terminal
state.

Denote tj,k(s) ∈ Tj , 1 ≤ k ≤ |Tj |, as the k-th termi-
nal state of subtask Lj . We define the counterparts of Equa-
tions (5) and (6) for multiple terminal states as

Pi(tj,k(s)|s) = P j(tj,k(s)|s)
|Ns|+ |As| , ∀Lj ∈ As, tj,k(s) ∈ Tj ,

(8)
Ri(s, tj,k(s)) = Vj,k(s), ∀Lj ∈ As, tj,k(s) ∈ Tj .

(9)

where the transition probability P j(tj,k(s)|s) of subtask Lj

from state s to terminal state tj,k(s) and the value function
Vj,k(s) can be expressed using compositionality of optimal
control laws for LMDPs (Todorov 2009a), as described be-
low. Note that P j is different from the immediate transition
probabilities Pj for subtask Lj , and that the total transition
probability of subtask Lj is still 1/(|Ns| + |As|), but it is
now distributed among the possible terminal states accord-
ing to P j(tj,k(s)|s).

For each terminal state tj,k(s) ∈ Tj of task Lj , we de-
fine a separate task Lj,k . The new tasks are identical to Lj

and have |Tj | terminal states that differ only in their pseudo-
rewards R̃j,k. For task Lj,k, the pseudo-reward for tj,k(s)
(goal) is zero and the remaining |Tj |−1 terminal states have
the same (negative) pseudo-reward C, e.g. R̃j,k(tj,k(s)) = 0

and R̃j,k(tj,l) = C, l �= k.
Consider the optimal policy a∗j,k(·|s) and the optimal

value Zj,k(s) of each of the individual tasks. Using compo-
sitionality, the original task Lj with multiple terminal states
can be expressed as a weighted sum of the individual tasks
Lj,k. In particular, the composite optimal Zj and policy a∗j
are (Todorov 2009a)

Zj(s) =
1

|Tj |
|Tj |∑
k=1

Zj,k(s),

a∗j (·|s) =
|Tj |∑
k=1

Zj,k(s)

Zj(s)
a∗j,k(·|s),

where the mixing weights for composing tasks are uniform
and equals 1/|Tj |, since each task Lj,k assigns the same
pseudo-reward C to non-goal terminal states.

The value function in Equation (9) is then given by

Vj,k(s) = λ log
Zj,k(s)

Zj(s)
,

197

and the transition probability for Equation (8) is defined re-
cursively for all states s as

P j(tj,k(s)|tj,k(s)) = 1,

P j(tj,k(s)|tj,l(s)) = 0, l �= k,

P j(tj,k(s)|s) =
∑
s′

a∗j (s
′|s)P j(tj,k(s)|s′), s /∈ Tj .

This defines the hierarchical LMDP framework for non-
deterministic tasks. Note that each individual task Lj,k is
still deterministic; its purpose is to avoid terminating in a
state different from tj,k(s).

3.2 Hierarchical Learning Algorithms

The aim of a hierarchical LMDP is to learn an estimated hi-
erarchical control policy â = 〈â0, . . . , ân〉, i.e. an individual
control policy âi for each task Li, 0 ≤ i ≤ n. Similar to
MAXQ decomposition, there are two main alternatives for
learning a hierarchical policy:

1. Learn each individual policy âi separately in a bottom-up
fashion.

2. Learn all policies simultaneously using a hierarchical ex-
ecution in a top-down fashion.

Implementing an algorithm of the first type is straightfor-
ward: since each individual task Li is an LMDP, we can us-
ing the power iteration method or Z-learning. Since all sub-
tasks of Li are solved before Li itself, the rewards of Li are
known and fixed when solving Li.

To implement an algorithm of the second type, similar to
MAXQ-Q learning, we start at the root task L0 and sample
a subtask Li to execute using the current estimate â0 of the
policy for L0. We then execute Li until termination, possibly
applying subtasks of Li along the way. When Li terminates,
we return the control to the root task L0 and another subtask
Lj is sampled using â0. This continues until we reach an
absorbing state of L0. During this process, the value function
estimates of each task are updated using Z-learning.

As in MAXQ-Q learning, if a task Li has pseudo-rewards
different from 0, we have to learn two estimates of the value
function for Li: one estimate V̂i of the optimal value func-
tion Vi that excludes the pseudo-reward R̃i, and another es-
timate Ṽi that includes the pseudo-reward R̃i. The estimate
Ṽi defines the policy âi of Li, while V̂i is passed as reward
to parent tasks of Li.

3.3 Intra-Task Z-Learning

In hierarchical MDPs, the aim is to learn a separate policy
for each individual task. Since Q-learning is an off-policy al-
gorithm, it is possible to use transitions recorded during one
task to learn the policy of another task. Such intra-task learn-
ing is known to converge faster (Sutton and Precup 1998).
In this section we describe an algorithm for intra-task Z-
learning.

As described in Subsection 2.3 , we can use importance
sampling to improve exploration. Let (st, rt, st+1) be a tran-
sition sampled using the estimated policy âj of task Lj , and
consider an update to the estimated value Ẑi of another task

Li. Even though the sample distribution âj is different from
the estimated policy âi of Li, we consider the update in
Equation (3)

Ẑi(st) ← (1− α)Ẑi(st) + αert/λẐi(st+1)wâi
(st, st+1).

(10)

To see why the update rule is correct, simply substitute the
expressions for wâi and âi:

Ẑi(st) ← (1− α)Ẑi(st) + αert/λẐi(st+1)
P (st+1|st)
âi(st+1|st)

= (1− α)Ẑi(st)

+ αert/λ
P (st+1|st)Ẑi(st+1)

P (st+1|st)Ẑi(st+1)
G[Ẑi](st)

= (1− α)Ẑi(st)

+ αert/λG[Ẑi](st).

In other words, instead of moving Ẑi(st) in the direction of
ert/λẐi(st+1), the update rule moves Ẑi(st) in the direction
of ert/λG[Ẑi](st), which is precisely the desired value of
Ẑi(st). In particular, the importance weight can be shared
by the different tasks in intra-task learning.

For LMDPs with transition costs, the same update rule
can be used, but substituting the expressions for wâi and âi
leads to a slightly different result:

Ẑi(st) ← (1− α)Ẑi(st) + αert/λẐi(st+1)
P (st+1|st)
âi(st+1|st)

= (1− α)Ẑi(st)

+ α
P (st+1|st)ert/λẐi(st+1)G[Ẑi](st)

P (st+1|st)O(st, st+1)Ẑi(st+1)

= (1− α)Ẑi(st)

+ αE[G[Ẑi](st)].

Recall that O(st, st+1) = eR(st,st+1)/λ. The expectation
E[G[Ẑi](st)] results from the fact that the observed reward
rt and expected reward R(st, st+1) may be different, but
are equal in expectation. For LMDPs with transition costs,
G[Ẑi](st) is the desired value of Ẑi(st).

3.4 State Abstraction

In hierarchical LMDPs, we can apply the same forms of state
abstraction as for MAXQ decomposition (Dietterich 1999).
The most common form of state abstraction is projection
or max node irrelevance. This form of state abstraction as-
sumes that the state is factored, i.e. S = S1×· · ·×Sk where
S1, . . . , Sk are the domains of k state variables. Max node
irrelevance identifies state variables that are irrelevant for a
given task, implying that the values of these state variables
remain the same until completion of the task. Irrelevant state
variables can be ignored while learning the value function.

Dietterich (1999) identified other conditions under which
it is safe to perform state abstraction. One condition, leaf

198

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

time−step

e
rr

o
r

Taxi domain (primitive tasks)

Q−G
Q−G−IL
Z
Z−IS
Z−IS−IL

Figure 3: Taxi problem: results the primitive tasks (NAVI-
GATE) for λ = 1.

irrelevance, does not apply to hierarchical LMDPs since ac-
tions are no longer included as leaves of the task graph. An-
other condition, result distribution irrelevance, does apply
to hierarchical LMDPs: when two or more states have the
same transition probabilities with respect to a given task Li,
we only need to estimate a single value V̂i (or Ṽi) for these
states.

4 Experiments

We evaluate the proposed framework in two tasks com-
monly used in hierarchical MDPs: the taxi domain (Di-
etterich 2000) and an autonomous vehicle guided task
(AGV) (Ghavamzadeh and Mahadevan 2007). We compare
the following methods:

Z: Z-learning using naive sampling (i.e. random walk)
without correction term, as in Equation (2).

Z-IS: Z-learning with importance sampling but without
intra-task learning, as in Equation (3),

Z-IS-IL: Z-learning with importance sampling and intra-
task learning, as in Equation (10).

Q-G: ε-greedy Q-learning without intra-task learning.

Q-G-IL: ε-greedy Q-learning with intra-task learning.

The Z-learning variants are evaluated using task LMDPs
as described in Section 3 To compare with the Q-learning
variants, for each task LMDP we construct a traditional
MDP following the methodology of Todorov (2009b). The
resulting traditional MDP is guaranteed to have the same
optimal value function as the original LMDP. Following
Todorov (2006), we use dynamic learning rates, which de-
cay as α(τ) = c/(c + τ), where c is optimized separately
for each algorithm and τ is the current trial. The parameter
ε for Q-learning is also optimized for best performance.

To compare performance, we calculate, for each iteration,
the �1-norm of the differences between the learned and the
optimal value function, which can be computed exactly in

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6
x 10

4

time−step

e
rr

o
r

Taxi domain (high−level task)

Q−G
Z
Z−IS

Figure 4: Taxi problem: results in the abstract task (ROOT)
for λ = 1.

the tasks we consider here. More details about the experi-
ments are described in the supplementary material 1.

4.1 The Taxi Domain

The taxi domain is defined on a grid, with four distinguished
locations. There is a passenger at one of the four locations,
and that passenger wishes to be transported to one of the
other three locations. There is also a taxi that must navigate
to the passenger’s location, pick up the passenger, navigate
to the destination location, and put down the passenger there.
We use a variant of the taxi domain (Dietterich 2000) with
much larger state space, a 15× 15 grid.

We decompose the taxi domain as shown in Figure 2. Just
like Dietterich (2000), we apply state abstraction in the form
of projection to the navigate tasks, ignoring the passenger’s
location and destination. This results in state spaces of sizes
625 and 3,125 for the navigation and full task, respectively.

The primitive tasks (NAVIGATE) contain all state transi-
tions associated with navigation actions: NORTH, SOUTH,
EAST, WEST and IDLE (i.e. the no-op action). There are
four of these primitive tasks, one for each location (corner)
in the grid. The corresponding LMDPs are very similar to
the grid example of Todorov (2006): the passive dynamics is
a random walk and the state-cost term is zero for the termi-
nal states (the corresponding corner) and 1 elsewhere.

Figure 3 shows the performance of different learning
methods in the primitive task of this domain. The best results
are obtained with Z-learning with importance sampling and
intra-task learning (Z-IS-IL). The Z-learning variants out-
perform the Q-learning variants mainly because Z-learning,
unlike Q-learning, does not need a maximization operator or
state-action values (Todorov 2006). Remarkably, Z-IS (with-
out intra-task learning) still performs better than Q-learning
with intra-task learning. Naive Z-learning (Z) performs bet-
ter than greedy Q-learning (Q-G) because in this particular
task, random exploration is still useful to learn a location at
one corner of the grid.

1Supplementary material available at
http://arxiv.org/abs/1603.03267

199

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6

7

8
x 10

4

time−step

e
rr

o
r

AGV domain (primitive tasks)

Q−G
Q−G−IL
Z
Z−IS
Z−IS−IL

Figure 5: AGV problem: results in the primitive tasks (NAV-
IGATE) for λ = 1.

The full task is composed of the four possible naviga-
tion subtasks plus the transitions resulting from applying
the original PICKUP and PUTDOWN actions and the IDLE
transition. Figure 4 shows the results in the full task. Since
there is only one such task, intra-task learning does not ap-
ply. In this case, random exploration converges very slowly,
as the curve of Z indicates. Also, the advantage of Z-learning
with importance sampling over ε-greedy Q-learning is less
pronounced than in the primitive tasks.

From these results, we can conclude that the proposed ex-
tensions of Z-learning outperform the state-of-the-art learn-
ing methods for this domain.

4.2 The Autonomous Guided Vehicle (AGV)
Domain

The second domain we consider is a variant of the AGV do-
main (Ghavamzadeh and Mahadevan 2007). In this problem,
an AGV has to transport parts between machines in a ware-
house. Different parts arrive to the warehouse at uncertain
times, and these parts can be loaded from the warehouse and
delivered to the specific machines that can process and as-
semble them. Once a machine terminates, the AVG can pick
up the assembly and bring it to the unload location of the
warehouse.

The state space of the full problem has nine components:
three components for the position of the AGV (x, y and an-
gle), one for the type of the part that the AGV is carrying and
five to represent the different parts that are available to pick
up from the warehouse of from the assembly locations. To
convert the overall problem into a first-exit task, we do not
allow new parts to arrive at the warehouse, and the task is
to assemble all parts and deliver them to the unload station.
For more details, see the supplementary material.

An important feature of this problem is that the AVG
can only navigate using transitions corresponding to prim-
itive actions FORWARD, TURN-LEFT, TURN-RIGHT and
STAY. Unlike the taxi domain, this significantly constrains
the trajectories required to navigate from one location to an-
other in the warehouse. Similar to the taxi domain, we de-

1 2 3 4 5

x 10
6

1.0e−03

5.0e−03

1.0e−02

1.5e−02

time−step

th
ro

u
g

h
p

u
t

AGV domain (high−level task)

Q−G
Z−IS

Figure 6: AGV problem: comparison between Q-Learning
and Z-learning in terms of throughtput.

fine six primitive NAVIGATE tasks for navigating to the six
dropoff and pickup locations in the warehouse. As before,
we apply state abstraction in the form of projection to these
tasks, ignoring the location of all parts and assemblies.

Figure 5 shows the result of different learning methods on
the NAVIGATE tasks. They are similar to those in the taxi
domain, although Q-learning with intra-task learning per-
forms comparatively better, while naive Z-learning performs
comparatively worse. The latter result can be explained by
the need of guided exploration for navigating in this domain.

Since the total number of states is large, we also apply
state abstraction in the form of result distribution irrelevance
to the overall task. Since NAVIGATE tasks always terminate
in a predictable state, it is not necessary to maintain a value
function for other than dropoff and pickup locations.

We have also implemented an online algorithm similar
to MAXQ-Q learning. Instead of using the value function
of subtasks to estimate transition rewards, we execute each
subtask until termination, recording the reward along the
way. The reward accumulated during the subtask is then
used as the observed immediate reward for the abstract task.
For performance we measure the throughput, i.e. the num-
ber of assemblies delivered to the unload station per time
step. Figure 5 shows the relative performance of Z-learning
with importance sampling and Q-learning for this MAXQ-
Q variant. We omit naive Z-learning, since the throughput
of a random walk is constant over time. The number of time
steps includes all primitive transitions, including those of the
NAVIGATE subtasks. As the figure shows, Z-learning con-
verges more quickly to a suboptimal policy compared to Q-
learning, illustrating the benefits of hierarchical LMDPs.

5 Conclusions

We have presented a framework for hierarchical reinforce-
ment learning that combines the MAXQ decomposition and
formulates each task as a linearly-solvable MDP. The frame-
work has been illustrated in two domains, in which the hi-
erarchical, intra-task Z-learning algorithm outperforms the
state-of-the-art methods for hierarchical MDPs.

200

References

Abbasi-Yadkori, Y.; Bartlett, P. L.; Chen, X.; and Malek, A.
2015. Large-scale Markov decision problems with KL con-
trol cost and its application to crowdsourcing. In 32nd In-
ternational Conference on Machine Learning (ICML) 2015,
1053–1062.
Botvinick, M. M.; Niv, Y.; and Barto, A. C. 2009. Hier-
archically organized behavior and its neural foundations: A
reinforcement learning perspective. Cognition 113(3):262–
280.
Dietterich, T. G. 1999. State abstraction in MAXQ hierar-
chical reinforcement learning. In Advances in Neural Infor-
mation Processing Systems 12 (NIPS), 994–1000.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Friston, K.; Schwartenbeck, P.; FitzGerald, T.; Moutoussis,
M.; Behrens, T.; and Dolan, R. J. 2013. The anatomy of
choice: active inference and agency. Frontiers in Human
Neuroscience 7:598.
Ghavamzadeh, M., and Mahadevan, S. 2007. Hierarchical
average reward reinforcement learning. Journal of Machine
Learning Research 8:2629–2669.
Kappen, H. J.; Gómez, V.; and Opper, M. 2012. Optimal
control as a graphical model inference problem. Machine
Learning 87(2):159–182.
Kappen, H. J. 2005. Linear theory for control of nonlinear
stochastic systems. Physical Review Letters 95:200201.
Kinjo, K.; Uchibe, E.; and Doya, K. 2013. Evaluation of lin-
early solvable Markov decision process with dynamic model
learning in a mobile robot navigation task. Frontiers in Neu-
rorobotics 7:1–13.
Matsubara, T.; Gómez, V.; and Kappen, H. J. 2014. Latent
Kullback Leibler control for continuous-state systems using
probabilistic graphical models. In 30th Conference on Un-
certainty in Artificial Intelligence (UAI), 583–592. AUAI
Press.
Ortega, P. A., and Braun, D. A. 2013. Thermodynamics
as a theory of decision-making with information-processing
costs. In Proceedings of the Royal Society of London A,
volume 469, 20120683. The Royal Society.
Sutton, R. S., and Precup, D. 1998. Intra-option learn-
ing about temporally abstract actions. In Proceedings of
the 15th International Conference on Machine Learning
(ICML), 556–564. Morgan Kaufman.
Theodorou, E.; Buchli, J.; and Schaal, S. 2010. A general-
ized path integral control approach to reinforcement learn-
ing. Journal of Machine Learning Research 11:3137–3181.
Todorov, E. 2006. Linearly-solvable Markov decision prob-
lems. Advances in Neural Information Processing Systems
19 (NIPS) 1369–1376.
Todorov, E. 2009a. Compositionality of optimal control
laws. Advances in Neural Information Processing Systems
22 (NIPS) 1856–1864.

Todorov, E. 2009b. Efficient computation of optimal ac-
tions. Proceedings of the National Academy of Sciences of
the United States of America 106(28):11478–11483.
Todorov, E. 2009c. Eigenfunction approximation methods
for linearly-solvable optimal control problems. In Proceed-
ings of the 2nd IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning, 161–168.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College, Cambridge, UK.

201

