
Efficient Representation of Pattern Databases
Using Acyclic Random Hypergraphs

Mehdi Sadeqi
Department of Computer Science

University of Regina
Regina, SK, Canada S4S 0A2

sadeqi2m@cs.uregina.ca

Howard J. Hamilton
Department of Computer Science

University of Regina
Regina, SK, Canada S4S 0A2

hamilton@cs.uregina.ca

Abstract

A popular way to create domain-independent heuristic func-
tions is by using abstraction, where an abstract (coarse) ver-
sion of the state space is derived from the original state space.
An abstraction-based heuristic is usually implemented using
a pattern database, a lookup table of (abstract state, heuristic
value) pairs. Efficient representation and compression of pat-
tern databases has been the topic of substantial ongoing re-
search. In this paper, we present a novel domain-independent
algorithm for this purpose using acyclic r-partite random hy-
pergraphs. The theoretical and experimental results show that
our proposed algorithm provides a consistent representation
that works well across planning problem domains and pro-
vides a good trade-off between space usage and lookup time.
Thus, it is suitable to be a standard efficient representation for
pattern databases and a benchmark method for other pattern
database representation/compression methods.

Introduction

The A* (Hart, Nilsson, and Raphael 1968) and IDA* (Korf
1985) search algorithms use a function f(n) = g(n)+h(n)
as their node prioritization mechanism, where g(n) is the
cost of reaching node n from the start node and h(n) is a
heuristic estimate of the cost of the optimum path from node
n to the goal node. By definition, a heuristic function h is
admissible if it never overestimates the cost of reaching the
goal state from any given state (a lower bound on the ac-
tual cost). If h(n) is an admissible heuristic function, A*
and IDA* will find an optimal solution (Hart, Nilsson, and
Raphael 1968; Korf 1985).

With abstraction, an abstract (coarse) version of a state
space is used to create a domain-independent heuristic func-
tion. The actual costs in the abstract space are used as a
heuristic function in the original space. A heuristic function
derived in this manner is usually stored in memory in an ef-
ficient lookup table of (abstract state, heuristic value) pairs
called a pattern database (PDB) (Culberson and Schaeffer
1998) or a memory-based heuristic. The pattern database is
then consulted by a heuristic search algorithm for efficient
extraction of heuristic values. The effectiveness of heuris-
tic search algorithms using pattern databases is highly de-
pendent on their compact and efficient representation. Typ-

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ically, larger PDBs contain more accurate heuristic values
and therefore their efficient representation with respect to
memory requirements and lookup speed is a crucial compo-
nent of heuristic search that uses a PDB to retrieve heuristic
values.

Hash tables are among the most popular data structures
used for PDB implementation. Regular hashing, however,
can have the problem of address collision where two (or
more) abstract states are mapped to the same address in the
lookup table. This problem is usually resolved using either
open hashing (separate chaining) or closed hashing (open
addressing). Alternatively, a perfect hash function (PHF)
can be designed to avoid collisions completely. By using
a perfect hash function, no two abstract states can ever be
mapped to the same address in the lookup table. Further-
more, a minimum perfect hashing function (MPHF) can be
designed to avoid collisions with no unused slots. In the con-
text of PDB implementation, a perfect hash function has typ-
ically been created based on a unique id for each abstract
state, generated from its lexicographic rank. For domain-
independent planning and for an arbitrary abstraction, how-
ever, it is generally not possible to find such a function that is
surjective and therefore this approach suffers from the prob-
lem of an excessive number of unused slots (Schmidt and
Zhou 2011). To achieve an efficient domain-independent im-
plementation, we need to turn our attention to generic PHF
and MPHF hash functions such as those suggested in the
FKS (Fredman-Komlós-Szemerédi) scheme and the BDZ
(BPZ) (Botelho, Pagh, and Ziviani 2007) and Compress,
Hash and Displace (CHD) (Belazzougui, Botelho, and Di-
etzfelbinger 2009) algorithms.

The state-of-the-art minimal perfect hash algorithms that
can be used for PDB implementation are the BDZ and CHD
algorithms. Although they require knowledge of all keys in
advance they are suitable for PDB implementation because
the set of abstract keys in an abstraction is constant (i.e., a
PDB contains an invariant set of abstract states). Although
these two algorithms are the fastest existing minimal per-
fect hash algorithms, they are still much slower than an effi-
cient regular hash table implementation of a PDB (e.g. state-
map implementation in PSVN (Holte, Arneson, and Burch
2014)).

Efficient retrieval of values associated with a given key
set is a common need in many areas of computer science.

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

258



An example would be a static set S of 100, 000, 000 URL
addresses with their corresponding popularity value. This
can be implemented efficiently using a minimal perfect hash
function obtained from the BDZ algorithm, i.e., a unique in-
dex to a table containing popularity values associated with
the URL addresses. To store this unique index, BDZ re-
quires around 2 bits per URL address. We can then omit
the URL addresses and only keep the minimal perfect hash
function along with the table containing popularity values.
The same process can be applied for implementing pattern
databases. For PDB representation, however, heuristic value
lookup time is an important factor and the original BDZ al-
gorithm is not fast enough for this purpose.

Successfully applied to planning and model checking,
Binary Decision Diagrams (BDDs) are an effective ap-
proach for implementing pattern databases (Edelkamp 2002;
Jensen, Bryant, and Veloso 2002). The heuristic lookup time
in a BDD-implemented PDB, however, is usually higher
than an efficient regular hash table and their space effi-
ciency depends on the structural properties of the prob-
lem domain, such as encoding disruption and the branch-
ing factor (Ball and Holte 2008). The Level-Ordered Edge
Sequence (LOES) was another approach introduced for the
purpose of representing pre-computed heuristics and pro-
vides an effective representation of pattern databases in
domain-independent planning (Schmidt and Zhou 2011).

The goal of this paper is to introduce a new direction for
representing (compressing) PDBs that can be used in con-
junction with other state-of-the-art approaches for this pur-
pose and be an effective part of the heuristic search tool-
box. It can be particularly useful when other approaches like
BDD or LOES do not perform well for a given problem do-
main or when we need a fast lookup while using a reasonable
amount of space for PDB storage. The main advantages of
this approach is its theoretical predictability of space usage
along with its fast lookup speed. It can also be used as a
benchmark method for other PDB representation (compres-
sion) methods because it provides a good trade-off between
space usage and lookup time for PDB implementation.

An Illustrative Example
We explain the main idea of this paper using a simple exam-
ple. Assume we want to represent a PDB corresponding to
an abstraction Φ containing three abstract states key1, key2
and key3 and their associated heuristic values 1, 0 and 2, re-
spectively. If we use a regular hash table with an arbitrary
hash function to map the keys to slots in the PDB, there is
a possibility of address collision(s), which would need to be
addressed accordingly. Instead, we propose to resolve the
address collision problem using a combination of three hash
functions (one can use any number of hash functions greater
than or equal to two but three is the most appropriate number
due to a theoretical property of hypergraphs, as explained
later).

To facilitate the discussion, suppose we have three hash
functions that map each abstract state in the abstraction to
three distinct addresses in a lookup table (Figure 1). The
keys associated with the abstract states, shown at left, are
distinguished by different style of arrows. For example, the

values for key2 are 0, 1 and 2, which are located at indices
0, 3 and 5 of the lookup table (illustrated using solid arrows
in Figure 1). The idea here is to populate this table such
that a heuristic value associated with an abstract state
can be obtained from the combination of the three val-
ues in this table determined by the three hash values of
the abstract state. The combining of these values should be
done using a simple efficient function such as the summa-
tion function. Figure 1 shows this process for three abstract
states of abstraction Φ introduced earlier. The heuristic value
for this abstract state is calculated as (0+1+2)mod 3 = 0.
We will later discuss the conditions under which a suitable
assignment of values for this table can be found.

Figure 1: Every heuristic value associated with an abstract
state is obtained from a combination of three values in the
lookup table.

We now turn our attention to the population of the lookup
table in Figure 1. The assignment of values in this table
should be done in such a way that we can derive the heuris-
tic value associated with any abstract state from a combi-
nation of three values in this table. Figure 2 shows one ap-
proach. Here we see an acyclic 3-partite hypergraph where
each vertex corresponds to a table entry and each edge of
this hypergraph connects three vertices (acyclic r-partite hy-
pergraphs will be discussed in more detail later). The three
vertices of each hyperedge correspond to the three different
entries—calculated using three hash functions—associated
with a given abstract state. Now consider an arbitrary order-
ing of these edges such as (E2, E3, E1). If we assign values
to the vertices of each edge starting from E2 and ending with
E1, we can obtain the lookup table in Figure 1. In the next
section, we will explain in detail how to create an acyclic r-
partite hypergraph for a set of abstract states, how to choose
an appropriate ordering of hyperedges, and how to assign
values to the vertices1.

Approach

We propose to implement a PDB based on the idea of a
near optimal implementation of an associative array where
|S| � |T | (S and T are the key and value sets, respectively).
When the key set is fixed or rarely updated and |S| � |T |,

1The order of selecting edges does not matter in this example.
In general, this is not the case and we have to follow a particular
ordering. This will be discussed later.

259



Figure 2: The 3-partite hypergraph used as the basis for cre-
ating the lookup table. Each heuristic value is calculated
from the three vertices of an edge connecting these vertices.

one can create a compact representation of an associative ar-
ray. For memory-based abstraction heuristics implemented
by a PDB, in particular, we are interested in finding the op-
timum (or at least a good) trade-off between memory usage
and lookup time. We describe our approach by discussing
an algorithm for the general case of associative array imple-
mentation and then explaining how to adjust some elements
of the algorithm to be effective for PDB implementation.

The General Case Algorithm

Assume U is a key universe and A : S → T is an associative
array where S ⊆ U is a key set and T is value set.

Theorem 1 For every representation scheme and every set
S and T where |S| = s and |T | = t, there exists an associa-
tive array A : S → T that requires at least �s log2 t� bits
under this representation scheme.

Proof Given a fixed representation scheme and fixed sets S
and T with |S| = s and |T | = t, there exist ts different
associative arrays, all of which need to be distinguishable
and hence require a different encoding. Let M = �s log2 t�.
Since the total number of distinct bit sequences of length
less than M is smaller than ts, there is at least one of the ts

possible associative arrays that requires M bits or more.

�
We now propose an algorithm that tries to achieve the

lower bound proved in Theorem 1. In the following para-
graphs, we explain the detailed steps of our algorithm (map-
ping, assigning and compressing) for efficient representation
of an associative array where |S| � |T |. Figure 3 shows the
output of the three steps of the algorithm for the example
associative array of {key1 → 1, key2 → 0, key3 → 2}
(see also Figures 1 and 2). Notice that although the gener-
ated 3-partite random hypergraphs in Figures 2 and 3(b) are
equal, the output of the assigning step (Figure 3(c)) is differ-
ent from the lookup table of Figure 2. In other words, the as-
signment of values to vertices can be done in different ways.
As we will see later, the assigning affects the compression
rate we achieve in the compressing step. Furthermore, for
associative array implementation in general, we also need a
table that translates every value to the actual data associated
with a key. Since we assume |key set| � |value set|, the

space required by this table is negligible. For PDB imple-
mentation, however, the heuristic values can be used directly
and a translation table is not needed.

Figure 3: The output of the three steps of the proposed al-
gorithm applied to an associative array with three keys and
their associated values: (a) the associative array of {key1 →
1, key2 → 0, key3 → 2}, (b) the mapping step (generation
of an acyclic 3-partite random hypergraph), (c) the assign-
ing step (assignment of values to the hypergraph vertices)
and (d) the compressing step (conversion to a more compact
data structure using a bit array).

Step 1: Mapping

In the mapping step, an acyclic r-partite random hypergraph
is generated. A conventional undirected graph can be gener-
alized to a hypergraph where each edge connects r ≥ 2 ver-
tices. A random r-partite r-uniform hypergraph has a vertex
set V = ∪r−1

i=0Vi where ∀i, j, i 
= j : Vi ∩ Vj = ∅ and
each edge is generated by randomly choosing one from all
possible edges with repetitions allowed. We are in particular
interested in a random r-partite r-uniform hypergraph that
contain no cycles. A cycle in a hypergraph can be defined
in many ways but—in our context—its strongest definition
leads to the proper definition of a acyclicity: a hypergraph
is acyclic if and only if some sequence of repeated deletions
of edges containing at least one vertex of degree 1 yields
a hypergraph with no edges (Czech, Havas, and Majewski
1997).

To find an acyclic hypergraph, an r-partite random hy-
pergraph is generated and tested for acyclicity. If the hy-
pergraph contains any cycles, another hypergraph is gen-
erated. This process is continued until an acyclic graph is
found. For a graph Gr = (V,E), it has been shown that
there exists a constant cr = c(r) such that if |V | ≥ cr|E|,
the space of random r-graphs is dominated by acyclic r-
graphs and cr has a minimum at r = 3 (c3 ≈ 1.23), i.e.,
the smallest acyclic hypergraphs are achieved with r = 3
(Czech, Havas, and Majewski 1997). Figure 4, adopted from
(Botelho 2008), illustrates a plot of cr for 2 ≤ r ≤ 10.

To detect whether a hypergraph Gr has any cycles, we use
the following algorithm (Majewski et al. 1996):

1. Every edge of hypergraph Gr that has at least one of its
vertices with degree one is stored in a queue Q.

2. The edges in Q are dequeued one by one, removed from
the hypergraph Gr and stored in a list L. If any of the ver-
tices of a removed edge has degree one (after its removal

260



Figure 4: Plot of cr for 2 ≤ r ≤ 10, adopted from (Botelho
2008). cr has a minimum of ≈ 1.23 at r = 3.

from the hypergraph), the edge that contains that vertex is
enqueued in Q. This is repeated until Q is empty.

If all the edges of Gr are removed in this process, it is an
acyclic hypergraph. Figure 3(b) shows an acyclic 3-partite
random hypergraph generated by the mapping step of our
algorithm.

Step 2: Assigning

In the assigning step, the appropriate values are assigned to
the vertices of the acyclic random r-partite hypergraph Gr

generated in the mapping step. The output of the assigning
step is represented in a lookup table g. All the entries in this
lookup table are initialized to value 0. The assignment of
values in g can be done similarly to what is proposed in
(Botelho, Pagh, and Ziviani 2007). Given the list of edges L
created in the mapping step, it is possible to make a perfect
assignment of the lookup table g by traversing L from tail
to head. To put it another way, by following a particular or-
dering of edges in the assigning step, we never encounter an
edge such that all its vertices have already been assigned val-
ues. For every edge e dequeued from L moving backwards in
this list, we find and set the value for unassigned g[v] entries
such that (Σv∈e g[v])mod t = value[keye] where t = |T |
is the size of value set, v is a vertex of e, and keye is the key
corresponding to edge e in the hypergraph2. Botelho et al.
showed such an unassigned vertex always exists if we move
backwards in L (Botelho, Pagh, and Ziviani 2007). For ev-
ery given edge ei in L, there is at least one vertex vi with
degree 1 when considered for deletion in the cycle detec-
tion of the mapping step. After removing this edge, for all
the edges that are deleted after ei, the degree of vi will be
0. This means that vi will be unassigned if we perform the
assignment from tail to head in L. This enables us to have a
perfect assignment in the lookup table g. Figure 3(c) illus-
trates this assignment for the acyclic 3-partite random hy-
pergraph of Figure 3(b). One possible order of assignment
for this graph is shown in Figure 5. This figure shows how

2If there are more than one unassigned g[v], all but one is
set to 0 and the last one is set such that (Σv∈e g[v])mod t =
value[keye]. This is in order to have as many 0 in the table as
possible to make the compressing step more effective.

the vertices of the hypergraph—and thus the entries of array
g—are assigned with appropriate values in the range [0, 3).

Figure 5: One possible order of assignment for the acyclic 3-
partite random hypergraph of Figure 3. Steps (a)–(d) show
how the vertices of this hypergraph—and the corresponding
entries of array g—are assigned with appropriate values in
the range [0, 3).

Step 3: Compressing

To make the lookup table g generated in the assigning step
more compact, a simple but efficient compression scheme
from (Pagh 2001) is used. We use a bit array corresponding
to the entries in g representing whether there is a non-zero
item in that index or not. The rank of every kth index in g
is defined as the number of non-zero entries in this table be-
fore that entry. A rank table is then used to store the rank of
every kth index in g. k should be set carefully to achieve a
good trade-off between space and evaluation time. For ex-
ample, with k = 256, the rank table stores the number of
assigned entries in g before every 256th entry in this lookup
table. Figure 3(d) shows the final compressed table achieved
after the application of the compressing step. Further, one
should notice that zeroes in g have two separate sources: (a)
initialization of all g entries to 0 at the start of the assigning
step, and (b) zeroes assigned to g entries corresponding to
the edges of the acyclic hypergraph generated in the map-
ping step. All of these zeroes are then eliminated to make
the final compressed table.

PDB Implementation Considerations

In this section we explain why the general case algorithm is
a suitable candidate for implementing pattern databases. We
also discuss the adjustments required to make this algorithm
efficient for PDB representation with respect to space and
lookup time. Our main concern about using our proposed
approach for PDB implementation is the lookup time. The
two main factors affecting the lookup time in this approach
are: 1) the time required by uniform hash values calcula-
tions (used both in generating a random acyclic r-partite r-
uniform hypergraph and for heuristic value lookup), and 2)

261



the overhead time added by the compressing step. These two
components are discussed in the following paragraphs.

The time required for generating a random acyclic r-
partite hypergraph as well as for heuristic value lookup can
be reduced using Zobrist hashing (Zobrist 1970). Although
full randomness is theoretically desired for the mapping step
to generate an acyclic r-partite r-uniform hypergraph, in
practice limited randomness using universal hashing is suffi-
cient (Botelho, Pagh, and Ziviani 2007; Botelho 2008). Zo-
brist hashing is an ideal candidate for the purpose of PDB
representation because 1) it is from the universal hashing
family (it is strongly universal and also 3-wise independent)
and, 2) the calculation of the hash values of a child state is
very fast: the hash values of a child state can be calculated
from the hash values of its parent state using only the parts
of the child state that are different from its parent state.

The overhead time added by the compressing step is dis-
cussed later by comparing the memory needed by our ap-
proach, the BDZ algorithm and the CHD algorithm.

PDB Construction Process

The PDB creation process can be summarized as fol-
lows (since the smallest acyclic r-partite hypergraphs are
achieved at r = 3, we use three Zobrist hash functions to
achieve the best compromise in terms of memory require-
ment and lookup speed):

1. Enumerate all the states in the abstraction to find the num-
ber of abstract states m and the number of distinct heuris-
tic values v: if all the operators are invertible, this can
be done by applying the inverse abstract operators in a
breadth-first manner starting from the abstract goal state;
otherwise, a forward pattern database construction pro-
cess, as explained in (Edelkamp and Schrödl 2011, 170–
171) can be used. An integer number n is chosen such that
n is the smallest integer number greater than or equal to
1.23m where nmod 3 = 0. A table g of size n is then
constructed corresponding to a hypergraph with n entries.

2. Generate 3 new Zobrist hash functions, h1, h2 and h3.
3. Similar to step 1, enumerate all the states in the ab-

straction in order to generate the 3-partite random hyper-
graph3:

(a) For every abstract state s, a hyperedge that connects
three Zobrist hash values, h1(s), h2(s) and h3(s), is
added to the hypergraph (h1(s), h2(s) and h3(s) will
have integer values in [0, n

3−1], [n3 ,
2n
3 −1] and [ 2n3 , n−

1], respectively).
(b) The generated hypergraph is tested for acyclicity as is

explained in the mapping step. In doing so, a queue of
edges is constructed. If the graph contains any cycles,
return to step 2.

4. All entries of g are initialized to 0. The nodes in the graph
are then assigned values as explained in the assigning
step:
3For simplicity, we have explained the PDB construction pro-

cess as performing two separate enumerations of the abstract states
in steps 1 and 3. In our implementation, however, we only enumer-
ate the states in the abstraction once.

(a) Hyperedges are removed one by one from the queue
created in the mapping step. Each hyperedge corre-
sponds to an abstract state s (since the generated hy-
pergraph has no cycles, it is guaranteed that at least one
of the vertices of the removed hyperedges has a corre-
sponding unassigned entry).

(b) Values are entered in unassigned table entries g[h1(s)],
g[h2(s)] and g[h3(s)] such that the sum of these
values—modulo the number of distinct entry values
v—is equal to the heuristic value of the corresponding
abstract state s.

5. The table can then be compressed as explained in the com-
pressing step.

From a PDB constructed using the above procedure, the
heuristic value of a state mapping to an abstract state s is
obtained by calculating g[h1(s)]+g[h2(s)]+g[h3(s)] mod-
ulo the number of distinct heuristic values v in the abstrac-
tion. Although the process of finding acyclic hypergraphs is
a random process, in our experiments, we always obtained
an acyclic hypergraph the first time we generated a random
3-partite hypergraph of the size recommended in the step 1
of the procedure.

Memory Usage Comparison

We compare the memory required by our approach with
and without the compressing step to the memory require-
ments of the most efficient (minimum) perfect hash imple-
mentations for a PDB, i.e., the BDZ and CHD algorithms.
BDZ needs around 1.95 and 2.6 bits per entry to store PHF
and MPHF, respectively (Botelho, Pagh, and Ziviani 2007;
Botelho 2008). CHD needs around 1.40 bits per entry for
PHF with a load factor of 0.81 (equal to the load factor
of BDZ in the PHF setting and our approach without the
compressing step, corresponding to the optimum hypergraph
size achieved at cr = 1.23) and 2.07 bits for MPHF (Be-
lazzougui, Botelho, and Dietzfelbinger 2009). Our approach
without the compressing step does not need any information
per entry (for a load factor of 0.81) and with the compressing
step requires—at least—one bit less than BDZ in the MPHF
setting. This means that, our proposed data structure without
the compressing step can store up to 2(2.6/0.23≈11) = 2, 048
different values before its memory requirement exceeds the
memory usage by BDZ algorithm in the MPHF setting (for
CHD, this number is 2(2.07/0.23=9) = 512). In other words,
as long as an abstraction has less than or equal 211 = 2, 048
different heuristic values, the memory usage of our approach
without the compressing step is less than or equal the BDZ
in the MPHF setting (the corresponding number for CHD is
29 = 512). This is a desirable property since the compress-
ing step has a substantial effect on the lookup time and for
all the practical abstractions in benchmark planning problem
domains (to the best of our knowledge), the above property
holds true. In other words, for all experimented abstractions,
our approach without the compressing step needs less mem-
ory than BDZ and CHD in their MPHF setting, making its
lookup speed considerably faster than a BDZ and CHD im-
plementation of a PDB.

262



Experimental Results

Experimental results in three problem domains, Sliding-Tile
Puzzle, Blocks World with Table Positions and Scanalyzer,
are presented in this section. We used production system
vector notation (PSVN) (Holte, Arneson, and Burch 2014)
for the state space representation of these problem domains.
We compare the efficiency of our proposed approach with
a fast regular hash table implementation of PDBs in these
three benchmark planning problem domains. For this pur-
pose, we used IDA* to solve 1, 000 uniformly generated
random problem instances in each of these problem domains
and reported the average time for each. IDA* is implemented
in such a way that the Zobrist hash values for a child state
are efficiently calculated from the hash values of its parent.
Before introducing the experimented representations and ab-
stractions, we explain how abstractions are defined here.

An abstraction is typically defined implicitly by defin-
ing a rule/rules describing the abstraction. Two types of ab-
straction are discussed here: domain abstraction and pro-
jection abstraction. A domain abstraction is simply a map-
ping from the original state space alphabet to a new smaller
one. A domain abstraction is formally defined by a mapping
Φ : Σ → Γ where Σ is the original state space alphabet
and Γ is the new alphabet of the abstract state space and
|Γ| ≤ |Σ|. Applying this mapping to the seed state s0 and
the operator set of a state space results in the new abstract
state space. In other words:

Φ(S) = (Φ(s0),Φ(O),Γ)

The other type of abstraction we are considering here is
projection abstraction (Edelkamp 2001). In projection, the
original state space alphabet remains unchanged (Γ = Σ)
but some variables from the state representation are ig-
nored. The remaining variables are specified via a subset
M = {i1, ..., im} ⊂ {1, ..., n} where n is the number of
variables in a state representation in the original state space
and m < n. For example, assuming the original state space
alphabet is {a, b, c, d, e} and having a projection abstraction
defined as M = {1, 4, 5} ⊂ {1, 2, 3, 4, 5}, we simply keep
variables at indexes 1, 4 and 5 and ignore the rest while the
alphabet is kept intact. This means that the state 〈a, c, d, b, e〉
in the original state space will be mapped to the abstract state
〈a,−,−, b, e〉 in the abstract state space where − refers to
the ignored variables.

We use rules to define both domain and projection ab-
stractions. A rule

a1 ← a1, a2, . . . , ak

means that the symbols a1, a2, . . . , ak are no longer distin-
guishable and are all mapped to the symbol a1 (domain ab-
straction). A rule

ignore [facts]
means that the variables encoding the listed facts are ignored
(projection abstraction).

Sliding-Tile Puzzle In the n × m-Sliding-Tile Puzzle
there is an n × m grid, in which tiles numbered 1 through
n·m−1 each fill one grid position and the remaining grid po-
sition is blank. A move consists of swapping the blank with

Figure 6: The experimented problem domains: (a) Sliding-
Tile Puzzle, (b) Blocks World with Table Positions and (c)
Scanalyzer.

an adjacent tile. The goal is to have the numbered tiles in
increasing order from top left corner to bottom right corner
with the blank tile in the bottom right position.

In one representation of this puzzle, states are vectors of
length n · m where each component corresponds to either
one of the numbered tiles or the blank. The value of a vec-
tor component represents the grid position at which the cor-
responding tile is located. For example, the state in Figure
6(a) would be encoded as 〈4, 8, 1, 2, 3, 6, 7, 9, 5〉, where the
ith component, for i ≤ 8, holds the position of tile i, and the
9th component holds the position of the blank.

Blocks World with Table Positions In the n-Blocks
World with p Table Positions, a state describes the constel-
lation of n blocks stacked on a table with p named positions,
where at most one block can be located in a “hand.” In ev-
ery move, either the empty hand picks up the top block off
one of the stacks on the table, or the hand holding a block
places that block onto an empty table position or on top of a
stack of blocks. The goal is to stack up all numbered blocks
in increasing order, from bottom to top, on the goal position
from a given start state using the legal moves.

We consider a PSVN representation of the n-Blocks
World with p distinct table positions where a state vector
has 1 + p+ n components, each containing either the value
0 or one of n block names: (i) the first component is the
name of the block in the hand, (ii) the next p components
are the names of the blocks immediately on table positions
1 through p, (iii) the last n components are the names of the
blocks immediately on top of blocks a, b, c, . . .. In each case,
the value 0 means “no block.” For example, Figure 6(b) il-
lustrates a state of the 4-Blocks World with 4 table positions,
encoded as 〈c, 0, 0, b, d, 0, 0, 0, a〉.

Scanalyzer In the n-Belt Scanalyzer domain, a state de-

263



Problem Domain Abstraction Regular Hash Table Our Approach Trivial Perfect Hash

PDB Size Average PDB Size Average PDB Size

Time (S) Time (S)

Sliding-Tile Puzzle ignore [tiles 1,3,6,9,11] 1.1 GB 0.74 32 MB 0.76 ≈ 26 MB
ignore [tiles 1,6,7,8,9] 1.1 GB 0.38 32 MB 0.39 ≈ 26 MB

Blocks World with
Table Positions

1 ← 1, 2, 3, 4, 5, 6 11 GB 48.05 275 MB 51.78 ≈ 24, 000, 000 MB
2 ← 7, 8

1 ← 1, 2, 3, 4, 5, 6 11 GB 74.70 275 MB 78.14 ≈ 24, 000, 000 MB
2 ← 10, 11

Scanalyzer ignore [belts 0,1,2,6,8] 6.1 GB 10.71 76 MB 11.38 ≈ 61 MB
ignore [belts 1,3,4,7,9] 6.1 GB 8.01 76 MB 8.08 ≈ 61 MB

Table 1: Different abstractions of 3 × 4-Sliding-Tile Puzzle, Blocks World with 12 blocks and 3 table positions and 10-Belt
Scanalyzer. The corresponding PDB sizes in bytes for both regular hash implementation and our proposed approach along with
their average time needed for solving 1, 000 uniformly generated random problem instances using IDA* are illustrated here.

scribes the placement of n plant batches on n conveyor belts
along with information indicating which batches have been
“analyzed” (for a detailed description of this domain, see
(Helmert and Lasinger 2010)). In a rotate move, a batch can
be switched from one conveyor belt in the upper half (A, B
and C in Figure 6(c)) to one in the lower half (D, E and F in
Figure 6(c)) and vice versa. In a rotate-and-analyze move, a
batch can simultaneously be transferred and analyzed from
the topmost conveyor belt to the bottommost one while the
batch at the bottommost conveyor belt is moved to the top-
most one without any change to its “analyzed” state. Once a
batch is analyzed, it will remain analyzed henceforward.

In a representation of the n-Belt Scanalyzer, a state is en-
coded as a vector of length 2n in which each conveyor belt
corresponds to two components: the name of the batch on
that belt and a flag indicating whether that batch is analyzed
or not. The goal state corresponds to having all plant batches
analyzed and replaced back on their original conveyor belts.

In what follows, we evaluated the efficiency of our pro-
posed algorithm. In order to have higher lookup speed, we
have not used the compressing step in our experiments; one
can achieve a smaller representation if some lookup speed is
sacrificed. In the regular hash table implementation we have
chosen linear probing for its simplicity of implementation
and high cache performance4. However, for linear probing to
be efficient, one should choose a good hash function that is
simple enough to be evaluated fast and uniformly distributes
keys in the hash table (minimum number of collisions). The
Jenkins hash functions (Jenkins 1997) are known to be very
efficient for this purpose. As well, the hash table sizes are
chosen to be powers of two for efficiency reasons. We double
the hash table size whenever we reach a load factor of 0.75
to avoid the performance degradation that generally happens

4It has been shown that linear probing can outperform other
address resolution mechanisms when dealing with load factors of
30%-70% because of its cache friendly property (Heileman and
Luo 2005; Black, Martel, and Qi 1998).

with open addressing if the hash table becomes nearly full
(considering the time-space trade-off, a load factor of 0.75
seems to be a good threshold for rehashing).

We considered two projection abstractions in the 3 × 4-
Sliding-Tile Puzzle (both containing 35, 831, 808 abstract
states with maximum heuristic values of 43 and 44 in the
order they appear in Table 1), two domain abstractions of
the Blocks World with 12 blocks and 3 table positions (both
with 311, 594, 640 abstract states and maximum heuristic
values of 41), and two projection abstractions in the 10-
Belt Scanalyzer (both having 102, 400, 000 abstract states
and maximum heuristic values of 18) in the representa-
tions described earlier. All these abstractions contain spu-
rious states, which increases their number of abstract states
(for more on spurious states, how they may effect the size
and quality of an abstraction and the computational com-
plexity of avoiding them, see (Hernádvölgyi and Holte 2004;
Zilles and Holte 2010)). The definition of these abstractions,
along with the average timing results of our proposed algo-
rithm for solving 1, 000 uniformly generated random prob-
lem instances using IDA*, are shown in Table 1. These re-
sults are compared to a fast regular hash table implementa-
tion of these PDBs. Our implementation is slightly slower
(about 3% for the two abstractions of the Sliding-Tile Puz-
zle, about 7% and 4% for the Blocks World with Table Posi-
tions, and about 7% and 4% for the Scanalyzer), but its stor-
age requirement is substantially less than that of the regular
hash table implementation (around 3%, 2% and 1%, respec-
tively).

In the above experiments, the default regular hash table
implementation integrated into PSVN uses 1 byte for each
state variable and 4 bytes for each heuristic value. However,
one can achieve a more compact regular hash table repre-
sentation of an abstraction by considering the total possible
values each state variable can adopt and the number of dis-
tinct heuristic values in that abstraction. For example, for
the projection abstractions of the Sliding-Tile Puzzle dis-
cussed earlier, each tile only needs 4 bits to represent its

264



grid location and since there are 12 tiles (including blank),
a state only requires 48 bits. If we add another byte for
the heuristic value, we need 7 bytes to store each state and
226 × 7 = 469, 762, 048 ≈ 469 MB to represent the cor-
responding PDBs5 (in order to avoid the expensive modulo
operator, the hash table size is chosen the smallest power
of two such that the load factor of the hash table is less
than 0.75). For the domain abstractions of the Blocks World
experiments, an abstract state has 16 variables. Since there
are 7 distinct values each abstract state variable can adopt
(requiring 3 bits to distinguish), each abstract state can be
represented using 16 × 3 = 48 bits. Adding another byte
for the heuristic value, we need 7 bytes to store each ab-
stract state. Since the hash table size is chosen the small-
est power of two such that the load factor of the hash ta-
ble is less than 0.75, these PDBs can be represented using
229 × 7 = 3, 758, 096, 384 bytes (almost 3.7 GB).

Instead of a regular hash table, we could have used a triv-
ial perfect hash function based on the number of variables
and their corresponding domain in an abstract state. Using
this approach, the projection abstractions of the Sliding-Tile
Puzzle will have 127 = 35, 831, 808 entries and with 6
bits for each heuristic value, 26, 873, 856 bytes are needed
for the corresponding PDBs. As for the projection abstrac-
tions of the Scanalyzer, 210 × 105 = 102, 400, 000 en-
tries are required and with 5 bits for each heuristic value,
the corresponding PDBs need 64, 000, 000 bytes. The do-
main abstractions of the Blocks World experiments will have
716 = 33, 232, 930, 569, 601 entries and with 6 bits for each
heuristic value, almost 2×1013 bytes are required for imple-
menting the corresponding PDBs. Table 1 shows these PDB
sizes using this trivial perfect hash function. From these re-
sults, we see that the trivial perfect hash function yields very
good results in the case of the projection abstractions of
the Sliding-Tile Puzzle and the Scanalyzer abstractions but
is completely ineffective for the domain abstractions of the
Blocks World experiments. This illustrates the fact that this
approach is inapplicable for domain-independent planning.

To better illustrate the ineffectiveness of trivial perfect
hashing in a domain-independent setting, we modified the
Sliding-Tile Puzzle by disallowing some of the tile move-
ments, based on the blank location. Two versions of this
puzzle are used here (see Figure 7). We have used a natu-
ral encoding for the states where each component in a state
corresponds to a grid position and represents the number of
the tile (or blank) in this position.

In the 3 × 4 version of this puzzle, the domain abstrac-
tion that maps tile 11 to blank contains 239, 500, 800 ab-
stract states. Also, in the 4×5 version of this puzzle, the do-
main abstraction that maps tiles 3 and 13 to blank contains
54, 432, 000 abstract states. To implement the corresponding
pattern databases using trivial perfect hashing, we need ta-
bles containing 1112 ≈ 3× 1012 and 1820 ≈ 1025 heuristic
value entries, respectively. These are obviously unacceptable

5At the expense of some lookup speed, an even more compact
representation of these abstractions can be achieved knowing there
are only 7 variables in each abstract state and only 6 bits are re-
quired to store each heuristic value.

Figure 7: 3 × 4 and 4 × 5 Constrained-Movement Sliding-
Tile Puzzle. The arrows indicate the possible movements of
the tiles, based on the blank location.

implementations for a PDB, which demonstrates the inef-
fectiveness of trivial perfect hashing in domain-independent
planning.

We need to emphasize that we are only interested in show-
ing how a PDB implemented using this approach compares
to a fast regular hash implementation; we are not concerned
that the abstractions used in our experiments are the best
ones for solving problem instances compared to fine-tuned
abstractions created using specific problem domain proper-
ties. The 3× 4-Sliding-Tile Puzzle is appropriate for the ex-
periments because the memory required by a regular hash
implementation of an arbitrary domain/projection abstrac-
tion capable of solving 1, 000 uniformly generated random
problem instances in 4× 4-Sliding-Tile Puzzle is huge.

From the above results, we observe that the heuristic
lookup speed of our algorithm using the proposed PDB rep-
resentation is comparable to that of a fast regular hash table
implementation (with linear probing using fast Jenkins hash
functions) while it requires a lot less memory. It can there-
fore be considered as a standard PDB representation ap-
proach with efficient space usage and fast heuristic lookup:
In some cases, such as in the Sliding-Tile Puzzle, it provides
better compression than the BDD approach. This means that
this algorithm can be effective in situations where other ap-
proaches fail to provide a good trade-off for space usage and
lookup time in their PDB representation.

Conclusions

Using acyclic r-partite random hypergraphs, we have in-
troduced a simple yet efficient new approach for efficient
representation of associative arrays where |key set| �
|value set|. We have shown that this approach can be ad-
justed for efficient representation of pattern databases in
memory-based heuristic search. Although theoretical results
require full randomness to generate an acyclic random hy-
pergraph with high probability in the mapping step, we have
observed in practice that the limited randomness of some
universal hash functions is sufficient for this purpose. In par-
ticular, a class of strongly universal hash functions suitable
for heuristic search algorithms, Zobrist hash functions, is in
practice able to generate a random hypergraph that is acyclic
with high probability for our proposed algorithm. The Zo-
brist hashing is especially useful for fast lookup of heuristic
values in heuristic search algorithms like A* and IDA*.

265



The algorithm proposed here has three advantages over
the most efficient PHF/MPHF algorithms applied to PDB
representation (BDZ and CHD): (a) we require less memory
to represent a PDB in both PHF and MPHF settings, (b) we
can use Zobrist hashing, which is quite fast when calculat-
ing the hash function of a child state from its parent state
(we only need to consider changes of the child state from
its parent to calculate the child state hash value), and (c) our
algorithm without the compressing step requires less than
or equal memory than an MPHF generated by BDZ (CHD)
as long as |value set| ≤ 2, 048 (|value set| ≤ 512), which
is always the case for pattern databases in our experiments.
Since the compressing function and table is not needed in
this setting, the lookup time is substantially improved. The
experimental results illustrate that heuristics lookup speed
is comparable to a fast regular hash table implementation
using Jenkins hash functions and linear probing for colli-
sion resolution strategy. By using IDA* to solve 1, 000 uni-
formly generated random problem instances, in three bench-
mark problem domains, we demonstrated the efficiency of
our proposed approach for PDBs.

Further, our approach provides a compact and efficient
domain-independent perfect hash function that can be used
in combination with other PDB compression algorithms that
require a perfect hash function as part of their schemes.
A promising example would be the combination of our
approach with 1.6-bit pattern databases (Breyer and Korf
2010) to achieve even more compact PDBs in a domain-
independent setting. The exact amount of compression and
lookup efficiency could be investigated with comprehensive
experimental analysis.

References

Ball, M., and Holte, R. C. 2008. The compression power
of symbolic pattern databases. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling, ICAPS 2008, Sydney, Australia, September 14-
18, 2008, 2–11.
Belazzougui, D.; Botelho, F. C.; and Dietzfelbinger, M.
2009. Hash, displace, and compress. In Fiat, A., and
Sanders, P., eds., ESA, volume 5757 of Lecture Notes in
Computer Science, 682–693. Springer.
Black, J. R.; Martel, C. U.; and Qi, H. 1998. Graph and hash-
ing algorithms for modern architectures: Design and perfor-
mance. In Algorithm Engineering, 37–48.
Botelho, F. C.; Pagh, R.; and Ziviani, N. 2007. Simple and
space-efficient minimal perfect hash functions. In Proc. of
the 10th Intl. Workshop on Data Structures and Algorithms,
volume 4619 of Lecture Notes in Computer Science, 139–
150. Springer.
Botelho, F. C. 2008. Near-optimal space perfect hashing
algorithms. The thesis of PhD. in Computer Science of the
Federal University of Minas Gerais.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In Proceedings of the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2010, Atlanta, Geor-
gia, USA, July 11-15, 2010.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Czech, Z. J.; Havas, G.; and Majewski, B. S. 1997. Perfect
hashing. Theoretical Computer Science 182(1-2):1 – 143.
Edelkamp, S., and Schrödl, S. 2011. Heuristic Search: The-
ory and Applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning, 13–
24.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In AIPS, 274–283.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Heileman, G. L., and Luo, W. 2005. How caching affects
hashing. In ALENEX/ANALCO, 141–154.
Helmert, M., and Lasinger, H. 2010. The Scanalyzer
domain: Greenhouse logistics as a planning problem. In
ICAPS, 234–237.
Hernádvölgyi, I., and Holte, R. 2004. Steps towards the
automatic creation of search heuristics. Technical Report
TR04-02, Dept. of Computing Science, Univ. of Alberta.
Holte, R.; Arneson, B.; and Burch, N. 2014. PSVN man-
ual (june 20, 2014). Technical Report 14-03, Department of
Computing Science, University of Alberta.
Jenkins, B. 1997. Algorithm alley: Hash functions. Dr.
Dobb’s Journal of Software Tools 22(9):107–109, 115–116.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
Seta*: An efficient BDD-based heuristic search algorithm.
In AAAI/IAAI, 668–673.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Majewski, B. S.; Wormald, N. C.; Havas, G.; and Czech,
Z. J. 1996. A family of perfect hashing methods. Comput.
J. 39(6):547–554.
Pagh, R. 2001. Low redundancy in static dictionaries with
constant query time. SIAM J. Comput. 31(2):353–363.
Schmidt, T., and Zhou, R. 2011. Representing pattern
databases with succinct data structures. In SOCS, 142–149.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artificial Intelligence 174:1072–1092.
Zobrist, A. L. 1970. A new hashing method with application
for game playing. Technical Report 88.

266


