
Stronger Privacy Preserving Projections for Multi-Agent Planning

Shlomi Maliah and Guy Shani and Roni Stern

Ben Gurion University of the Negev, Israel

Abstract

Collaborative privacy-preserving planning (CPPP) is a multi-
agent planning task in which agents need to achieve a com-
mon set of goals without revealing certain private informa-
tion. In many CPPP algorithms the individual agents reason
about a projection of the multi-agent problem onto a single-
agent classical planning problem. For example, an agent can
plan as if it controls the public actions of other agents, ignor-
ing their unknown private preconditions and effects, and use
the cost of this plan as a heuristic for the cost of the full, multi-
agent plan. Using such a projection, however, ignores some
dependencies between agents’ public actions. In particular,
it does not contain dependencies between actions of other
agents caused by their private facts. We propose a projection
in which these private dependencies are maintained. The ben-
efit of our dependency-preserving projection is demonstrated
by using it to produce high level plans in a new privacy pre-
serving planner that is able to solve more benchmark prob-
lems than any other state-of-the-art privacy preserving plan-
ner. This more informed projection does not explicitly share
private information. In addition, we show that even if an ad-
versary agent knows that an agent has some private objects of
a given type (e.g., trucks), it cannot infer how many such pri-
vate objects the agent controls. This introduces a novel strong
form of privacy that is motivated by real-world requirements.

Introduction

Collaborative privacy preserving planning (CPPP) is a
multi-agent planning task in which agents need to achieve
a common set of goals without revealing certain private in-
formation. CPPP has important motivating examples such
as planning for organizations that outsource some of their
tasks and collaboration between military units where com-
partmentalization is required. CPPP recently received much
attention and new efficient solvers, scaling up to larger,
more challenging domains, are constantly proposed (Maliah,
Shani, and Stern 2015; Nissim and Brafman 2014; Luis
and Borrajo 2014; Tozicka, Jakubuv, and Komenda 2014;
Jakubuv, Tozicka, and Komenda 2015, inter alia).

Even though research on CPPP is flourishing, classi-
cal planners are substantially more mature, offering fast
solvers with strong heuristics (Hoffmann 2001; Helmert and
Domshlak 2009). An attractive approach, hence, is to project

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the multi-agent problem onto a classical planning problem,
employ a classical solver, and then extend the resulting pub-
lic plan using private actions (Brafman and Domshlak 2008).

Due to privacy, each individual agent has only a partial
view of the world, containing its own public and private facts
and actions. The agent also knows about the public actions
of other agents, but is aware only of their public precondi-
tions and effects. One can treat the agent view of the world
as a classical planning problem, pretending that the agent
controls the public actions of others. Then, one could solve
this classical projection and obtain a plan.

In this single-agent projection of the MA world, the agent
is unaware of dependencies between other agents’ public ac-
tions, originating from their private facts and actions. This
results in an over optimistic assumption about agents’ abil-
ities. Take, for example, a blocksworld domain with two
agents, where each agent controls a different arm, and con-
ceals which block is held by the arm. The precondition of
unloading a block A on top of block B by agent 1 is that the
agent is holding block A. As this is a private information,
agent 2 is unaware of this precondition, and thus believes
that agent 1 can put A everywhere without picking it up.

Thus, a solution to this single-agent projection is typically
not a sound solution to the mulit-agent planning task, and
some mechanism to communicate additional information is
needed for constructing a sound plan. For example, in the
MAFS algorithm (Nissim and Brafman 2014) agents broad-
cast partially encrypted states to all agents whenever a public
action is performed. Methods of this type use a multi-agent
planning mechanism, where all agents plan together, jointly
revealing additional important information.

In this paper we take a different approach. We suggest
a stronger projection, where all agents publish a projection
of their private view of the world, containing only public
actions. The joint projection is fed into a classical planner,
resulting in a high level plan for achieving the goals, com-
posed only of public actions (Brafman and Domshlak 2008;
Maliah, Shani, and Stern 2014). Then, each agent extends
the plan by adding private actions that allow it to accomplish
its part in the public plan.

The main drawback of the simple projection is the lack
of information concerning dependencies between the public
actions of an agent and between public actions and the initial
state of the world. Therefore, we focus on identifying these

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

221

Figure 1: A logistics example, where trucks deliver packages
between logistics centers, denoted by squares. Each agent
covers a set of cities, denoted by circles, and labeled i, j
where i is the agent covering the city and j is the local city
index. The logistic centers can be entered by several agents,
serving as collaboration sites.

dependencies and sharing them in a privacy preserving man-
ner. We define new facts that represent action dependencies,
and explain when to add or delete these dependency facts.

The usefulness of the proposed projection is demonstrated
in practice in a simple planner that uses a solution of the
projected problem as a high-level plan, extending it to a
full plan jointly by all agents. While the resulting planner
is not complete, it is able to solve more benchmarks from
the distributed multi-agent competition (CoDMAP) (Štolba,
Komenda, and Kovacs 2015) than any other state-of-the-art
privacy preserving planner.

Sharing the proposed projection between the agents does
not violate the privacy requirement as the proposed projec-
tion does not contain any private information (fact or action)
explicitly. This form of privacy is the current standard in the
privacy preserving planning literature. Another contribution
of this work is the introduction of a more strict form of pri-
vacy that we call object cardinality privacy. This form of
privacy addresses a realistic requirement in which agents are
interested in hiding from other agents the number of private
objects they control of specific types.

For example, a logistic company may wish to hide the
number of trucks it controls, and the military would not dis-
close the number of bases in an area. An algorithm is said to
preserve object cardinality privacy if an adversary, listening
to the communication during planning, cannot distinguish
between worlds where agents possess different quantities of
private objects. We discuss the relationship between object
cardinality privacy and other definitions of privacy, and show
that our projection also preserves this type of privacy.

The contributions of this paper are hence two-fold: we
provide the new definition of privacy – object cardinality
privacy– and suggest a new strong projection, showing it
both preserves object cardinality privacy and is key to the
construction of a new planner to outperform existing state-
of-the-art planners.

Privacy Preserving Model

Research on privacy preserving planning focuses on variants
of the multi-agent STRIPS model (MA-STRIPS) (Brafman
and Domshlak 2013) mainly due to its simplicity.

Definition 1 (MA-STRIPS). An MA-STRIPS problem is
represented by a tuple 〈P, {Ai}ki=1, I, G〉 where:

• k is the number of agents
• P is a finite set of facts (can be true of false).
• Ai is the set of actions agent i can perform.
• I is the start state.
• G is the goal condition.

Each action a = 〈pre(a), eff(a), c(a)〉 is defined by its
preconditions (pre(a)), effects (eff(a)), and cost (c(a)). Pre-
conditions and effects are logical formulas of P . A state is
a conjunction of facts (true or false). The goal G is also a
conjunction of facts. The result of applying an action a to a
state s is denoted by a(s). A solution to a planning task is
a plan (a1, . . . , ak) such that G ⊆ ak(. . . (a1(I) . . .), i.e., a
sequence of actions that transforms the initial state (I) to a
state satisfying the goal condition (G).

Figure 1 illustrates a simple logistic example in which the
agents are trucks tasked with delivering packages. The set of
facts P represents the location of the two packages and the
six trucks. Each truck has three actions: move, load, and un-
load, corresponding to moving the truck between locations,
loading a package and unloading it. Trucks can only drive
along the edges in Figure 1. Agents are heterogeneous and
their range is restricted, such that location i, j can only be
reached using truck i. The rectangles are logistic centers vis-
ited by multiple trucks that load or unload packages.

Privacy

Privacy-preserving MA-STRIPS extends MA-
STRIPS (Brafman and Domshlak 2008) by defining
sets of variables and actions as private, known only to a
single agent. Let public(P) be a set of public facts, whose
value is always known to all agents. Let privatei(P) be
a set of facts whose existence and value is known only
to agent i. Each agent has a set of actions it can execute,
where privatei(A) is a set of private actions, that no other
agent knows about, and their execution is hidden from other
agents, and publici(A) is a set of public actions. A private
action can have only private effects. A public action may
have both public and private effects. Upon the execution of
a public action, all agents observe its public effects. For ease
of exposition we assume that all goals are public, although
our method can be extended to handle private goals.

A solution to a privacy-preserving MA problem, is a se-
quence of public and private actions. We say that the se-
quence of public actions in such a solution is a valid high-
level plan if it can be extended to a full plan using the agents’
private actions.

Extending a valid high-level plan to a full plan can be
done by all agents concurrently, where each agent plans in-
dependently to achieve the preconditions of its actions in the
high-level plan (Maliah, Shani, and Stern 2014).

222

Consider a public action a of agent j from the perspec-
tive of agent i. The action is public, so agent i knows about
a’s existence. However, if a has private preconditions and
effects, they are only known to agent j and are hidden
from agent i. Formally, we define the local view of action
a = 〈pre(a), eff(a), c(a)〉 by agent i, denoted πi(a), as

πi(a) = 〈public(P) ∩ pre(a), public(P) ∩ eff(a), c(a)〉
Clearly, πi(a) = a if a is an action of agent i.

Definition 2 (Local View). Given an MA-STRIPS problem
π = 〈P, {Ai}ki=1, I, G〉, the local view of agent i is defined
by the tuple πi = 〈πi(P), {πi(Aj)}kj=1, π(I), π(G)〉 where:

• πi(P) = public(P) ∪ privatei(P)

• πi(I) = I ∩ πi(P)

• πi(G) = G ∩ πi(P)

In our running logistic example, assume now that each
truck is owned by a different company, and that one com-
pany does not want to share its location and coverage (which
locations it can reach) with other companies. The only ac-
tions that are public are load/unload actions from/at logis-
tic centers. The only facts that are public are facts repre-
senting whether a package is at one of the logistic centers.
Load/unload actions from/at private locations and all move
actions are private actions. The location of the trucks, and
facts representing whether a package is at one of the pri-
vate locations, are all private facts. The local view of agent
3 consists of the facts representing packages at A, B, C,
D, E, and (3,1); the facts representing possible locations of
truck 3; the move, load, and unload actions of truck 3; and
the load/unload actions of all agents from/to logistics cen-
ters. For example, the local view of a load action of another
agent has a precondition regarding the location of the pack-
age only, ignoring the private precondition of the location of
the truck.

Definition 3 (Privacy-Preserving MA-STRIPS). A privacy-
preserving MA-STRIPS problem is defined by an MA-
STRIPS problem and the public(·) and privatei(·) functions
for every i ∈ [1, n]. The task is to find a solution without
revealing private information during planning.

In Section we discuss concrete definitions for private in-
formation that must not be revealed during planning.

Classical Projections and Regression

We now discuss projections of a privacy-preserving multi-
agent problem into classical single-agent planning, and the
regression of formulas through action sequences, both of
which are key concepts in our projection algorithm.

Classical Projections

A classical projection of a privacy-preserving multi-agent
problem is a compilation of the problem into a classical
single-agent problem. For example, one can consider the lo-
cal view (Definition 2) of the agent as a classical planning
problem, pretending that the agent controls the public ac-
tions of other agents as well.

A classical projection is sound if the sequence of public
actions in any solution to the projected problem, can be ex-
tended using only private actions to a solution to the original
multi-agent problem. As efficient privacy preserving projec-
tions tend to be lossy, not capturing all the information in the
original problem, achieving soundness is difficult.

We say that a classical projection is complete if given a so-
lution to the original privacy preserving problem, there ex-
ists a solution to the projected planning problem with the
same sequence of public actions. An example of a complete
classical projection is the local view projection.

Classical projections are of interest because they can be
solved by each agent, providing a heuristic estimation for the
cost of solving the original problem (Nissim and Brafman
2014). Moreover, some privacy preserving algorithms use
the solution to the projected planning problem as a high level
plan and try to extended it to a complete plan by adding
private actions of the individual agents (Jakubuv, Tozicka,
and Komenda 2015; Tozicka, Jakubuv, and Komenda 2015).

Dependencies While a local view of an agent is a com-
plete single-agent projection, it fails to consider some depen-
dencies between public actions of another agent. In particu-
lar, the local view of agent i contains no information about
private dependencies of other agents’ public actions.

Definition 4. A public action a facilitates the achievement
of a private fact f , if f is an effect of a, or there exist a
sequence of private actions a1, ..., ak such that:

• f is an effect of ak,
• each ai takes as precondition an effect of some aj s.t. j <

i,
• a1 takes as precondition an effect of a.

Definition 5 (Private Dependency). An action a is said to
have a private dependency if it has a private fact f as a
precondition such that one of the following hold: (1) there
is another public action a′ that facilitates achieving f , (2)
f is either true in the start state or can be achieved from
it by only applying private actions. We call the first type of
private dependency an action-to-action dependency and call
the second type an init-to-action dependency.

In our logistic example (Figure 1), the public action (un-
load p t3 A) has a private precondition (on p t3), and the
public action (load p t3 B) achieves it. Thus, (unload p t3 A)
has a private dependency of the type “action-to-action”. The
local views of the other agents do not include this private de-
pendency: the public (unload p t3 A) action will appear in the
local views of all agents (except agent 3) without the precon-
dition (on p t3), since it is a private fact. As a result, agents
will believe that unloading a package at arbitrary public lo-
cations is always possible. As an example of an “action-to-
init” private dependency, consider the public action (unload
p2 t2 B), which has a private precondition (on p2 t2). This
precondition can be achieved by a private action (load p t2
(2,1)), which in turn require the private fact (at p2 B), which
is true in the initial state. All agents (except agent 2) do not
know about this precondition of (unload p2 t2 B) and would
assume that t2 can always unload p2 at B, even if p2 was

223

already moved beyond the reach of t2. In this work we sug-
gest a stronger projection where information about private
dependencies is shared, based on the concept of regression.

Regression

Regression is a fundamental tool in automated planning,
in which we seek the conditions needed to reach a state,
achieve a fact, or perform an action. More generally, if a
formula φ describes a constraint on state facts and a is an
action then the regression of φ through a, denoted rga(φ),
is a formula that describes the minimal constraints on state
facts such that if we apply a to a state that satisfies rga(φ)
we will reach a state that satisfies φ.

In the context of classical planning, Rintanen (2008)
describes how to compute the regression of a formula φ
through an action a. We now review these definitions.

For ease of exposition, we assume here that both the ef-
fect and the precondition of an action are conjunctions of
literals. That is, we do not allow conditional effects or dis-
junction of preconditions. We assume that the initial state is
induced by an init action, which assigns to all predicates
their value at the initial state of the problem. The init action
can only be applied once and has no preconditions. We also
assume that both the preconditions and effects of all actions
are consistent, e.g., for a given literal l, no effect or precon-
dition contains both l and ¬l. These are not real restrictions,
and we could use Rintanen’s full regression definition at the
cost of a more complicated exposition.

In this restricted representation, Rintanen’s regression of
a formula φ through an action a, defined only over a single
literal or a conjunction of literals, is simplified as follows:

Definition 6 (Regression).

rga(l) = pre(a) : l ∈ eff(a) (1)

rga(l) = false : ∃l′ ∈ eff(a) s.t. l, l′ are mutex (2)
rga(l) = l : l,¬l 	∈ eff(a) (3)

rga(φ) =
∧
l∈φ

rga(l) : φ = l1 ∧ l2 ∧ ... ∧ lk (4)

Rintanen shows that if s |= rga(φ) then a(s) satisfies φ.
Given a set of actions A, we define the regression tree

of a conjunction formula φ using actions in A, denoted
Trg(φ,A). Intuitively, the regression tree of φ represents all
possible sequences of regression functions rga(·) that can be
applied to φ, i.e., all sequences of actions in A that achieve
φ. The nodes of the regression tree are labeled by formu-
las (given our restricted action definition, these formulas are
only conjunctions of literals), and the edges are labeled by
actions. We denote the formula associated with node n by
n.φ. The set of outgoing edges of a node n are labeled by all
actions a ∈ A, s.t. ∃l ∈ n.φ : l ∈ eff(a). That is, all actions
that provide at least one literal in n.φ.

Algorithm 1 shows the construction of the regression tree.
The tree is constructed top down, starting from the root.
Leaves are labeled by either true or false. Every sequence
of edges in every path from a true leaf to the root in the
regression tree corresponds to a plan that achieves φ — the

formula at the root of the tree. During the construction of the
tree, we may reach a node n that has an ancestor node n′ for
which n.φ |= n′.φ. This means a cycle has been identified
in the regression tree, and we need not further develop n. To
remove the cycle, we set n.φ to false.

Dependency-Preserving Projection

We now present our novel projection, which we call the
dependency-preserving projection (DP projection). DP pro-
jection shares private dependencies without explicitly shar-
ing private information. Unlike the local view projection, a
DP projection is generated by all agents collaboratively, ei-
ther sequentially, one agent at a time, or in parallel.

Intuitively, the DP projection contains all public facts, and
replaces every public action a with a set of actions, α(a),
where each action in α(a) represents executing a after a set
of public actions that enable achieving a’s private precondi-
tions. More formally, let Ab be a set of public actions that
facilitates the achievement of all private preconditions of a
public action a. For each such set we create an action ab,
whose preconditions ensure that a is executed after the exe-
cution of all actions in Ab. The set α(a) is composed of all
such actions ab.

Ensuring that a is executed only after all actions in Ab is
done by maintaining a set of facts fa′ for every public action
a′, which is true if the effects of a′ were achieved. Thus, the
projection πDP consists all public facts in π, a public fact fa
and a set of actions α(a) for every public action a.

Next, we present and explain the exact details of how each
agent generates appropriate α(a) actions from its local view.
The conjunction of the projected actions and facts by all
agents produces the complete DP projection.

Algorithm 1: Computing the regression tree Trg(φ,A)
for a conjunction of literals φ with a set of action A

1 Regress(φ, A)
Input: φ, a conjunction of literals
Input: A, a set of actions to regress with
Output: n, the root of the regression tree

2 n ← a tree node
3 if φ = false then return false;
4 foreach ancestor n′ of n do

5 if φ |= n′.φ then
6 n.φ ← false
7 return n

8 if φ is not empty then
9 n.φ ← φ

10 foreach action a do
11 if eff(a) ∩ φ �= ∅ then
12 na ← Regress(rga(n.φ), A)
13 Add na to n.children

14 else
15 n.φ ← true

16 return n

224

Figure 2: A simple logistics example.

Creating the Regression Tree

For a public action a of agent i, we use regression to identify
unique sets of public actions of i that enable the agent to
execute a. Each of these sets of actions will be mapped to a
single action in α(a) and added to πDP . In more details, we
construct a regression tree for pre(a) over a slightly revised
local view of agent i in which all public actions (except for
a) have no preconditions. This revised local view (denoted
πr
i) is used instead of agent i’s local view (πi) because in

constructing α(a) we do not model the conditions required
for executing other public actions. Rather, α(a) models how
other public actions enable executing a.

Specifically, πr
i is equal to πi except that every public ac-

tion ap in πi is replaced by a revised action arp:

pre(arp) = true (5)

eff(arp) =

⎛
⎝ ∧

l∈eff(ap)

l

⎞
⎠ ∧

⎛
⎝ ∧

l′∈pre(ap),¬l′ �∈eff(ap)

l′

⎞
⎠ (6)

That is, arp has no preconditions and has the effects of ap. In
addition, the preconditions of ap are added to the effects of
arp if they are not deleted by ap as these facts must be true
after ap was executed. This captures the state of the world
immediately after ap was executed. Consider, for example,
an action a with precondition p and effect q. Immediately
after a was executed, (p ∧ q) must hold. Furthermore, this
process helps us in detecting conflicts between public ac-
tions, as we later show in Example 0.1.

Every agent i uses the set of revised actions πr
i .A to con-

struct a regression tree for every action a by calling Al-
gorithm 1 with parameters pre(a) and πr

i .A. For brevity,
we will denote the resulting regression tree as Trg(a). The
branches of Trg(a) ending at leaves labeled by true rep-
resent plans to achieve the precondition of a, taking into
consideration agent i’s local view and assuming that other
agents’ public actions can always be executed.
Example 0.1. Let us look at the smaller logistics example in
Figure 2, where an agent has one private city B and two pub-
lic logistic centers A and C. Figure 3 shows the regression
tree constructed for action (unload p t A) with precondition
(at t A) and (on p t). As the revised action loadr for the pub-
lic load p t A action has the precondition true and effect (on
p t) (at t A), regressing through this action results in the true
formula at node n2. On the other hand, due to the conflict
between (at t A) and the effect (at t C) of the revised action
for (load p t C), the regression result is false for node n4 (fol-
lowing rule 2 in Definition 6). n5.φ is satisfies the formula
at n1, and is hence replaced by false, denoting a cycle. The

Figure 3: Partial regression tree for (unload p t A) in Fig. 2.

same holds for n10.φ, which satisfies n3.φ. The true leaves
of the tree correspond to the plans (load p t C), (drive t C B),
(Drive t B A), (init), (load p t B), (Drive t B A), and (load p t
A).

Creating Projected Actions

Using the regression tree described above, we can finally
generate for a public action a of agent i the set of actions
α(a) that will be added to the DP projection instead of a.
Next we describe how α(a) is constructed.

Recall that every branch b in Trg(a) from a leaf n where
n.φ = true to the root represents a plan for achieving pre(a).
Every such a branch b is mapped to a set of public actions
Ab, which are all the public actions in b that achieve a private
precondition for another action in b. For every set of public
actions Ab we add a single action ab to α(a). Executing ab is
intended to represent executing a after the actions in Ab have
been executed. Thus, the preconditions of ab must verify that
the actions in Ab were executed.

To keep track of which public actions have been per-
formed so far, we define a fact fa′ for every action a′ ∈ Ab.
There is a single fact for every public action, used in all oc-
currences of a′ in α(·) of all agents. We also add a fact finit,
representing the execution of the init action.

The preconditions of ab are the public preconditions of a
in conjunction with

∧
a′∈Ab

fa′ . The add effects of ab are
the effects of a in conjunction with setting fa to be true, al-
lowing other actions that depend on the execution of a, to
be executed. We discuss the delete effects of ab later on.
Throughout the rest of this paper, we refer to actions in α(a)
as projected actions and refer to the added facts fa′ as de-
pendency facts.

Note that the same set of public actions may appear in
different branches of the regression tree, possibly in differ-
ent orders. Thus, multiple branches may be represented by a
single action in α(a). We intentionally group branches that
have the same set of public actions and do not add a pro-
jected action for every branch in Trg(a) for privacy reasons.
Imagine, for example, that a logistics agent can transfer a
package from public location A to public location B in two
possible routes, each passing through a different sequence
of private locations, and thus, resulting in two different se-

225

quences of private and public actions. If the agent published
two different projected actions, each corresponding to a dif-
ferent route, then the other agents would learn that the agent
surely covers more than a single private location, thus re-
vealing private information.

Removing Consumed Dependencies

Let ab be a projected action and let b be a plan in the regres-
sion tree that generated ab (i.e., the set of public actions that
ab represents). It may be that the actions in b or the action
a itself consume some private effect e of a public action a′.
In that case, all other projected actions that rely on a′ can no
longer depend on the effects of a′ to hold. To take this into
account, we add ¬fa′ to the delete effects of ab. We denote
by delete(ab) the set of such public actions (actions whose
private effects are deleted by other actions along b).1 In sum-
mary, for a set of public actions Ab used in a branch b of the
regression tree for action a we generate an action ab such
that:

pre(ab) = public(pre(a)) ∪∧
a′∈Ab

fa′ (7)

eff(ab) = public(eff(a)) ∪ fa ∪
∧

a′∈delete(ab)
¬fa′ (8)

Example 0.2. Consider the regression tree given in Fig-
ure 3, created for the action unload p t A. The regression tree
has three branches ending at true leaves – the branches end-
ing at n2, n8, and n9. We create three projected actions an2

,
an8

, and an9
corresponding to these branches. The projected

action an8
, for example, has precondition f(load p t C), because

(load p t C) adds a private fact (on p t). The effects of an8

are to add the facts (at p A) and f(unload p t A) and delete the fact
f(load p t C), as it destroys the private effect (on p t) of the action
(load p t C).

Note that replacing location B with a set of connected pri-
vate locations B1, ..., Bn, would result in a different regres-
sion tree, but all the true leaves in this tree would correspond
to either the package at A or C, or loading the package at its
initial private location. Thus, the projection would be identi-
cal regardless of the number of private locations. We exploit
this property of the DP projection in Section .

Constructing the DP Projection

Algorithm 2 summarizes the process of how the DP projec-
tion is constructed collaboratively by all agents. Every agent
adds for each of its public actions a (1) a single dependency
fact fa and (2) the set of projected actions α(a). In addition,
we add a dependency fact finit, initialized to true, denoting
the initialization of the private facts in the initial state of each
agent to true. Importantly, we do not specify or share which
private facts are true in the initial.

Space Complexity

Next, we analyze the space complexity of our DP projec-
tion. In Algorithm 2, every agent i constructs for each of

1As discussed above, ab may represents multiple branches in
the regression tree having the same set of public actions. In this
case, delete(ab) is the union of all public actions whose private
effects were delete along the same branch they appeared in.

its public action a a single dependency fact fa and a set of
projected actions α(a). There is a single projected action in
α(a) for every set of public actions that appear in the same
branch in the regression tree of a and achieve a private fact.
Since only actions of agent i can achieve its private facts,
the number of projected action in α(a) is at most exponen-
tial in the number of agent i’s public actions. Thus, the main
complexity in the space complexity of our DP projection is
the number projected actions. However, as we show later in
our experimental evaluation, the size of the DP projection
in all current benchmarks was manageable as the number of
branches in the generated regression trees and the number
of public actions along these branches were relatively small.
This is because each regression tree only models the private
dependencies of the action it was generated for, and not the
private dependencies of other actions.

Application of a DP Projection

We employ the DP projection in a privacy preserving plan-
ner. First, the agents collaboratively generate the DP pro-
jection following Algorithm 2. Then, an off-the-shelf clas-
sical planner finds a solution to the DP projection, resulting
in a high-level plan. Finally, each agent extends this high-
level plan to be able to execute the public actions in it. This
means each agent successively solves single agent planning
problems, designed to ensure that the high level actions are
executed in the designated order. Solving each of these prob-
lems is done using an off-the-shelf single agent planner.

Theoretically, it is possible that the generated high-level
plan cannot be extended to a complete plan. While in our
experiments this never happened, it is possible in case of
such a failure to call a complete privacy preserving planner.
We call the resulting planner the DP-projection planner, or
simply DPP.

Preserving Object Cardinality Privacy

An algorithm is privacy preserving, as defined in Defini-
tion 3, if one can prove that it does not “reveal private infor-
mation”. Most research on privacy preserving planning con-
siders a private information as revealed only if it is explic-
itly communicated to another agent. For example, if agent

Algorithm 2: Computing the DP projection
1 DP-Project(π)

Input: π, a privacy preserving MA-STRIPS problem
Output: πDP , a DP-projection of π

2 πDP .P ← publicπ.P ∪ {finit}
3 πDP .I ← publicπ.I ∪ {finit = true}
4 πDP .G ← publicπ.G
5 πDP .A ← ∅
6 foreach agent i = 1 . . . k do
7 foreach action a ∈ public(Ai) do
8 Add fa to πDP .P
9 Add fa = false to πDP .I

10 Add α(a) to πDP .A

11 return πDP

226

a1 publishes during planning that it intends to bring a truck
t to a private location loc, then clearly a1 revealed the exis-
tence of this private location, as well as an ability to achieve
the private fact (at t loc), breaking the privacy constraint.
On the other hand, if the agent only publishes that it can
achieve a private fact with the arbitrary name p, then it is
unclear what private information has been revealed. Thus,
some privacy preserving MA-STRIPS planners are built on
obfuscating the private information they publish by apply-
ing some cryptographic tool (Luis and Borrajo 2014; 2015;
Borrajo and Fernandez 2015).

As noted by Brafman (2015), this form of privacy preserv-
ing is weak, as there is no constraint on what other agents
can infer from the information sent during planning and dur-
ing execution. For example, if the public plan consists of an
agent ai picking up a package and the pickup action requires
a truck to be present at the location of the package, then all
agents now know that ai controls at least one truck. Recent
work by Brafman (2015) considered a stronger and well-
defined form of privacy preserving.

Definition 7 (Strongly Private). A variable or a specific
value of a variable is strongly private if other agents can-
not deduce its existence from the information available to
them.

The information available to an agent is assumed to be (1)
its local view, (2) the messages passed between the agents
during planning, and (3) the sequence of public actions (of
all agents) in the resulting plan. A multi-agent planning al-
gorithm is said to be strongly privacy preserving if all private
information remains strongly private (Brafman 2015).

While appealing, achieving such a strong form of privacy
may be difficult. In fact, the only algorithm proven so far to
have this strict form of privacy – a secure version of MAFS
– is only guaranteed to preserve this privacy in a short list of
specific domains (logistics, satellites, rovers) and under very
restricted conditions (unit action cost and heuristic functions
that ignore private actions).

Object-Cardinality Privacy In the creation of the DP-
projection we proposed as well as in the corresponding al-
gorithm DPP, some information about the dependencies be-
tween public actions is published. Thus, any planner using
it cannot by strongly privacy preserving. On the other hand,
the DP-projection does not share explicitly any private infor-
mation, and thus it does preserve the more common weaker
form of preserving privacy claimed by most privacy pre-
serving planners. Next, we define stronger privacy preserv-
ing property in which the cardinality of private objects is
strongly private (Definition 7), and prove that generating the
DP projection preserves this property.

Definition 8 (Cardinality of Private Objects). Overloading
previous notation, denote by privatet(ai) the set of objects of
type t that are private for agent ai. The cardinality of private
objects of type t for agent ai is |privatet(ai)|.

The notion of objects and types has been native to the
planning domain description language (PDDL) for a while
now, and is used in the recent multi-agent extension of
PDDL (Kovacs 2012) and in the official domain descriptions

used in the recent CoDMAP (Štolba, Komenda, and Kovacs
2015). Briefly, objects and types are used to conveniently
parameterize actions and facts, such that an action or a fact
can be defined with respect to an object of a given type. For
example, in a logistics domain, the trucks able to pick up
packages are all objects of the type truck. Then, the pick up
action and location fact can be defined once to all trucks,
parameterized by an object of type truck. For example, the
action load is parameterized by an object t of type truck and
an object p of type package, and its preconditions include the
fact that t is at the same location as p. Concretely, the pri-
vacy extension of multi-agent PDDL (Štolba, Komenda, and
Kovacs 2015) supports defining for every agent ai a list of
private objects of any type t, which is exactly privatet(ai).

Hiding the cardinality of private objects is motivated by
real-world scenarios. Consider, for example, the logistic
problem above. It is realistic to assume that the agents that
collaborate in the planning task, i.e., the various delivery
companies, know that packages are delivered using trucks
between logistic centers. On the other hand, it is likely that
each company would like to hide its logistics capabilities,
such as the number of trucks that it controls, or the number
of private logistic centers it maintains.

Formally, let us denote by Mi the messages sent by agent
i to other agents during planning, and denote by T the set of
all object types.

Definition 9 (Preserving Cardinality of a Type). The car-
dinality of type t for agent i is preserved during a plan-
ning process if no other agent aj can infer the value of
|privatet(ai)| from the set of messages Mi.

There are cases where the cardinality of private objects
is revealed by the local view of other agents. Consider for
example an agent ai controlling two trucks. If other agents
are aware of two separate actions for loading the same pack-
age at the same logistic center by ai, then the other agents
can easily infer that ai controls at least two trucks, even if
the names of the objects or the action are obfuscated. Hence,
the cardinality of objects that participate in preconditions of
public actions may be compromised by the domain descrip-
tion, even before planning commences. Thus, in our logistics
example, agents can only hide the number of private loca-
tions that they control.

Definition 10 (Preserving object cardinality privacy). A
planning algorithm preserves object cardinality privacy if
for any agent and type t ∈ T the cardinality of private ob-
jects of type t can only be revealed during the planning pro-
cess if it could have already been inferred from the local
view prior to planning.

Clearly, generating the DP projection (Algorithm 2) does
not violate the weak form privacy, in the sense that no private
fact is shared between the agents. Theorem 1 shows that this
process also preserves object cardinality privacy.

Theorem 1 (DP Projection Preserves object cardinality pri-
vacy). The process of generating the DP projection pre-
serves object cardinality privacy, and sharing the DP pro-
jection in a planning algorithm does not break object cardi-
nality privacy.

227

Domain GPPP MAPR PMR MAPlan/ PSM- DPP
-p FF+DTG VRD

blocksworld 12 20 20 20 20 20
depot 11 0 0 13 17 19
driverlog 14 20 19 17 20 20
elevators 20 19 19 11 12 20
logistics 20 19 0 18 18 20
rovers 19 19 20 20 12 20
satellites 18 20 19 20 18 20
sokoban 9 0 6 18 18 17
taxi 20 0 19 20 0 20
wireless 3 2 7 4 0 9
woodworking 18 0 0 16 19 19
zenotravel 20 20 18 20 13 20

sum 184 139 147 197 167 224

Table 1: Coverage results for a timeout of 30 minutes over
the CoDMAP instances.

Proof outline: The DP projection relies on the depen-
dency tree for each public action ap of agent i. Given a re-
gression tree, one could add private objects of any type t and
private actions that are parametrized by them such that they
will not modify the number of true leaves, or the sequence of
public actions in each true branch (see Example 0.2). More-
over, we could add any number of private objects of type t
and private actions that would modify the number of leaves,
yet each leaf in the new tree would contain the same set of
public actions as a leaf in the original tree. In these cases,
although the number of private objects was modified, the
projection does not change.

Experimental Results

We experimented with benchmarks from the 2015 CoDMAP
competition (Štolba, Komenda, and Kovacs 2015).2 We run
DPP on a 2.66 GHz machine with 4 cores and 8 GB of
memory. Note taht while the computer had multiple cores,
we implemented DPP to run on a single core. DPP was im-
plemented using the FastDownward (FD) planner (Helmert
2006) for the high-level planning and the FastForward (FF)
planner (Hoffmann 2001) for extending high-level plans. FD
was configured to use preferred operators, deferred heuris-
tic evaluation, and two heuristics: FF and a landmark-based
heuristic. This is a common configuration used also by the
LAMA planner (Richter and Westphal 2010).

We compare DPP with the best performing and most rele-
vant privacy-preserving planners: GPPP (Maliah, Shani, and
Stern 2015), MAPlan/FF+DTG (an extension of the MAFS
algorithm (Nissim and Brafman 2014) using the FF and
DTG heuristics together), MAPR-p, PMR (Luis and Bor-
rajo 2014), and PSM-VRD (Tozicka, Jakubuv, and Komenda
2014; Jakubuv, Tozicka, and Komenda 2015). Details on
these planners can be found in the CoDMAP website.

Table 1 presents the number of instances solved under a
30 minutes timeout (also known as “coverage”) over the do-
mains in the competition. Our projection approach – DPP
– solves more problems than all other approaches. In 7 of
the 12 domains, DPP solved all instances, and in 2 more
it solved 19 out of 20 problems. In all domains DPP is ei-

2http://agents.fel.cvut.cz/codmap/results/

Action count
Domain Public Private Projection Depth Time
blocks 2448 0 23256 2 0.057
depot 6134 0 74174 3 0.142
driverlog 56448 1248 1110720 2 2.66
elevators 768 112 447747 11 498.2
logistics 264 52 480 3 0.019
rover 1196 1642 1196 3 1.53
satellite 3139 42099 3139 2 19.9
sokoban 1856 0 4172 2 0.665
taxi 153 0 153 2 0.001
wireless 5814 0 113414 3 7.98
woodworking 8226 0 8226 2 0.168
zeno-travel 288 1098 1008 3 0.266

Table 2: Projection computation metrics over a large prob-
lem from each domain.

ther the best performing algorithm (in terms of coverage) or
within 3 problems of the best performing algorithm. This is
in contrast to its closest rivals – GPPP and MAPlan – where
GPPP is non-competitive in 4 domains and MAPlan in 2 do-
mains. Thus, DPP shows robustness across all domains.

There is only one domain where DPP fails to solve more
than half of the instances — wireless. This is because the
wireless domain has many dead-ends that are difficult to
escape. Both FF and FD do not have a sufficiently strong
mechanism to detect and avoid dead-ends. Still, in this do-
main too, DPP is the best-preforming planner.

The most important difference between DPP and all other
planners is that once the projection was constructed we use
an off-the-shelf classical planner, rather than a coordinated
joint search mechanism. Even the construction of the DP
projection can be easily distributed, having each agent add
its projected actions and dependency facts. Our results point
to the strengths of the mature classical planners over the
rather new joint search mechanisms, such as GPPP (Maliah,
Shani, and Stern 2014) and MAFS (Nissim and Brafman
2014), which is used by MAPlan.

We further analyze the actual size of the DP projection
and runtime of creating it (using Algorithm 2). We chose
a challenging problem on each domain, and compute var-
ious metrics during the projection construction. Table 2 re-
ports the size of the original problem, in terms of the number
of public and private actions of all agents, and the number
of actions in the projection. We further report the maximal
depth of a regression tree in our experiments, as well as the
time it took to compute the projection in seconds.

Obviously, in domains where there are no private actions,
our method is extremely fast. Satellite instances took much
time, mainly due to the large number of private actions. Still,
there is minor dependencies between the actions, resulting in
shallow regression trees with a large branching factor.

An especially interesting domain is elevators, where ele-
vators move passengers between floors. The more difficult
instances of this domain contain private floors, that only a
single elevator can reach. As boarding and exiting various
quantities of passengers in floors requires different actions,
there are many possible combinations for achieving the pre-
conditions of actions, as reflected by the maximal depth of

228

the regression trees in this domain. Hence, this is the only
domain in the set of benchmarks that poses a true challenge
to the regression tree computation.

One way to reduce this is by using symmetries in the re-
gression tree. For example, if we ignore the identity of pas-
sengers, and focus only on their number, we can learn more
general regression trees faster. Another method for scaling
up would be to use an approximate regression mechanism,
by, e.g., regressing only one precondition at a time.

Conclusion

We presented the dependency-preserving projection (DP
projection), a strong projection of a privacy preserving
multi-agent problem onto a classical single-agent planning
problem. Generating the DP projection is a collaborative
process in which some information about private dependen-
cies is shared while privacy is preserved. We showed that
the DP projection also preserves a strong form of privacy in
which the cardinality of private objects of a given type can-
not be inferred by any adversary agent. The benefit of our
DP projection is demonstrated in a planner that effectively
uses the DP projection to solve more benchmark problems
than any other state-of-the-art privacy preserving planner.

In the future we will evaluate the use of the DP projection
as a heuristic for guiding the search of a complete solver,
such as MAFS.
Acknowledgments: We thank the reviewers for their useful
comments. This work was supported by ISF Grant 933/13,
and by the Helmsley Charitable Trust through the Agri-
cultural, Biological and Cognitive Robotics Center of Ben-
Gurion University of the Negev.

References

Borrajo, D., and Fernandez, S. 2015. Mapr and cmap. In
ICAPS Proceedings of the Competition of Distributed and
Multi-Agent Planners (CoDMAP-15).
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In the International Joint
Conference on Artificial Intelligence (IJCAI), 1530–1536.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res.(JAIR) 26:191–246.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22(3):57.
Jakubuv, J.; Tozicka, J.; and Komenda, A. 2015. Multia-
gent planning by plan set intersection and plan verification.
Proceedings ICAART 15.

Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
Workshop on the International Planning Competition (IPC)
in the International Conference on Automated Planning and
Scheduling (ICAPS), 19–27.
Luis, N., and Borrajo, D. 2014. Plan merging by reuse for
multi-agent planning. In ICAPS workshop on Distributed
and Multi-Agent Planning (DMAP).
Luis, N., and Borrajo, D. 2015. Pmr: Plan merging by reuse.
In ICAPS Proceedings of the Competition of Distributed and
Multi-Agent Planners (CoDMAP-15).
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy pre-
serving landmark detection. In the European Conference on
Artificial Intelligence (ECAI), 597–602.
Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserving
pattern databases. In ICAPS workshop on Distributed and
Multi-Agent Planning (DMAP).
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR) 51:293–332.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39(1):127–
177.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In European Conference on Artificial In-
telligence (ECAI), 568–572.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (codmap). The
International Planning Competition (WIPC-15) 24.
Tozicka, J.; Jakubuv, J.; and Komenda, A. 2014. Generating
multi-agent plans by distributed intersection of finite state
machines. In ECAI.
Tozicka, J.; Jakubuv, J.; and Komenda, A. 2015. On inter-
nally dependent public actions in multiagent planning. Dis-
tributed and Multi-Agent Planning (DMAP-15) 18.

229

