
Checking the Dynamic Consistency of Conditional
Simple Temporal Networks with Bounded Reaction Times

Luke Hunsberger
Vassar College

Poughkeepsie, NY USA

Roberto Posenato
Computer Science Department

University of Verona, Verona, Italy

Abstract

A Conditional Simple Temporal Network (CSTN) includes
time-points, temporal constraints, and observation time-points,
whose execution yields information during run-time. Time-
points and constraints in a CSTN may only apply in certain
scenarios. A CSTN is dynamically consistent (DC) if it has
a strategy for executing its time-points such that all relevant
constraints will be satisfied no matter how the observations
turn out. A dynamic strategy can react to observations in real
time, but only after arbitrarily small, but positive delays.
Recent work introduced a more realistic ε-DC property which,
for a fixed ε > 0, requires all reaction times to be bounded
below by ε. That work presented an exponential algorithm for
checking the ε-DC property by translating an exponential num-
ber of component networks into a Hyper Temporal Network.
But it has not yet been implemented or empirically evaluated.
This paper begins by presenting an alternative, equivalent
semantics for ε-dynamic consistency. It then presents a sound-
and-complete ε-DC-checking algorithm based on the propa-
gation of labeled constraints. Finally, it presents an empirical
evaluation of the new algorithm, the first empirical evaluation
of any ε-DC-checking algorithm in the literature.

Overview

A Conditional Simple Temporal Network (CSTN) is a data
structure for representing and reasoning about time in do-
mains where some constraints may apply only in certain
scenarios. For example, a patient who tests positive for a
certain disease may need to receive care more urgently than
someone who tests negative. Each condition in a CSTN is
represented by a propositional letter whose truth value is
not controlled, but instead observed in real time. Just as the
performance of a blood-test action by a doctor might gener-
ate a positive or negative result that is only learned in real
time, the execution of an observation time-point in a CSTN
generates a truth value for its corresponding propositional
letter. An execution strategy for a CSTN specifies when the
time-points will be executed. A strategy can be dynamic in
that its decisions can react to information obtained from past
observations. The Conditional Simple Temporal Problem
(CSTP) is that of determining whether a given CSTN admits

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a dynamic execution strategy that can guarantee the satisfac-
tion of all relevant constraints no matter which outcomes are
observed at run-time. If such a strategy exists, the CSTN is
said to be dynamically consistent (DC). In other words, the
CSTP is the DC-checking problem for CSTNs.

To our knowledge, prior approaches to solving the CSTP
have resulted in exponential algorithms that either have not
yet been implemented (Tsamardinos, Vidal, and Pollack
2003) or have only been successful on extremely small in-
stances (Cimatti et al. 2014).

Recently, Hunsberger, Posenato and Combi (2015)—
hereinafter HPC-15—presented a sound-and-complete DC-
checking algorithm for CSTNs based on the propagation of
labeled constraints. It employs a new kind of propositional
literal of the form ?p. A constraint labeled by ?p is only
required to hold as long as the value of p is unknown, an
important distinction for an execution strategy that can react
to observations. A preliminary empirical evaluation demon-
strated the practicality of their DC-checking algorithm.

Comin and Rizzi (2015)—hereinafter CR-15—defined
ε-dynamic consistency (ε-DC), which specifies a fixed lower-
bound on reaction times. For any ε > 0, the decisions made
by an ε-dynamic execution strategy can only depend on ob-
servations made at least ε in the past. They also presented
an ε-DC-checking algorithm that begins by making exponen-
tially many copies of the original CSTN, and then combining
them into a single Hyper Temporal Network. Their approach
has not yet been implemented or empirically evaluated.

This paper begins by providing an alternative, equivalent
semantics for the ε-DC property. It then presents a new ε-
DC-checking algorithm that extends the approach used by
HPC-15. The paper proves that the new algorithm is sound
and complete, and presents an empirical evaluation to demon-
strate its practicality, the first empirical evaluation of any
ε-DC-checking algorithm in the literature.

Background

Dechter et al. (1991) introduced Simple Temporal Networks
(STNs) to facilitate representing and reasoning about tem-
poral constraints. An STN comprises real-valued variables,
called time-points, and binary difference constraints on those
variables. The Simple Temporal Problem (STP) is that of de-
termining whether an STN is consistent (i.e., has a solution).

Tsamardinos et al. (2003) augmented STNs to include

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

175

P?0 = Z Q?p

YW¬p Vpq

Up¬q
0 −10, p¬q

−1
0,
pq

−10, p

3
,
p

−7,¬p

1
2
,¬

p

−
1
0
,
¬p 5,

¬p

−7,
p

Figure 1: A sample CSTN

time-points and temporal constraints that apply only in cer-
tain scenarios, where each scenario is represented by a con-
junction of propositional literals. In this paper, conjunctions
such as p∧¬q∧r are notated as p¬qr. Fig. 1 shows a sample
CSTN in its graphical form, where the nodes represent time-
points, and the directed edges represent binary difference
constraints. P? and Q? are observation time-points whose
execution generates truth values for p and q, respectively. In
this example, Q? is only executed if p happens to be true;
thus, Q? is labeled by p. Similarly, the edge from Q? to
P?, which represents the constraint, P? − Q? ≤ −10 (i.e.,
Q? ≥ P? + 10), is labeled by p. Similarly, the edge from U
to Q? is labeled by p¬q, indicating that it applies only in sce-
narios where p is true and q is false . The dashed edges with
shaded labels are generated by the HPC-15 DC-checking
algorithm, about which more will be said later.

Defns. 1-15, below, are drawn from HPC-15.

Definition 1 (Labels). Given a set P of propositional letters:

• a label is a (possibly empty) conjunction of (positive or
negative) literals from P . The empty label is notated �.

• for any label �, and any p ∈ P , if � |= p or � |= ¬p, then
we say that p appears in �.

• for any labels, �1 and �2, if �1 |= �2 (i.e., if �1 contains all
of the literals in �2) then �1 is said to entail �2. If �1 ∧ �2
is satisfiable, then �1 and �2 are called consistent.

• the label universe of P , denoted by P∗, is the set of all
consistent labels whose literals are drawn from P .

Definition 2 (CSTN). A Conditional Simple Temporal Net-
work (CSTN) is a tuple, 〈T , C, L,OT ,O,P〉, where:

• P is a finite set of propositional letters (or propositions);
• T is a finite set of real-valued time-points (i.e., variables);
• C is a set of labeled constraints, each having the form,
(Y −X ≤ δ, �), where X,Y ∈ T , δ ∈ R, and � ∈ P∗;

• L : T → P∗ is a function assigning labels to time-points;
• OT ⊆ T is a set of observation time-points (OTPs); and
• O : P → OT is a bijection that associates a unique

observation time-point to each propositional letter.

In a CSTN graph, O(p) (i.e., the observation time-point as-
sociated with p) may be denoted by P?; and each labeled
constraint, (Y −X ≤ δ, �), is represented by an arrow from
X to Y annotated by the labeled value, 〈δ, �〉. Since any time-
points X and Y may participate in multiple constraints of the
form, (Y −X ≤ δi, �i), the corresponding edge from X to
Y may have multiple labeled values of the form, 〈δi, �i〉.

Definition 3 (Honest Label). A label � in a CSTN, whether
on a time-point or constraint, is called honest if for each q
that appears in �, � entails L(Q?) (i.e., � contains all literals
from the label of the observation time-point for q).

Definition 4 (WD1: Label coherence). A CSTN has coherent
labels if for each labeled constraint, (Y −X ≤ δ, �), the
label � is satisfiable and entails L(X) ∧ L(Y).

Definition 5 (WD2.1: Time-point Label Honesty). A CSTN
holds property WD2.1 if its time-points all have honest labels.

Definition 6 (WD2.2). A CSTN holds property WD2.2 if for
each time-point T , and each propositional letter p appearing
in L(T), a constraint of the form (P? − T ≤ −e, L(T))
(i.e., (T ≥ P? + e, L(T))) is included in C for some e > 0.

Definition 7 (WD3: Constraint Label Honesty). A CSTN
holds property WD3 if its constraints all have honest labels.

A well defined CSTN is one for which WD1, WD2.1,
WD2.2 and WD3 hold. The CSTN in Fig. 1 is well defined.

Definition 8 (Child nodes/literals). If p appears in the label
of an OTP Q?, then Q? is called a child of P?; and both q
and ¬q are children of p. A similar definition applies to ¬p.

In a well-defined CSTN, such as the one in Fig. 1, if Q? is
a child of P?, then Q? is constrained to occur after P?. In
addition, if a child of p appears in an honest label �, then p
must also appear in �. Conversely, if p does not appear in �,
then none of p’s children can appear in � either.

The dynamic consistency of CSTNs

The truth values of propositions in a CSTN are not known in
advance. But a dynamic strategy for executing the time-points
in a CSTN is allowed to react to observations–after a positive
delay. A viable and dynamic execution strategy is a strategy
that guarantees that all relevant constraints will be satisfied no
matter which scenario is incrementally revealed. A CSTN for
which such a strategy exists is called dynamically consistent.

Definition 9 (Scenario). A scenario over a set P of propo-
sitional letters is a function, s : P → {true, false}, that
assigns a truth value to each letter in P . Any such function
also provides the truth value for any label � ∈ P∗, denoted
by s(�). The set of all scenarios over P is denoted by I.

Definition 10 (Schedule). A schedule for a set of time-points
T is a mapping, ψ : T → R, that assigns a real number to
each time-point in T . The set of all schedules for any subset
of T is denoted by Ψ.

The projection of a CSTN, S , onto a scenario, s, is the STN
obtained by collecting all time-points and constraints from S
whose labels are true under s (i.e., the time-points that must
be executed and the constraints that must be satisfied).

Definition 11 (Projection). Let S = 〈T , C, L,OT ,O,P〉
be any CSTN, and s any scenario over P . The projection of
S onto s—notated S(s)—is the STN, (T +

s , C+s), where:

• T +
s = {T ∈ T | s(L(T)) = true}; and

• C+s = {(Y −X ≤ δ) | for some �, (Y −X ≤ δ, �) ∈ C
and s(�) = true}

176

Definition 12 (Execution Strategy). An execution strat-
egy for a CSTN S = 〈T , C, L,OT ,O,P〉 is a mapping,
σ : I → Ψ, such that for each scenario s ∈ I , the domain of
σ(s) is T +

s (cf. Defn. 11). If, in addition, for each scenario s,
the schedule σ(s) is a solution to the projection S(s), then
σ is called viable. In any case, the execution time for the
time-point X in the schedule σ(s) is denoted by [σ(s)]X .

The following definitions ensure that the decisions made by a
dynamic execution strategy depend only on past observations.

Definition 13 (History). Let S = 〈T , C, L,OT ,O,P〉 be
any CSTN, s any scenario, σ any execution strategy for S,
and t any real number. The history of t in the scenario s, for
the strategy σ—notated Hist(t, s, σ)—is the set of observa-
tions made before time t according to the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | P? ∈ T +
s and [σ(s)]P? < t}

Definition 14 (Dynamic Execution Strategy). An execution
strategy σ for a CSTN is called dynamic if for any scenarios
s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t.

In other words, if a dynamic execution strategy σ executes X
at time t in scenario s1, and the schedules σ(s1) and σ(s2)
have the same history of observations before time t, then σ
must also execute X at time t in scenario s2.

Definition 15 (Dynamic Consistency). A CSTN S is dynam-
ically consistent (DC) if there exists an execution strategy for
it that is both dynamic and viable.

The HPC-15 DC-checking algorithm

The HPC-15 DC-checking algorithm uses rules for propa-
gating labeled constraints (i.e., generating new edges). The
rules are listed in Table 1. Each rule operates on one or two
pre-existing labeled edges (unshaded) and generates a new
labeled edge (shaded). With only slight differences (strict vs.
non-strict inequalities in R0 and qLP), the rules apply not
only to the standard version of DC, as presented above, but
also to the version of DC that allows instantaneous reactions.

The LP rule is similar to edge generation in an STN, except
that the labels of the pre-existing edges are conjoined in
the generated edge. The R0 rule removes occurrences of p
(and any children of p) from the label on a negative edge
emanating from P?, the intuition being that any violation of
the generated constraint would have to occur before the value
of p could be known, implying that the constraint cannot
depend on p. The R∗

3 rule is similar, except that the label
from which p is removed occurs on an adjacent edge.

The next three rules are analogous to the first three, with
two important differences. First they involve negative edges
terminating at the zero time-point Z, whose value is fixed
at 0. Such edges represent lower-bound constraints that play
a central role in the earliest-first execution strategy used to
prove the DC-checking algorithm’s completeness. Second,
these edges may have a new kind of label, called a q-label.

LP: X W Y
〈u, α〉 〈v, β〉

〈u + v, αβ〉

R0: P? X
〈w,αρ〉
〈w,α′〉 if w <∗ 0, ρ ∈ {p,¬p}

R∗
3: P? X Y

〈w,αβ〉 〈v, βγρ〉
〈max{v, w}, αβγ′〉 if w ≤ 0, ρ ∈ {p,¬p}

qLP : X W Z
〈u, α〉 〈v, β〉

〈u + v, (α � β)†〉

if u <∗ 0, v < 0

qR0: P? Z
〈w, βp̃θ〉
〈w, β†〉 if w < 0

qR∗
3: P? Z Y

〈w, γ〉 〈v, βp̃θ〉
〈max{v, w}, (γ � β)†〉 if w < 0

In each rule, pre-existing edges are unshaded; generated edges are
shaded. Pre-existing edges are presumed to have honest and coher-
ent labels. For the first three rules, pre-existing edges are presumed
to have satisfiable labels, and new edges are generated only if their
labels are satisfiable. The <∗ operator is ≤ for standard DC se-
mantics, < for DC semantics that allows instantaneous reactions.
For R0, ρ must not appear in α or L(X), and α′ is obtained by
removing any children of ρ from α. For R∗

3, α, β and γ must not
share any letters, ρ must not appear in α, β, γ, L(X) or L(Y), and
γ′ is obtained by removing children of ρ from γ. In the “q” rules,
α ∈ P∗; β, γ, θ ∈ Q∗; p̃ ∈ {p,¬p, ?p}; and expressions such as
�† represent the q-label obtained from � by removing the children
of any q-literals that appear in �. In qR0 and qR∗

3, β contains no
children of p̃, and θ only contains children of p̃. In qR∗

3, γ does not
contain p̃ or any of its children.

Table 1: HPC-15 edge-generation rules for DC checking

Definition 16 (q-literals, q-labels). A q-literal is a literal of
the form ?p, where p ∈ P . A q-label is a conjunction of
literals each of the form, p,¬p or ?p, for some p ∈ P . Q∗
denotes the set of all q-labels. Note that P∗ ⊆ Q∗.

A constraint whose label includes ?p need only be satisfied
while the value of ?p is unknown, an important distinction
for a dynamic execution strategy. For example, recall the
CSTN from Fig. 1. The edge/constraint from P? to Y must
be satisfied as long as p is either unknown or known to be
false. Similarly, the constraint from Y to P? must be satisfied
as long as p is either unknown or known to be true. As a result,
both constraints must be satisfied as long as p is unknown—a
condition represented by the q-label, ?p = p � ¬p. (The �
operator, defined below, handles the conjunction of q-labels
more generally.) The so-called negative q-loop from P? to
Y to P? is resolvable in this case as long as Y executes after
P?, because the value of p will make one of the edges in the
loop inapplicable, leaving only the other edge to be satisfied.
Definition 17 (�). For any literals p̃1, p̃2 ∈ {p,¬p, ?p},

p̃1 � p̃2 =

{
p̃1 if p̃1 = p̃2
?p if p̃1
= p̃2

Next, for any q-labels �1, �2 ∈ Q∗, �1 � �2 denotes the
conjunction of literals obtained by applying � in pairwise
fashion to corresponding literals from �1 and �2, with the
caveat that if a literal p̃ appears in one of �1 and �2, but not
the other, then p̃ appears in �1 � �2. For example,

[p¬q(?r)t] � [pqrv(?w)] = p(?q)(?r)tv(?w).

177

HPC-15 showed that the following definition of satisfying
a labeled constraint is entailed by the semantics of dynamic
consistency (cf. Defns. 9-15). They used this definition to
prove the soundness of all of the rules in Table 1.

Definition 18. A strategy σ satisfies a labeled constraint
(Y −X ≤ δ, �), where � ∈ Q∗, if for every scenario s ∈ P ∗:

(1) s is inconsistent with �; or

(2) [σ(s)]Y − [σ(s)]X ≤ δ.

ε-Dynamic Consistency of CSTNs

CR-15 introduced a version of dynamic consistency that
accommodates a fixed lower bound on reaction times. Their
ε-DC property is defined in terms of ε-dynamic execution
strategies, whose decisions can only depend on observations
made at least ε in the past. This section first presents the
CR-15 semantics for ε-dynamic consistency. Afterward, it
introduces an equivalent semantics that extends the approach
taken by HPC-15 for the DC property (cf. Defns. 9–15).

For ε-DC semantics, the value of e in WD2.2 should equal
the minimum reaction time, ε. Then, for example, each time-
point labeled by p will be constrained to occur at least ε after
P?. But WD2.2 is not sufficient to ensure that a viable and
dynamic strategy is ε-dynamic. For example, the CSTN from
Fig. 1 satisfies WD2.2 for ε = 10, but is not ε-DC for ε = 10.
In particular, any viable and dynamic strategy must satisfy
the constraints, (P?− Y ≤ −7, p) and (Y − P? ≤ 5,¬p),
generated by the HPC-15 rules. But that can only be guaran-
teed if the decision to execute Y , in cases where p is observed
to be false, can be made within 5 units after the execution
of P?, thereby violating ε-DC for ε = 10.

Comin and Rizzi semantics for ε-DC. The CR-15 seman-
tics for ε-dynamic consistency begins with preliminary no-
tions from the semantics of dynamic consistency that are
equivalent to Defns. 9-12 in this paper. From there, they
define difference sets, ε-dynamic execution strategies and,
finally, ε-dynamic consistency, as follows. For comparison
purposes, the CR-15 versions of ε-dynamic execution strate-
gies and ε-DC are prefixed with CR.

Definition 19 (Difference Set). Let S be any CSTN; and let
s1 and s2 be any scenarios. The difference set for s1 and s2,
denoted by Δ(s1; s2), is the set of observation time-points
in T +

s1 that yield different outcomes in s1 and s2, as follows.

Δ(s1; s2) = {P? ∈ T +
s1 ∩ OT | s1(p)
= s2(p)}

Definition 20 (CR-ε-dynamic execution strategy). Let S be
any CSTN. Let ε > 0 be arbitrary. An execution strategy σ
for S is CR-ε-dynamic if for every pair of scenarios, s1, s2,
and any time-point T ∈ T +

s1 ∩ T +
s2 ,

[σ(s1)]T ≥ min{[σ(s2)]T ,M(s1; s2) + ε}
where M(s1; s2) = min{[σ(s1)]P? | P? ∈ Δ(s1; s2)}.
Definition 21 (CR-ε-DC). A CSTN is ε-dynamic consistent
if it has a viable and CR-ε-dynamic execution strategy.

Alternative Semantics for ε-Dynamic Consistency

This section presents an alternative semantics for ε-dynamic
consistency that continues the approach taken by HPC-15. It
is proven to be equivalent to the CR-ε-DC property discussed
above. The new semantics will be used to prove that a new
ε-DC-checking algorithm is sound and complete.
Definition 22 (ε-History). Let S = 〈T , C, L,OT ,O,P〉 be
any CSTN, s any scenario, σ any execution strategy for S,
t any real number, and ε > 0. The ε-history of t in the
scenario s, for the strategy σ, notated Histε(t, s, σ), is the
set of observations made at or before t− ε according to σ(s):
Histε(t, s, σ) = {(p, s(p)) | P? ∈ T +

s & [σ(s)]P? ≤ t− ε}
Definition 23 (ε-Dynamic Execution Strategy). Let ε > 0.
An execution strategy σ called ε-dynamic if for any scenarios
s1 and s2, and any time-point X:

let: t = [σ(s1)]X
if: Histε(t, s1, σ) = Histε(t, s2, σ)
then: [σ(s2)]X = t.

Definition 24 (ε-DC). Let ε > 0. A CSTN is ε-dynamically
consistent if it has a viable and ε-dynamic execution strategy.
The following sequence of results culminate in a proof that
the definitions of CR-ε-DC and ε-DC are equivalent.
Lemma 1. Let S be any CSTN that satisfies property WD2.1

(Defn. 5); and let σ be any execution strategy that satisfies
the constraints in WD2.2 (Defn. 6). Then for any scenario s,
any time-point Y ∈ T +

s , and any q that appears in L(Y), it
must be that Q? ∈ T +

s and [σ(s)]Q? ≤ [σ(s)]Y − ε.

Proof. Since S satisfies WD2.1, it follows that L(Y) is an
honest label and, hence, that L(Y) |= L(Q?). Therefore,
since Y ∈ T +

s (i.e., s(L(Y)) = true), it follows that
s(L(Y)) = s(L(Q?)) = true. Thus, Q? ∈ T +

s . Next, σ
satisfies the WD2.2 constraint, (Q? − Y ≤ −ε, �), where
� = L(Q?) ∧ L(Y) = L(Y). Since s(L(Y)) = true,
Defn. 18 implies that [σ(s)]Q? − [σ(s)]Y ≤ −ε.
Definition 25 (Commutative Difference Set). For S, s1 and
s2 as in Defn. 19, the commutative difference set, denoted by
Δc(s1; s2), is given by: Δc(s1; s2) = Δ(s1; s2) ∩ T +

s2 .
Note that Δc(s1; s2) and Δc(s2; s1) are both equal to:
{P? ∈ T +

s1 ∩ T +
s2 ∩ OT | s1(p)
= s2(p)}

In relevant situations, replacing Δ(s1; s2) by Δc(s1; s2) in
Defn. 20 does not change the value of M(s1; s2).
Lemma 2. Let S be any CSTN that satisfies property WD2.1

(cf. Defn. 5); let s1 and s2 be any scenarios; and let σ be any
execution strategy that satisfies the constraints in property
WD2.2 (cf. Defn. 6). Then M(s1; s2) = Mc(s1; s2), where:

Mc(s1; s2) = min{[σ(s1)]P? | P? ∈ Δc(s1; s2)}.
Proof. Let P? ∈ T +

s1 ∩ OT be arbitrary such that s1(p)
=
s2(p) and [σ(s1)]P? = M(s1; s2). Suppose that P?
∈ T +

s2
(i.e., s2(L(P?)) = false). Then there must be some q that ap-
pears in L(P?) such that s1(q)
= s2(q). But then Lemma 1
(with Y = P? and s = s1) ensures that Q? ∈ T +

s1 and
[σ(s1)]Q? ≤ [σ(s1)]P? − ε < [σ(s1)]P? = M(s1; s2). How-
ever, this, together with s1(q)
= s2(q), contradicts the choice
of P?. Thus, P? ∈ T +

s2 and M(s1; s2) = Mc(s1; s2).

178

Next, an annotated schedule is the set of execution events
and observations that have occurred up to a given time.

Definition 26 (Annotated Schedule). Let σ be an execution
strategy for a CSTN S . Let s be any scenario. Then the sched-
ule σ(s) determines the execution times for all time-points
in S. Let t1 < t2 < . . . < tk be the k ≤ |T | distinct execu-
tion times determined by σ(s). The ith annotated (possibly
partial) schedule for σ(s) is (ψi, θi), where:

ψi = {(X, [σ(s)]X) | [σ(s)]X ≤ ti}; and
θi = {(P?, s(p)) | P? ∈ OT and [σ(s)]P? ≤ ti}.

In addition, (ψ1, θ1), (ψ2, θ2), . . . , (ψk, θk) is called the se-
quence of annotated schedules for σ(s), where:

∅ ⊂ ψ1 ⊂ ψ2 ⊂ . . . ⊂ ψk = σ(s), and
θ1 ⊆ θ2 ⊆ . . . ⊆ θk = s.

Lemma 3. If σ is a valid and CR-ε-dynamic strategy for a
well-defined CSTN S, then for any scenarios s1 and s2, the
first time at which the sequences of annotated schedules for
σ(s1) and σ(s2) differ is at Mc(s1; s2) = Mc(s2; s1).

Proof. Let t∗ be the first time at which the annotated sched-
ules for σ(s1) and σ(s2) differ.

Case 1: Some observation time-point P? executes at t∗
in both schedules, but yields different outcomes in s1 and
s2. Without loss of generality, assume that s1(p) = true
and s2(p) = false. Since P? is executed in both schedules,
s1(L(P?)) = s2(L(P?)) = true; thus, P? ∈ T +

s1 ∩ T +
s2 .

Thus, P? ∈ Δc(s1; s2). And since t∗ is the first time at
which the two annotated schedules differ, t∗ = [σ(s1)]P? =
Mc(s1; s2) and t∗ = [σ(s2)]P? = Mc(s2; s1).

Case 2: All observation time-points that execute at or
before time t∗ yield the same outcomes in both scenarios,
but some time-point Y executes at t∗ in one scenario—say,
s1—but at some later time (or not at all) in the other scenario,
s2. Let (ψ1, θ1) be the annotated schedule for σ(s1) at t∗.
Since σ(s2) may or may not execute any time-points at t∗,
let (ψ2, θ2) be the latest annotated schedule for σ(s2) that
occurs at or before t∗. By construction, θ1 = θ2.

Since Y is executed in s1, it follows that s1 |= L(Y).
However, suppose that θ1
|= L(Y). Then, there must be some
q (or ¬q) in L(Y) such that Q? has not yet executed (i.e.,
[σ(s1)]Q? > [σ(s1)]Y). But that contradicts Lemma 1. Thus,
θ1 |= L(Y). But then θ2 = θ1 implies that s2 |= θ2 |= L(Y).
Thus, Y ∈ T +

s2 (i.e., Y must be executed in s2). Next, since
all observations at or before t∗ yield the same results in both
scenarios, it follows that Mc(s1; s2) + ε > Mc(s1; s2) >
t∗ = [σ(s1)]Y ; hence, [σ(s1)]Y < Mc(s1; s2) + ε. But then
σ being CR-ε-dynamic requires that [σ(s1)]Y ≥ [σ(s2)]Y ,
contradicting the choice of Y .

Theorem 1. Let S be a well defined CSTN; and σ any valid
execution strategy. Then for each ε > 0, σ is CR-ε-dynamic
(cf. Defn. 20) if and only if σ is ε-dynamic (cf. Defn. 23).

Proof. (⇒) Suppose that σ is CR-ε-dynamic. Let s1 and s2
be any scenarios; and let X ∈ T +

s1 be any time-point for
which Histε(t, σ, s1) = Histε(t, σ, s2), where t = [σ(s1)]X .
It must be shown that X ∈ T +

s2 and [σ(s2)]X = t.

Rε
0: P? X

〈w,αρ〉
〈w,α′〉 if w < ε, ρ ∈ {p,¬p}

Rε
3: P? X Y

〈w,αβ〉 〈v, βγρ〉
〈max{v, w − ε}, αβγ′〉 if w ≤ ε, ρ ∈ {p,¬p}

qLPε : X W Z
〈u, α〉 〈v, β〉

〈u + v, (α � β)†〉

if u < ε, v < 0

qRε
3: P? Z Y

〈w, γ〉 〈v, βp̃θ〉
〈max{v, w − ε}, (γ � β)†〉 if w ≤ 0

Table 2: New edge-generation rules for ε-DC checking

Now, by Lemma 1, any literal in L(X) must have been
observed at or before time t− ε. Since s1 |= L(X), it follows
that the label L(X) must have been entailed by the set of
observations made in scenario s1 up to time t− ε. Since the
two histories are the same up to that time, it follows that L(X)
must have been entailed by the observations made in scenario
s2 up to time t− ε. Thus, s2 |= L(X) (i.e., X ∈ T +

s2).
Next, let t∗ be the first time at which the correspond-

ing annotated schedules for s1 and s2 differ. By Lemma 3,
t∗ = Mc(s1; s2) = Mc(s2; s1).

Case 1: t < t∗. Since t∗ is the point of first difference, this
implies that [σ(s2)]X = t.

Case 2: t∗ ≤ t < t∗ + ε. In this case, [σ(s1)]X = t <
t∗+ε = Mc(s1; s2)+ε. Now, since X ∈ T +

s1 ∩T +
s2 , and σ is

CR-ε-dynamic, it follows that t = [σ(s1)]X ≥ [σ(s2)]X or
t = [σ(s1)]X ≥ t∗+ ε. Since Case 2 assumes that t < t∗+ ε,
that leaves t = [σ(s1)]X ≥ [σ(s2)]X as the only possibility.
But then, [σ(s2)]X ≤ t < t∗ + ε implies (by a symmetric
application of CR-ε-dynamicity) that [σ(s2)]X ≥ [σ(s1)]X ,
leaving [σ(s2)]X = [σ(s1)]X as the only possibility.

Case 3: t∗ + ε < t (i.e., t∗ < t − ε). Since the point of
first difference must involve an observation at time t∗ that
yields different outcomes in the two scenarios (cf. the proof
of Lemma 3), this case contradicts that the histories are the
same up to time t− ε in s1 and s2.

(⇐) Suppose that σ is ε-dynamic. Let s1 and s2 be
any scenarios, and X any time-point in T +

s1 ∩ T +
s2 . Let

t = [σ(s1)]X . It must be shown that [σ(s1)]X ≥ [σ(s2)]X or
[σ(s1)]X ≥ t∗ + ε. Suppose that [σ(s1)]X < t∗ + ε. In other
words, t− ε < t∗. But then Histε(t, σ, s1) = Histε(t, σ, s2),
which, by ε-dynamicity implies [σ(s2)]X = t.

A New ε-DC-Checking Algorithm for CSTNs

This section introduces an ε-DC-checking algorithm for
CSTNs based on the propagation of labeled constraints. The
new algorithm uses a set of six rules: the LP and qR0 rules
from Table 1, along with the four new rules in Table 2, which
are variants of the remaining HPC-15 rules. Like the HPC-15
algorithm, the new algorithm applies the rules to all relevant
combinations of edges until it finds either (1) a negative self-
loop with a consistent label; or (2) that no rule generates a
stronger constraint. In the first case, it answers “Not ε-DC”;
in the second case, “Yes, ε-DC”. The algorithm is conjec-
tured to be exponential with a pseudo-polynomial factor that
depends on the granularity of the time-domain.

179

Soundness of the ε rules. The following lemma extends a
result from HPC-15 to explicate the conditions under which
a viable and ε-dynamic strategy σ satisfies a lower-bound
constraint (X ≥ δ, �): σ can only execute X before δ if some
observation made at least ε in the past ensures that the current
scenario is inconsistent with �.
Lemma 4. Let σ be a viable and ε-dynamic execution strat-
egy; and (X ≥ δ, �) a lower-bound constraint, where � ∈ P∗.
Then σ satisfies (X ≥ δ, �) if and only if for each scenario s,
at least one of the following hold, where t = [σ(s)]X :

(p1) t ≥ δ;
(p2)

∨
pi∈� ([σ(s)]Pi? ≤ t− ε) ∧ (s(pi) = false); or

(p3)
∨

¬qj∈� ([σ(s)]Qj? ≤ t− ε) ∧ (s(qj) = true).

Proof. Suppose σ satisfies (X ≥ δ, �), but (p1), (p2) and (p3)
are all false. Since (p1) is false, t < δ. But then, by Defn. 18,
s must be inconsistent with �. Thus, there is some p ∈ � such
that s(p) = false or some ¬q ∈ � such that s(q) = true. If
more than one, choose the one that is executed first in σ(s).

Case 1: p ∈ � with s(p) = false . Now (p2) being false im-
plies that [σ(s)]P? > t−ε. Let s′ be the same as s, except that
s′ |= �. By construction, the first point of difference between
σ(s) and σ(s′) is when P? is executed, and [σ(s′)]P? =
[σ(s)]P? > t − ε. Thus [σ(s′)]X = [σ(s)]X = t < δ and
s′ |= �, contradicting that σ satisfies (X ≥ δ, �).

Case 2: Some ¬q ∈ � with s(q) = true. Similar.

Satisfying a q-labeled lower-bound constraint is defined anal-
ogously, extending a definition from HPC-15.
Definition 27 (Satisfying a Q-labeled Constraint). Let σ
be any viable and ε-dynamic execution strategy; and let
(X ≥ δ, �) be a lower-bound constraint, where � ∈ Q∗. Then
σ satisfies (X ≥ δ, �) if and only if for each scenario s, at
least one of the following hold, where t = [σ(s)]X :
(q1) t ≥ δ;
(q2)

∨
pi∈� ([σ(s)]Pi? ≤ t− ε) ∧ (s(pi) = false);

(q3)
∨

¬qj∈� ([σ(s)]Qj? ≤ t− ε) ∧ (s(qj) = true); or

(q4)
∨

?rk∈� ([σ(s)]Rk? ≤ t− ε).

Thus, σ satisfies the constraint if t ≥ δ; some p ∈ � is known
to be false at t− ε; for some ¬qj ∈ �, qj is known to be true
at t− ε; or for some ?rk ∈ �, rk has been observed by t− ε.

Space limitations preclude proving the soundness of all
of the new rules in Table 2. Therefore, the following lemma
restricts attention to the rule with the most complicated proof.
Lemma 5. Rule qRε

3 from Table 2 is sound for ε-DC.

Proof. Let σ be a viable and ε-dynamic strategy that sat-
isfies C1 : (P? ≥ −w, γ) and C2 : (Y ≥ −v, βp̃θ), subject
to the conditions listed in Table 1, with w ≤ 0. How-
ever, suppose that σ does not satisfy the generated con-
straint, C3 : (Y ≥ −m, �), where m = max{v, w − ε} and
� = (γ � β)†. Thus, for some scenario s, conditions (q1)-(q4)
from Defn. 27 must all be false for C3. Since s is fixed, this
proof writes Y, P?, etc. instead of [σ(s)]Y , [σ(s)]P?, etc. For
example, since (q1) is false for C3, Y < −m. Now, since σ
satisfies C2, one of (q1)-(q4) must be true for C2.

INIT: π0 = �; t∗0 = −ε; T0 = T ε
0 = ∅; i = 0.

WHILE (true)
Tπi = {X ∈ T − Ti | πi |= L(X)}
t∗i+1 = min{ELB(X,πi) | X ∈ Tπi ∩ OT }
Ti+1 = Ti ∪ {X ∈ Tπi

| ELB(X,πi) ≤ t∗i+1}
T ε
i+1 = {X ∈ Tπi

| ELB(X,πi) ∈ (t∗i+1, t
∗
i+1 + ε)}

For each X ∈ T ε
i+1 ∪ Ti+1 − Ti, σ(X) := ELB(X,πi)

πi+1 = πi plus observation(s) made at time t∗i+1, if any
IF (t∗i+1 =∞) HALT
ELSE continue with i := i+ 1

Table 3: The earliest-first execution strategy, σ

P? V Q?

Ti+1Ti

W R?

T ε
i+1

X Y

t∗i
πi = p

t∗i + ε
t∗i+1

πi+1 = pq
t∗i+1 + ε

Tπi

Figure 2: One iteration of the earliest-first strategy

Case 1: (q1) is true for C2 (i.e., Y ≥ −v). However, this
is contradicted by Y < −m = min{−v,−w + ε} ≤ −v.

Case 2: (q2) is true for C2 (i.e., for some g ∈ βp̃θ,
G? ≤ Y − ε and s(g) = false). Now, g ∈ � would contradict
(q2) being false for C3. Similarly, ?g ∈ � would contradict
(q4) being false for C3. And if g is a child of some ?h ∈ �,
then, by Lemma 1, H? < G?−ε ≤ Y −2ε, which contradicts
(q4) being false for C3. Thus, g ∈ p̃θ.

Case 2a: g = p, P? ≤ Y − ε and s(p) = false. Now,
Y < −m ≤ −w+ε implies that P? < −w (i.e., (q1) is false
for C1). Thus, (q2), (q3) or (q4) must be true for C1. With no
loss of generality, assume that (q2) is true for C1. Then there
must be some k ∈ γ such that K? ≤ P?−ε and s(k) = false .
But then Lemma 1 gives that K? ≤ P?− ε < Y − 2ε. Now,
if k ∈ �, this contradicts (q2) being false for C3; if ?k ∈ � it
contradicts (q4) being false for C3; and if k
∈ �, k must be
the child of some q-literal ?h in �, where H? < K? ≤ Y − ε,
which contradicts (q4) being false for C3.

Case 2b: g ∈ θ (i.e., g is a child of p̃). In this case,
P? < G? ≤ Y − ε < −w, which is similar to Case 2a.

Case 3: (q3) is true for C2. Handled like Case 2.
Case 4: (q4) is true for C2 (i.e., for some ?r ∈ βp̃θ,

R? ≤ Y − ε). Now ?r ∈ � contradicts (q4) being false for
C3. Thus ?r must be a child of some ?h ∈ �, whence
H? ≤ R?− ε ≤ Y − 2ε, which contradicts that (q4) is false
for C3.

The earliest-first execution strategy. This section pre-
sents an iterative execution strategy that executes each time-
point as soon as it clears its relevant lower-bound constraints
(i.e., at the earliest possible time). While sharing some ele-
ments, it is a significant extension of the earliest-first strat-
egy presented in HPC-15. Pseudo-code for the earliest-first
strategy is given in Table 3; and one iteration of the strat-
egy is illustrated in Figure 2. That example begins with

180

the most recent observation time-point P? having just ex-
ecuted at time t∗i . The set Ti = {P?, ...} contains all of
the time-points that have executed up to that time. The ex-
ecution of P? generates the observation p = true, which
is reflected in the current partial scenario (CPS) πi = p.
Crucially, the information in πi is used only to determine
execution times occurring at least ε after the information in
πi has become available (i.e., after t∗i + ε). In preparation
for the next iteration, Tπi

= {V,Q?,W,R?, X, Y } is the set
of as-yet-unexecuted time-points whose labels are entailed
by πi. An effective lower bound (ELB) (cf. Defn. 29, be-
low) is computed for each time-point in Tπi , represented by
the tick-marks in the figure. The time of the next observa-
tion event, t∗i+1, is the minimum ELB among observation
time-points in Tπi

. In this case, Q? will be the next OTP to
execute. Ti+1 = Ti ∪ {V,Q?} augments Ti to include the
time-points in Tπi

that will execute no later than t∗i+1; and
T ε
i+1 = {W,R?, X} contains the time-points in Tπi

whose
ELB values are in the interval, (t∗i+1, t

∗
i+1 + ε). Although

these time-points will execute within ε of Q?, their execution
times are not dependent on the observation resulting from
Q?; instead, based only on the information available at t∗i ,
these time-points will be executed at their ELB values in
the interval (t∗i+1, t

∗
i+1 + ε). Each X ∈ T ε

i+1 ∪ Ti+1 − Ti is
assigned an execution time: σ(X) = ELB(X,πi). (Property
(I3) in Lemma 6, below, ensures that σ is well defined.) In
preparation for the next iteration, the observation q = true,
made at time t∗i+1, is used to update the CPS: πi+1 = pq.
πi+1 will be used only to determine execution events that
will occur after t∗i+1 + ε.

ELB values are computed as in HPC-15. First, for a given
CPS π, a lower-bound constraint labeled by � is applicable if
� is not already known to be irrelevant according to π.

Definition 28 (appl(�, π)). A label � ∈ Q∗ (whether on a
time-point or constraint) is called applicable (or relevant)
with respect to a current partial scenario π ∈ P∗, if for each
p that appears in both � and π, p appears identically in both
(i.e., as p in both, or as ¬p in both, since q-literals cannot
appear in π). In such a case, we say that appl(�, π) holds.

Definition 29 (ELB). The effective lower bound of a time-
point X with respect to the CPS π ∈ P∗ is given by:

ELB(X,π) = max{δ | ∃� ∈ Q∗ : (X ≥ δ, �) ∈ C
and appl(�, π)};

Lemma 6 was inspired by the “spreading lemma” from HPC-
15, but employs new techniques to accommodate ε.

Lemma 6 (ε-spreading lemma). Let S be a well-defined
CSTN whose (propagated) constraint set C is closed under
the six ε-DC-checking rules.1 Then the following invariants
hold during execution by the earliest-first strategy:

(I1) For each X ∈ Ti+1 ∪ T ε
i+1, the constraint

(X ≥ ELB(X,πi), πi) is entailed by constraints in C.
(I2) Let X ∈ T −Ti+1−T ε

i+1 such that L(X) is consistent
with πi. Then ELB(X,πi) ≥ t∗i+1 + ε.

1I.e., applying any of the ε-DC-checking rules to constraints in
C only generates a constraint entailed by a constraint already in C.

(I3) For each X ∈ T ε
i+1, ELB(X,πi) = ELB(X,πi+1).

(I3) ensures that the ELB values for time-points in T ε
i+1 do

not change across subsequent iterations, thereby ensuring
that the earliest-first strategy is well defined.

Proof. (I1). By construction, for each observation time-point
P? ∈ Tπi

, ELB(P?, πi) ≥ t∗i+1. In addition, if R? is any
OTP whose label is consistent with πi, but not entailed by πi,
ELB(R?, πi) ≥ t∗i+1. (R? must be the child of some as-yet-
unexecuted R1? whose label, by label honesty, is consistent
with πi. Since there are only finitely many OTPs, eventually
some parent OTP Rj?, whose label is entailed by πi, must
be reached. By Lemma 1, Rj? is constrained to occur before
R?. Thus, ELB(R?, πi) > ELB(Rj?, πi) ≥ t∗i+1.)

Next, let P? be some as-yet-unexecuted OTP whose la-
bel is consistent with πi, and let (P? ≥ ELB(P?, πi), �

′) be
any strongest lower-bound constraint on P?. By Rule qR0
from Table 1, any occurrence of p in �′ can be removed.
Next, let X ∈ Ti+1 ∪ T ε

i+1; and let (X ≥ ELB(X,πi), �)
be any strongest lower-bound constraint on X . Since
ELB(X,πi) < t∗i+1 + ε ≤ ELB(P?, πi) + ε, any occur-
rence of p in � can be removed by an application of qRε

3,
while leaving the lower-bound on X unchanged. (In Rule
qRε

3, let w = −ELB(P?, πi) and v = −ELB(X,πi). It
follows that v = max{v, w − ε}.) After removing all oc-
currences of p from all such constraints, if there is another
OTP Q? whose label is consistent with πi, then, in the same
way, all occurrences of q can be removed from all such con-
straints, and so on, until each lower-bound constraint on any
X ∈ Ti+1 ∪ T ε

i+1 has a label entailed by πi.
(I2). As seen, each as-yet-unexecuted OTP R? whose

label is consistent with πi satisfies ELB(R?, πi) ≥ t∗i+1.
And, by construction, each X ∈ Tπi

− Ti+1 − T ε
i+1 satisfies

ELB(X,πi) ≥ t∗i+1 + ε. Finally, let Y ∈ T − Tπi
such that

L(Y) is consistent with, but not entailed by πi. Then L(Y)
must contain some p whose corresponding OTP P? has not
yet been executed, whence ELB(Y, πi) ≥ ELB(P?, πi) + ε
(by WD2.2). Thus, ELB(Y, πi) ≥ t∗i+1 + ε. Now, each such
Y has a constraint (Y ≥ ELB(Y, πi), �) for some �. By a pro-
cedure similar to that used in the proof of (I1), Rules qRε

0 and
qRε

3 can be used to remove all literals from � corresponding
to as-yet-unexecuted OTPs whose labels are consistent with
πi, yielding a lower-bound constraint for Y whose bound is
at least t∗i+1 + ε, and whose label is entailed by πi.

(I3). Let X ∈ T ε
i+1 be arbitrary. By construction,

ELB(X,πi) > t∗i . And, by (I1), (X ≥ ELB(X,πi), πi)
is entailed by constraints in C. Now, πi+1 |= πi implies
that (X ≥ ELB(X,πi), πi+1) must also be entailed by con-
straints in C which, in turn, implies that ELB(X,πi+1) ≥
ELB(X,πi). However, ELB(X,πi+1) ≤ ELB(X,πi),
since the second bound is computed over the same or more
constraints. Thus, the two bounds must be equal.

Theorem 2. The new ε-DC-checking algorithm for CSTNs
is complete. That is, if the algorithm says that a given CSTN
is ε-DC, then the network is ε-DC.

Proof. Let S be a CSTN that the ε-DC-checking algorithm
says is ε-DC. Let σ be the earliest-first execution strategy.
The goal is to demonstrate that σ is viable and ε-dynamic.

181

X Z
〈−x, πx〉

〈|Π|, �〉

(a)

Z Y
〈y, πy〉

〈|Π|, �′〉

(b)

X Z

Y

〈−x, πx〉
〈y, πy〉

〈|Π|, �′′〉

(c)

Figure 3: Paths discussed in the proof of Theorem 2

Now, σ is ε-dynamic since the information available at each
time t∗i is only used to schedule execution events occurring
at or after t∗i + ε. The rest of the proof is a refinement of the
completeness proof in HPC-15.

Let s be any scenario. It remains to show that σ(s) is a
solution to the projection of S onto s (i.e., the STN S(s)). By
definition, each edge in S(s) has a label entailed by s, and
was present in S before any propagation.

First, suppose that S(s) is inconsistent. Then it must have
a negative loop. But the corresponding loop in S would, by re-
peated use of the LP rule during constraint propagation, yield
a single-edge negative loop with a consistent label entailed
by s. But that would have caused the algorithm to report “Not
ε-DC”, a contradiction. Thus, S(s) must be consistent.

Next, suppose that σ(s) is not a solution for S(s). For
each X ∈ T +

s , let x = [σ(s)]X be the value assigned to
X by σ(s). The corresponding execution constraints are
Z−X ≤ −x and X − Z ≤ x (i.e., X = x). Since σ(s)
is not a solution for S(s), inserting these constraints into
S(s) must create a negative loop (Dechter, Meiri, and Pearl
1991). Without loss of generality, there must be such a loop
having exactly one occurrence of Z. Let L be any such loop.

Case 1 (illustrated in Fig. 3a): L consists of a lower-bound
edge from X to Z, followed by a path Π from Z back to X ,
where: (1) the label πx on the lower-bound edge is the CPS
when X was scheduled; (2) the lower bound on that edge
satisfies x = ELB(X,πx); (3) the edges in Π are original
edges from S(s) having labels consistent with s; (4) � is the
conjunction of those labels; and (5) |Π| < x. The ε-spreading
lemma ensures that the constraint, (X ≥ −x, πx), was en-
tailed by constraints in the fully propagated CSTN. But then,
since πx and � are consistent with s, constraint propagation
also would have yielded a negative loop consisting of the
edge, (Z− Z ≤ |Π| − x, πx ∧ �), whose label is consistent
with s. But then the algorithm would have reported that S
was not ε-DC, contradicting the main premise.

Case 2 (illustrated in Fig. 3b): L consists of an upper-
bound edge from Z to Y , followed by a path Π from Y back
to Z, where: (1) πy is the CPS when Y was scheduled; (2) the
upper bound on the edge from Z to Y is y = ELB(Y, πy);
(3) the edges in Π are original edges from S(s) whose la-
bels are consistent with s; (4) �′ is the conjunction of those
labels; and (5) |Π| < −y. In this case, repeated applica-
tion of the LP rule during constraint propagation in S would
have yielded (Z− Y ≤ |Π|, �′) (i.e., (Y ≥ −|Π|, �′)), where
�′ is consistent with s and, hence, also with πy. But then,
y = ELB(Y, πy) ≥ −|Π| > y, a contradiction.

Case 3 (illustrated in Fig. 3c): L consists of a lower-
bound edge from X to Z, followed by an upper-bound

edge from Z to Y , followed by a path Π from Y back
to X . Here, |Π| − x+ y < 0 and πx ∧ πy ∧ �′′ is con-
sistent with s. As in Case 1, the ε-spreading lemma en-
sures that the lower-bound constraint (X ≥ x, πx) must
have been entailed by constraints in the fully propagated
CSTN, where x = ELB(X,πx). But then repeated ap-
plication of the LP rule to the path from Y to X to Z
would have yielded the edge, (Z− Y ≤ |Π| − x, πx ∧ �′′)
(i.e., (Y ≥ x− |Π|, πx ∧ �′′)). By construction, its label is
consistent with πy , implying that x− |Π| is a relevant lower
bound for Y . Hence, y = ELB(Y, πy) ≥ x − |Π| > y, a
contradiction.

Computational complexity. The worst-case complexity
of the new algorithm is conjectured to be f(n)(3|P|)2H ,
where f(n) is a polynomial in n, |P| is the number of ob-
servation time-points, and H is the temporal horizon in a
discrete domain. A more precise characterization is under
investigation. Meanwhile, the next section presents an empir-
ical evaluation of the algorithm across a variety of realistic
CSTNs.

Empirical Evaluation

This section presents an empirical evaluation of our ε-DC-
checking algorithm to illustrate its practical performance. The
algorithm and procedures necessary for its evaluation were
implemented in Java and executed on a JVM 8 in a Linux
machine with two AMD Opteron 4334 CPUs and 64GB of
RAM. The implementation includes a CSTN editor and a
flexible logging system to verify which rules are applied and
when. The goal of the implementation is to provide a tool for
evaluating the algorithm’s behavior, not necessarily its best
performance. The code is freely available (Posenato 2015).

We studied the computation time of the ε-DC-checking al-
gorithm against n, the number of time-points in the network.

The generation of CSTN instances was based on random
workflow schema generated by the ATAPIS toolset (Lanz
and Reichert 2014), ensuring a closer approximation to real-
world examples, while also generating networks that are
more difficult to check than those generated haphazardly. The
toolset produces random workflows according to different
input parameters that govern the number of activities, the
probability of having parallel branches, the probability of
inter-task temporal constraints, and so on.

Benchmarks were generated as follows. First, workflow
graphs were randomly generated by setting the number of
activities to N , the probability for parallel branches to 0.2,
the probability for conditional branches to 0.2, and the maxi-
mum duration of activities or delays between activities to W.
The values of N and W were varied according to the test
type, discussed in more detail below. Second, each workflow
graph was translated into an equivalent CSTN as proposed
by Combi et al. (2014). It is worth noting that different work-
flow graphs with the same number of activities may translate
into CSTNs of different sizes due to different numbers of
connector nodes in the workflows. However, it is not hard
to verify that a workflow with N activities translates into a
CSTN having between (2N + 2) and (5N + 2) nodes.

182

40 60 80 100 120 140 160 180

0

50

100

150

200

250

(2.5 · 10−5)n3

n

ex
ec

ut
io

n
tim

e
[s
ec
o
n
d
s]

N = 10, 43 ≤ n ≤ 59, |P| = 3

N = 20, 75 ≤ n ≤ 95, |P| = 5

N = 30, 119 ≤ n ≤ 135, |P| = 7

N = 40, 155 ≤ n ≤ 179, |P| = 9

Figure 4: Execution time vs. number of time-points n

Generating ε-DC workflows for N > 40 activities was
problematic for the ATAPIS toolset. Therefore, our evaluation
was restricted to workflows with N ≤ 40. The durations or
delays between activities was at most W = 50. All edge-
weights were at most 104. For each test, ε was fixed at 1.

For each N ∈ {10, 20, 30, 40}, we generated 40 work-
flows of N activities, subdivided into 20 workflows whose
CSTNs were ε-DC, and 20 whose CSTNs were not ε-DC.
Since non-ε-DC networks were regularly solved one to two
orders of magnitude faster than similarly sized ε-DC net-
works, the rest of this section focuses on the results for the
ε-DC networks. Moreover, preliminary results suggested an
exponential dependence on |P| = the number of observation
time-points in the network. Since the goal of our evaluation
was to determine the dependence on n = the number of
time-points in the network, we fixed the value of |P| for the
different groups of workflows, as follows.

N : 10 20 30 40
|P|: 3 5 7 9

The first results, shown in Figure 4, demonstrate that the
computation time scales well against n, the size of the net-
work. However, they also confirm that the rate of growth of
the computation time increases sharply as |P| increases. As
previously mentioned, we conjecture that the computation
time is exponential with respect to |P|.

The variation in computation time for networks with
N ≥ 30 can be explained by the fact that even if |P| is fixed,
the number of labeled values present on edges in the fully
propagated network can vary significantly in response to even
small increases in the number of time-points.

The next results, shown in Figure 5, restrict attention to
workflows with |P| = 5. The rate of growth of the computa-
tion time against n is roughly constant across all three groups
of workflows, for N ∈ {20, 30, 40}.

We are currently investigating how the computation time
of our ε-DC-checking algorithm depends on other problem
parameters.

Conclusions and Future Work

The most significant contribution of this paper is the new
propagation-based ε-DC-checking algorithm for CSTNs. The
sound-and-complete algorithm is the first ε-DC-checking al-
gorithm in the literature to be implemented and evaluated.

40 60 80 100 120 140 160 180

0

50

100

150

200

250

(2.5 · 10−5)n3

n

ex
ec

ut
io

n
tim

e
[s
ec
o
n
d
s]

N = 20, 75 ≤ n ≤ 95, |P| = 5

N = 30, 111 ≤ n ≤ 127, |P| = 5

N = 40, 139 ≤ n ≤ 155, |P| = 5

Figure 5: Execution time vs. number of time-points n. Num-
ber of proposition is constant.

An initial evaluation suggests that it may be practical for a
variety of applications. Future work will focus on (1) more
efficiently managing the (possibly exponentially sized) sets
of labels on each edge; (2) determining the worst-case com-
plexity of the algorithm; and (3) conducting a more intensive
empirical evaluation.

References
Cimatti, A.; Hunsberger, L.; Micheli, A.; Posenato, R.; and
Roveri, M. 2014. Sound and complete algorithms for check-
ing the dynamic controllability of temporal networks with uncer-
tainty, disjunction and observation. In Cesta, A.; Combi, C.; and
Laroussinie, F., eds., 21st International Symposium on Temporal
Representation and Reasoning (TIME-2014), Verona, Italy, 27–
36. IEEE Computer Society.
Combi, C.; Gambini, M.; Migliorini, S.; and Posenato, R. 2014.
Representing business processes through a temporal data-centric
workflow modeling language: An application to the management
of clinical pathways. Systems, Man, and Cybernetics: Systems,
IEEE Transactions on 44(9):1182–1203.
Comin, C., and Rizzi, R. 2015. Dynamic consistency of condi-
tional simple temporal networks via mean payoff games: a singly-
exponential time dc-checking. In Grandi, F.; Lange, M.; and
Lomuscio, A., eds., 22st International Symposium on Temporal
Representation and Reasoning (TIME 2015), 19–28. IEEE CPS.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Hunsberger, L.; Posenato, R.; and Combi, C. 2015. A sound-and-
complete propagation-based algorithm for checking the dynamic
consistency of conditional simple temporal networks. In Grandi,
F.; Lange, M.; and Lomuscio, A., eds., 22st International Sympo-
sium on Temporal Representation and Reasoning (TIME 2015),
4–18. IEEE CPS.
Lanz, A., and Reichert, M. 2014. Enabling time-aware process
support with the atapis toolset. In Limonad, L., and Weber, B.,
eds., Proceedings of the BPM Demo Sessions 2014, volume 1295
of CEUR Workshop Proceedings, 41–45. CEUR.
Posenato, R. 2015. A CSTN(U) Consis-
tency Check Algorithm Implementation in Java.
http://profs.scienze.univr.it/∼posenato/software/cstnu.
Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP: A
new constraint-based formalism for conditional, temporal plan-
ning. Constraints 8:365–388.

183

