
Potential Heuristics for Multi-Agent Planning

Michal Štolba, Daniel Fišer, Antonı́n Komenda
{stolba,fiser,komenda}@agents.fel.cvut.cz

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic

Abstract

Distributed heuristic search is a well established technique
for multi-agent planning. It has been shown that distributed
heuristics may crucially improve the search guidance, but
are costly in terms of communication and computation time.
One solution is to compute a heuristic additively, in the sense
that each agent can compute its part of the heuristic indepen-
dently and obtain a complete heuristic estimate by summing
up the individual parts. In this paper, we show that the re-
cently published potential heuristic is a good candidate for
such heuristic, moreover admissible. We also demonstrate
how the multi-agent distributed A* search can be modified in
order to benefit from such additive heuristic. The modified
search equipped with a distributed potential heuristic outper-
forms the state of the art.

Introduction

If planning is to be used in large-scale personal, corporate
or military applications, multiple independent entities will
need to cooperate in the plan synthesis. As witnessed in
many other applications, such independent entities may have
serious concern in protecting the privacy of its input data and
internal processes. Privacy-preserving multi-agent planning
allows the definition of factors of the global planning prob-
lem private to the respective entities (i.e. agents).

In such privacy-preserving planning systems (Nissim
and Brafman 2012; 2014; Maliah, Shani, and Stern 2014;
Torreño, Onaindia, and Sapena 2014; Tožička, Jakubův, and
Komenda 2014), each agent has access only to its part of the
global problem, thus can plan only using its operators. The
agent can compute a heuristic from its view on the global
problem, its projection. Such projection also contains view
of other agent’s public operators, which allows for heuris-
tic estimate of the entire problem, but such estimate may
be significantly misguided as shown in (Štolba, Fišer, and
Komenda 2015). The reason is that the projection does not
take into account the parts of the problem private to other
agents, moreover in some problems, the optimal heuristic
estimate may be arbitrarily lower for the projection than for
the global problem.

To obtain a better guidance, a global heuristic estimate
can be computed using a distributed process while still pre-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

serving privacy. A number of inadmissible heuristics has
been treated this way such as the FF heuristic (Štolba and
Komenda 2014), a DTG-based heuristic (Torreño, Onaindia,
and Sapena 2014) and a landmark-based heuristic (Maliah,
Shani, and Stern 2014). The admissible LM-Cut heuristic
(Helmert and Domshlak 2009) is computed in a distributed
way in (Štolba, Fišer, and Komenda 2015) and in (Maliah,
Shani, and Stern 2015), the authors distribute an admissi-
ble pattern database heuristic, but without any proofs of ad-
missibility of the distributed version. MAD-A* (Nissim and
Brafman 2012) is the only optimal privacy-preserving multi-
agent planning algorithm we are aware of.

In techniques developed so far, the distributed computa-
tion of heuristic estimate requires cooperation of all (or at
least most of) the agents and incurs a substantial amount of
communication. In many scenarios, the communication may
be very costly (multi-robot systems) or prohibited (military)
and even on high-speed networks, communication takes sig-
nificant time compared to local computation. In such cases
it may pay off to use the projected heuristic instead of its
better informed counterpart. In (Nissim and Brafman 2014),
the authors propose an idea of an additive heuristic such that
projected estimates of two agents could be added together
and still maintain admissibility. In this paper we take the
idea a step further, so that estimates from all agents can be
added together without violating admissibility and with no
additional communication needed.

Formalism
Similarly as MA-STRIPS (Brafman and Domshlak 2008)
is an extension of STRIPS (Fikes and Nilsson 1971) to-
wards privacy and multi-agent planning, we now present
MA-MPT as a multi-agent extension of the Multi-Valued
Planning Task (Helmert 2006) or SAS+ (Bäckström 1992).
For n agents, the MA-MPT problem consists of a set of n
agent MPTs. The planning task for an agent αi ∈ A is a
tuple

Πi =
〈
Vi = Vpub ∪ Vprivi ,Oi = Opubi ∪ Oprivi , sαi

I , sαi
� , costi

〉
where Vpub is shared among all agents and for each i �= j,
Vprivi ∩ Vprivj = ∅ and Oi ∩ Oj = ∅.

Each V in the finite set of variables Vi has a finite do-
main of values dom(V). All variables in Vpub and all values
in their respective domain are public, that is known to all

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

308

agents. All variables in Vprivi and all values in their respec-
tive domains are private to agent αi which is the only agent
aware of such V and allowed to modify its value. A fact
〈V, v〉 is a pair of a variable V and one of the values v from
its domain (i.e. an assignment). Let p be a partial variable
assignment over some set of variables V . We use vars(p) ⊆
V to denote a subset of V on which p is defined and p[V]
to denote the value of V assigned by p. Alternatively, p
can be seen as a set of facts {〈V, p[V]〉 |V ∈ vars(p)} cor-
responding to that partial variable assignment. A complete
assignment over V is a state over V .

A global state is a state over VG =
⋃

i∈1..n Vi. A global
state s represents the true state of the world, but no agent
may be able to observe it as a whole. Instead, each agent
works with an αi-projected state sαi which is a state over Vi

such that all variables in VG ∩ Vi are equal in both assign-
ments (the assignments are consistent). Formally, a (partial)
assignment p is consistent with a (partial) assignment p′ iff
p[V] = p′[V] for all V ∈ vars(p).

An operator o from the finite set Oi has a precondition
pre(o) and effect eff(o) which are both partial variable as-
signments. In the case of private operators o ∈ Oprivi , the
assignment is over Vprivi , whereas in the case of public oper-
ators o ∈ Opubi the assignment is over Vi and either pre(o)
or eff(o) assigns a value to at least one public variable from
Vpub . Because Vpub is shared, public operators can influence
other agents. A function costi : Oi 	→ R

+
0 assigns a cost to

each operator of agent αi. An operator o is applicable in
state s if pre(o) is consistent with s. Application of operator
o in a state s results in state s′ such that all variables in eff(o)
are assigned to the values in eff(o) and all other variables re-
tain the values from s. We denote the application of o in s
as s′ = o [[s]]. The initial state sI and the partial goal state
s� (partial variable assignment over VG) are in each agent’s
problem represented only as αi-projected (partial) states.

We define a global problem as a union of the agent prob-
lems, that is

ΠG =

〈 ⋃
i∈1..n

Vi,
⋃

i∈1..n

Oi, sI , s�, costG
〉

where costG is a union of the cost functions costi. The
global problem is the actual problem the agents are solving.

An αi-projected problem is the problem of an agent αi
with αi-projections of all other agents’ public operators and
it can be also understood as a complete view of the agent αi

on the global problem ΠG. Formally, for a public operator
o ∈ Opubj of some agent αj , an αi-projected operator oαi

is o with precondition and effect restricted to the variables in
Vi, that is pre(oαi) is a partial variable assignment over Vi

consistent with pre(o) (eff(o) treated analogously). The set
of αi-projected operators is

Oαi = Oi ∪ {oαi |o ∈
⋃

j∈1...n∧j �=i

Opubj}

and an αi-projected problem is

Παi =
〈
Vi,Oαi , sαi

I , sαi
� , costαi

〉
where costαi is costG restricted to operators in Oαi .

Privacy

What exactly are the agents in privacy-preserving multi-
agent planning trying to hide and why? Let us consider a
following example. A company has a secret recipe to a well
known beverage. In order to work effectively, it wants to
optimize its process of logistics and its use of subcontrac-
tors. In this example, parts of the recipe can be represented
as actions either private (the most secret parts) or public (the
“interface” with other companies). Other agents have the
actions for logistic transportation and providing ingredients.
Here, the beverage agent wants to hide all its private actions
and the private parts of the public actions, namely the “sig-
nature” of the actions, that is their preconditions and effects
regardless of renaming (formally, an isomorphic model).

We borrow the formal treatment of privacy-preserving
planning from (Nissim and Brafman 2014). For each agent
αi ∈ A, the private part of its problem Πi is

(i) the set of private variables Vprivi , i.e. the number of vari-
ables and the sizes and values of their respective domains,

(ii) the set of private operators Oprivi , i.e. the number of
operators, the number and value of facts in pre(o) and
eff(o), the value of costi(o) and

(iii) the private parts of the public operators in Opubi , i.e.
the number and value of private facts in pre(o) and eff(o).

The public parts of operators in Opubi can be shared in the
form of projections.

As often assumed in cryptography, we are interested in
the properties of each algorithm performed by a “honest but
curious” agent. Such agent may use its computational re-
sources to analyze the communicated data and infer as much
information as possible, but the agent is not altering the pro-
tocol in order to exploit it and obtain more information. In
case of the distributed search this would mean e.g., sending
all possible states to other agents even though they are not
reachable in order to obtain all heuristic estimates.

According to (Nissim and Brafman 2014), a weak
privacy-preserving algorithm is such a distributed algorithm
that does not directly communicate any private part of the
agents’ problems. By directly communicate, we mean that
the information is communicated in such a way that any
other agents can understand it (i.e. not encrypted).

A strong privacy-preserving algorithm is such a dis-
tributed algorithm that no agent αi can deduce an isomor-
phic (that is differing only in renaming) model of a private
variable, a private operator and its cost or private precondi-
tion and effect of a public operator belonging to some other
agent αj , beyond what can be deduced from the projected
problem and the solution.

The MAD-A* multi-agent heuristic search algorithm is
at least weak privacy preserving, as it does not communi-
cate any private information. In its original form, it may be
possible to deduce equality of a subset of private states and
macro transitions between public states. In (Brafman 2015),
the MAD-A* algorithm was modified not to send some re-
dundant states (that is states differing only in the sending
agent’s private part). This modification improves the pri-
vacy guarantees for the logistics domain, such that under

309

additional assumptions (namely that every private location
is reachable from every other private location) the algorithm
is strong privacy-preserving.

Potential Heuristics
Potential heuristics are a family of admissible heuristics in-
troduced in (Pommerening et al. 2015). Here we describe
the original centralized version. A potential heuristic (de-
noted as hpot) associates numerical potential with each fact.
The potential heuristic for a state s is simply a sum of po-
tentials of the facts in s, formally:

hpot(s) =
∑
V ∈V

pot(〈V, s[V]〉)

where V is a set of variables and pot(〈V, s[V]〉) ∈ R is a
potential for the fact representing the assignment for V in s.

The potentials can be determined as a solution to a linear
program (LP). In this work, we use a formulation described
in (Pommerening et al. 2014a). The objective function of
the LP is simply the sum of potentials for a state (or average
for a set of states). The simplest variant is to use the ini-
tial state sI as the optimization target. Another option is to
use the set of all syntactic states1 (S), as described in (Seipp,
Pommerening, and Helmert 2015), that is for all facts the co-
efficient associated with the potential variable of fact 〈V, v〉
is 1/|dom(V)|.

For a partial variable assignment p, let maxpot(V, p) de-
note the maximal potential that a state consistent with p can
have for variable V , formally:

maxpot(V, p) =

{
pot(〈V, p[V]〉)
max

v∈dom(V)
pot(〈V, v〉)

if V ∈ vars(p)

otherwise

The LP will have a potential LP-variable pot(〈V, v〉) for
each fact (that is each possible assignment to each variable)
and a maximum potential LP-variable maxpotV for each
variable in V . The constraints ensuring the maximum po-
tential property are simply

pot(〈V, v〉) ≤ maxpotV (1)

for all variables V and their values v ∈ dom(V). To ensure
goal-awareness of the heuristic (i.e. hpot(s) ≤ 0 for all goal
states s), we add the following constraint∑

V ∈V
maxpot(V, s�) ≤ 0

restricting the heuristic of any goal state to be less or equal
to 0. The final set of constraints ensures consistency2 of
the heuristic, which together with the goal-awareness im-
plies admissibility. For each operator o in a set of operators
O we add the following constraint∑
V ∈vars(eff(o))

(maxpot(V, pre(o))−pot(〈V, eff(o)[V]〉)) ≤ cost(o)

A solution of the LP yields the values for potentials which
are then used in the heuristic computation.

1Such LP formulation may be unbounded. A common solution
we adopt is to use an upper bound for each LP variable.

2A consistent heuristic is such h that for each two states s, s′

and all operators s.t. s′ = o[[s]] holds h(s) ≤ h(s′) + cost(o).

Potential Heuristics for Multi-Agent Planning

Let us first examine the global potential heuristic hG
pot com-

puted on ΠG. For now, assume we already have the poten-
tials for the global problem. From now on, any function
(e.g., a heuristic) computed on a state s by an agent αi is
in fact computed on the αi-projected state sαi and we omit
the superscript for brevity, except for situation where it is
necessary to distinguish multiple agents. For a state s, the
heuristic is

hG
pot(s) =

∑
V ∈VG

pot(〈V, s[V]〉)

which can be rewritten as

hG
pot(s) =

∑
V ∈Vpub

pot(〈V, s[V]〉) +
∑
αi∈A

∑
V ∈Vprivi

pot(〈V, s[V]〉)

which is the sum of potentials of public facts plus the sum
of potentials of private facts of each agent. Further on, we
will denote

hpub
pot (s) =

∑
V ∈Vpub

pot(〈V, s[V]〉)

and
h
privi
pot (s) =

∑
V ∈Vprivi

pot(〈V, s[V]〉)

thus the global heuristic can be rewritten as

hG
pot(s) = hpub

pot (s) +
∑
αi∈A

h
privi
pot (s). (2)

Now we formally define the desired properties of a multi-
agent heuristic function and show that the properties hold
for the potential heuristic.
Definition 1. A global heuristic h estimating the global
problem ΠG is A-additive iff for any agent αk ∈ A it can be
represented as h(s) = hpub(sαk) +

∑
αi∈A hi(sαi), where

hpub is a heuristic computed on the αk-projected problem
Παk and hi is a heuristic computed on the αi-projected prob-
lem Παi .

Each part of an A-additive heuristic can be computed by
each respective agent separately an then added together.
Definition 2. An A-additive global heuristic h(s) =
hpub(sαk) +

∑
αi∈A hi(sαi) is A-agnostic iff for each two

global states s and s′, s.t. s′ = o[[s]], where o ∈ Oi for
some agent αi, holds hj(sαj) = hj(s′αj) for all j �= i.

In an A-agnostic heuristic, no agent can influence the pri-
vate parts of other agents.
Theorem 3. The global potential heuristic hG

pot(s) =

hpub
pot (s)+

∑
αi∈A h

privi
pot (s) is admissible, A-additive and A-

agnostic.

Proof. Admissibility follows directly from the construction
of the LP which is equal to the LP in the centralized case.
The A-additivity of the potential heuristic for any agent αk

follows from setting hpub(sαk) = hpub
pot (s

αk) and hi(sαi) =

h
privi
pot (sαi) for all αi ∈ A.
Let i �= j, the A-agnostic property holds for hG

pot(s), be-
cause for each o ∈ Oi , eff(o) ∩ Vprivj = ∅. The part of

310

the state s private to agent αj , that is partial assignment
p = s ∩ Vprivj , is equal to the part of the successor state
s′ = o[[s]] private to agent αj (that is partial assignment
p′ = s′ ∩ Vprivj). As both h

privj
pot (s) and h

privj
pot (s′) are com-

puted only on the respective parts of the states private to
agent αj , the heuristic estimates are equal.

By application of Theorem 3, the global heuristic estimate
of a successor state s′ after application of an operator o ∈ Oi

can be effectively computed by the agent αi by computing
the public part of the heuristic estimate, the part private to
agent αi and adding the private parts of other agents from the
predecessor state s. The multi-agent distributed A* search
using this principle is outlined in Figure 1.

Let us consider a concrete example with two agents
α1, α2, where α1 has one variable V1 ∈ {d1, d′1}, α2 one
variable V2 ∈ {d2, d′2} and there is one public variable
Vpub ∈ {dpub, d′pub}. Assume the computed potentials are
the following: pot(〈V1, d1〉) = 1, pot(〈V1, d

′
1〉) = −2,

pot(〈V2, d2〉) = 2, pot(〈V2, d
′
2〉) = 0, pot(〈Vpub, dpub〉) =

3, pot(
〈
Vpub, d

′
pub

〉
) = −1. In the initial state sI holds

sI [V1] = d1, sI [V2] = d2 and sI [Vpub] = dpub, then
h
priv1
pot (sI) = 1, h

priv2
pot (sI) = 2 and hpub

pot (sI) = 3, thus
hpot(sI) = hpub

pot (sI) + h
priv1
pot (sI) + h

priv2
pot (sI) = 6. If

agent α1 applies an action a1 ∈ Opub1 which changes
both V1, Vpub, thus s1[V1] = d′1 and s1[Vpub] = d′pub, the
heuristic value of the resulting state s1 computed by α1 is
hpot(s1) = hpub

pot (s1) + h
priv1
pot (s1) + h

priv2
pot (sI) = −1. The

state s1 is then sent to agent α2 together with the value of
h
priv1
pot (s1) = −2. When agent α2 applies action a2 ∈ Opriv2

which modifies only V2 so that s2[V2] = d′2, α2 can compute
hpot(s2) = hpub

pot (s2) + h
priv1
pot (s1) + h

priv2
pot (s2) = −3 using

the value of hpriv1
pot (s1) received from α1.

Before discussing how the A-agnostic principle can be
utilized in a multi-agent heuristic search, we first analyze
privacy properties of the computation of potentials.

Projections

The simplest idea is to let each agent compute the LP on the
projected problem and to use the resulting potentials in the
global heuristic. Unfortunately, this approach does not re-
sult in an admissible heuristic. One of the reasons lies in the
goal-awareness constraint, which in the global LP contains
either potential or maximum potential LP-variable for each
variable in VG. In the projected problem, the private vari-
ables of other agents are missing. This allows the remaining
variables to have higher values and results in higher poten-
tials making the sum of private parts inadmissible.

An admissible variant is to take maximum of the projec-
tions. The αi-projected heuristic can be rewritten as

hαi
pot(s) = h

pubi
pot (s) + h

privi
pot (s)

=
∑

V ∈Vpub

poti(〈V, s[V]〉) +
∑

V ∈Vprivi

poti(〈V, s[V]〉)

where poti(〈V, v〉) is the potential for fact 〈V, v〉 computed
on the αi-projected problem. Although Vpub is the same for

Figure 1: Sequence of hG
pot computations. The emphasized

heuristics are not computed, but used as a heuristic value
from the other agent.

all agents the potentials in hαi
pot for variables in Vpub may dif-

fer as they are computed using different LPs. Nevertheless,
the potentials poti(〈V, v〉) for public variables V ∈ Vpub

computed by agent αi can be communicated3 to all other
agents αj and thus the public part of the αi-projected heuris-
tic can be computed by each agent αj on its projected prob-
lem Παj . Thanks to the A-agnostic property of the potential
heuristic shown by Theorem 3 (which trivially holds also for
projections), the private parts of the αi-projected heuristic
are not changed by actions of other agents. The private part
can be computed by the respective agent αi and sent along
with each state s.

This means, that unlike a general projected heuristic, each
agent αi can compute the h

αj

pot projected heuristics of all
agents and take the maximum, while still preserving privacy.
We denote the resulting heuristic as

hmaxproj
pot (s) = max

αi∈A
hαi
pot(s

αi).

To compute the hmaxproj
pot (s) heuristic, the agent computes

all public parts, its own private part, sums the corresponding
public and private parts and takes the maximum, as shown
in Figure 2. Obviously, hmaxproj

pot (s) is always at least as in-
formed as hαi

pot(s), but never more informed than hG
pot(s).

Let us consider the example from previous section again.
Now each agent has its potentials (including the public
ones) computed independently, thus for agent α1 we can
have pot1(〈Vpub, dpub〉) = 4, pot1(

〈
Vpub, d

′
pub

〉
) = 0

and pot1(〈V1, d1〉) = 1, pot1(〈V1, d
′
1〉) = −2 and for

α2 pot2(〈Vpub, dpub〉) = 3, pot2(
〈
Vpub, d

′
pub

〉
) = 1 and

3Such potentials are influenced by constraints respective to pub-
lic actions and by the goal constraint. Although the latter may pos-
sibly leak some private information, we consider sharing potentials
of public variables safe.

311

Figure 2: Sequence of hmaxproj
pot computations. The empha-

sized heuristics are not computed, but used as a heuristic
value from the other agent. The gray potentials are commu-
nicated from the other agent and computed as hpubi

pot (s).

pot2(〈V2, d2〉) = 2, pot2(〈V2, d
′
2〉) = 1. The poten-

tials may be higher as the LPs of the projected problems
are less constrained. By sharing the public potentials,
both agents can compute hmaxproj

pot (sI) = max(h
pub1
pot (sI) +

h
priv1
pot (sI), h

pub2
pot (sI) + h

priv2
pot (sI)) = max(4 + 1, 3 +

2) = 5. After the application of a1 by α1, sending
the resulting state s1 to α2 together with the value of
h
priv1
pot (s1) and application of a2 by α2, α2 can compute

hmaxproj
pot (s2) = max(h

pub1
pot (s2) + h

priv1
pot (s1), h

pub2
pot (s2) +

h
priv2
pot (s2)) = max(0− 2, 1 + 1) = 2.

Plain Global LP

A baseline approach to the global LP computation is to com-
pute it plainly as it is. The principle of the computation
is simple, one agent is selected to be the master, all other
agents send their private parts of the LP (that is optimization
function, LP-variables and constraints) to the master. The
master then solves the complete LP and sends the computed
values of the LP-variables back to their respective owners.

Even in such a simple setting some privacy is preserved.
This is due to the fact that the LP does not reflect precondi-
tions of actions on variables which are not also in the effect.
This means, that it is not possible to reconstruct the complete
isomorphic model of an operator o, if o has some variable in
precondition which is not present in effect. Nevertheless, the
LP represents a planning task in the transition normal form
(see (Pommerening and Helmert 2015)), which is equivalent
to the original task in that the plans for the original and the
transition normal form task differ only in zero cost operators
(so called forgetting operators).

Decomposed Global LP

One approach to improving the privacy is to use a decompo-
sition algorithm, such as Dantzig-Wolfe decomposition, in a
similar way as proposed in (Holmgren, Persson, and Davids-
son 2009). The principle of the Dantzig-Wolfe decomposi-
tion is that the problem is decomposed into a master part
where many variables have non-zero coefficients and inde-
pendent sub-matrices. For the sub-matrices hold that if a
variable has a non-zero coefficient in one sub-matrix, it has
zero coefficient in all other sub-matrices. If such decom-
position is possible, it is used to compute the solution by
iteratively generating columns for the master problem based
on the sub-problem solutions.

In the case of the potential heuristic LP, the constraints for
private actions, which contain only private variables would
be in the sub-problem factors, whereas all other constraints
would be in the master problem. In comparison to the Plain
Global LP, the decomposition hides the private operators and
their costs, but does not provide any formal guarantees on
privacy of the computation process (the original aim of the
decomposition algorithm is to improve the efficiency).

Securely Computed Global LP

Another approach is the use of a privacy-preserving trans-
formation of the whole LP, which is often used in secure
multi-party computation. Representative examples of such
transformation were published in (Mangasarian 2011) and
(Dreier and Kerschbaum 2011).

In (Mangasarian 2011), the transformation is applicable
only on vertically partitioned data, that is data partitioned
based on the variables. This means that each agent owns a
disjoint subset of the LP variables and the respective parts
of constraints containing them, that is, each constraint ei-
ther falls completely into one partition, or is partitioned ac-
cording to the variables (may span over multiple partitions).
The potential heuristic LP can be partitioned in n + 1 par-
titions, where the i-th partition comprises of the pot and
maxpot LP variables for V ∈ Vprivi and the public (n+ 1)-
th partition contains the pot and maxpot LP variables for
V ∈ Vpub . The public partition, which may span over con-
straints of multiple agents, does not have to be encrypted
and thus can be treated separately. Thus, each agent knows
complete constraints for its own actions, public part of con-
straints for public actions and its private and public part of
the goal-awareness constraint. The secure LP computation
according to (Mangasarian 2011) proceeds as follows.

Let max cTx be the optimization function and Ax ≤ b,
A ∈ R

l×m the global set of constraints, which means that
the global problem consists of m LP-variables and l con-
straints. The whole computation proceeds as follows:

1. All agents agree on some k ≥ m. A master agent αj

which will compute the LP is selected.
2. Each agent αi s.t. i �= j generates a random matrix Bi ∈

R
k×mi , where mi is the number of LP-variables private to

agent αi and mpub is the number of public LP-variables.
We define B = [B1 ... Bn] ∈ R

k×m, where Bj is a unit
matrix k × (mpub +mj), as αj does not have to encrypt
its part of the LP.

312

3. Each agent αi sends matrix product AiB
T
i and cost coef-

ficient product Bici to agent αj , where Ai and ci are the
parts of the global LP problem private to agent αi.

4. The linear program maximize cTBTu subject to ABT =
A1B

T
1 + ... + AnB

T
n ≤ b is computed by agent αj and

the result vector u is sent to all other agents.

5. Each agent αi reconstructs the solution as xi = BT
i u.

The LP for the potential heuristic differs in two features.
First, there is a public part, which does not have to be en-
crypted. Second, some of the constraints are private-only
and other agents are not aware of them. Therefore, in the
Step 1 above, the agents inform the master agent about the
number of constraints in the form of ki ≥ mi and k is cho-
sen subsequently as k =

∑
αi∈A ki. This allows the agents

to hide the real number of LP variables and thus also the
number of variables in the private part of the planning prob-
lem (the constant ki gives an upper bound). In Step 3 in
addition to the encrypted private part, the agents send to the
master also the unencrypted public part and the part of vec-
tor b respective to the private constraints (this vector encodes
the costs of private actions), which are combined to form the
public part of the LP and the cost vector.

The secure LP computation based on (Mangasarian 2011)
with the described modifications reveals only the cost of pri-
vate operators and an upper bound on their number (more
constraints than the number of private actions can be sent),
but without the rest of their isomorphic image. The number
of variables is hidden by the k value and any information
about private preconditions and effects of operators is hid-
den by the random matrix transformation.

More privacy-preservation can possibly be achieved by
the combination of (Mangasarian 2011) and the Dantzig-
Wolfe decomposition. Recall, that the decomposition is able
to hide the private operator constraints and thus reduce the
disclosure of the private operator costs. Nonetheless, there
are no formal guarantees on the security of the process of
the LP computation using the decomposition.

In (Dreier and Kerschbaum 2011) the authors generalize
the transformation to arbitrarily partitioned problems and
provide formal security analysis. In their approach, the
agents follow a similar in idea, but rather complex proto-
col the description of which is out of scope of this paper.
There is no information openly shared as in the previous
case. There is also a low and quantifiable probability4 of an
attacker succeeding in revealing any part of the original LP,
although having only inequality constraints as in our case
increases the chances. Similar probability can be expected
for (Mangasarian 2011), although it has not been provided
in the literature.

MA Search with A-Agnostic Heuristics

The principle of our multi-agent heuristic search is based on
the MAD-A* algorithm (Multi-Agent Distributed A*) (Nis-
sim and Brafman 2012). The algorithm is a simple exten-
sion of classical A*. The agents search in parallel, possibly

4The authors provide an example with 180 constraints and 282
variables, where the probabilities are below 10−220.

Figure 3: Search using separate public and private parts.
Preserved private information s

priv1
2 [V1] = c of agent α1 in

form of identifier σ2
2 = id12 used by α2 is emphasized.

in a distributed setting (i.e. communicating over a network).
Each agent αi ∈ A searches using its operators from Oi and
if a state s is expanded using a public operator o ∈ Opubi ,
the resulting state s′ is sent to other agents. When some
other agent αj receives the state s′, s′ is added to the OPEN
list of αj and expanded normally when due. The original
MAD-A* uses only projected heuristics. Each state sent by
αi is also accompanied with its αi-projected heuristic esti-
mate and when received, the receiving agent αj computes
αj-projected heuristic estimate of the received state s′ and
takes h(s) = max(hαi(s), hαj (s)).

In MA-MPT, each agent αi can work only with its set of
variables Vi. In order to use the MAD-A* search on the MA-
MPT formalism, each search state has all variables private
to other agents αj �=i replaced by a unique identifier σj . This
identifier refers to the last state on the search path modified
by agent αj . No other agent can reconstruct the private part
from the identifier.

The search process is illustrated in Figure 3. When
an agent receives a state from another agent, it uses
this identifier to retrieve the proper private part. For-
mally, agent αi internally represents state s as a tuple〈
spub, σ1, ..., sprivi , ..., σn

〉
, where spub is the public part of

the state (i.e. assignment to variables in Vpub), sprivi is the
private part of αi (i.e. assignment to variables in Vprivi) and
σ1, ..., σi−1, σi+1, ...σn represents the private parts of other
agents. When sending a state, the private part is replaced by
the respective σi, when received by αj , the σj is replaced
by sprivj from the state determined by σj .

In addition to the method shown in Figure 1, thanks to
the A-agnostic property of the potential heuristic, the sum
of private parts of agents other than αi can be expressed as

313

hG
pot(s)− hpub

pot (s)− h
privi
pot (s) and the following holds:

hG
pot(s

′) = hG
pot(s)− hpub

pot (s)− h
privi
pot (s) + hpub

pot (s
′) + h

privi
pot (s′)

where s′ = o[[s]] for some o ∈ Oi . This means, that the
heuristic estimate of a state s′ can be easily determined from
the heuristic estimate of its predecessor s. When a state is
received from some other agent αj , it is accompanied with
its global heuristic estimate computed by αj . When a state s
is expanded, the heuristic estimate of its successor s′ can be
computed using the above equation. The sum in Equation 2
does not have to be explicitly computed, thus any privacy
concerns of the sum computation are avoided.

Again, referring to the running example, when agent α1

applies the public action a1in sI , resulting in s1, it sends
s1 to α2. Instead of sending the value of hpriv1

pot (s1) as sug-
gested previously, it can send only the value of hG

pot(s1). Af-
ter application of a2, the agent α2 can compute the heuristic
estimate of s2 simply by hG

pot(s2) = hG
pot(s1)− hpub

pot (s1)−
h
priv2
pot (s1)+hpub

pot (s2)+h
priv2
pot (s2) = −1−(−1)−2+(−1)+

0 = −3, which equals the result obtained by the original
computation.

Experimental Evaluation

For the experimental evaluation, we use the distributed track
setup of the CoDMAP5 (Štolba, Komenda, and Kovacs
2016) competition including all 12 benchmarks. Each agent
runs on separate machine with i5-4460 3.4GHz processor
and 8GB memory and has its own problem and domain in-
put files. The agents communicate via TCP/IP on Gigabit
Ethernet. Each run is limited to 30min.

In this section we compare the following approaches to
the computation of the potential heuristic in the multi-agent
setting (as a LP solver we use CPLEX 12.6.1):

hproj
pot-sI The projected heuristic, that is each agent αi com-
putes the heuristic on its own αi-projected problem Παi

(as in MAD-A*). The LP is optimized for the initial
state sI .

hproj
pot-S The projected heuristic, the LP is optimized for all
syntactic states.

hmaxproj
pot-S The heuristic computed as a maximum of projec-
tions. The public potentials are shared. The LP is opti-
mized for all syntactic states.

hG
pot-sI The distributed global heuristic, the LP is optimized
for the initial state sI and with no encryption.

hG
pot-S The distributed global heuristic, the LP is optimized
for all syntactic states and with no encryption.

hG−sec
pot-S The distributed global heuristic, the LP is optimized
for all syntactic states and with encryption based on (Man-
gasarian 2011).

In the case of the secure computation based on (Mangasar-
ian 2011), several additional matrix multiplications are per-
formed, which does not pose significant computational over-
head, as the LP computation itself is a minor part of the

5http://agents.fel.cvut.cz/codmap

planning process. Also, the amount of communication is the
same as when using the plain LP approach. We have mea-
sured the overhead of the secure LP computation with the
following results. Over all problems, the plain LP computa-
tion takes on average 450ms, with maximum 4.5s, while the
secure LP computation takes on average 520ms, with max-
imum 5s. This means that the secure LP computation is on
average only 1.15× slower than the plain LP computation.
The absolute numbers show the impact on the 30min time
limit is negligible for both variants of the LP computation.

This somewhat contrasts with the results shown in Ta-
ble 1. The coverage of secure hG−sec

pot-S is nearly 15 prob-
lems less than the non-secure hproj

pot-S . Although the secure
LP transformation guarantees to return optimal solution, it
does not guarantee to return the same values for the LP vari-
ables (the values depend on the randomly generated matrices
Bi), which may differ but still yield the same optimization
function value. As different values of potentials give differ-
ent heuristic estimates for the same states, the overall per-
formance of the planner may also differ.

domain |A| hproj
pot-S hmaxproj

pot-S hG
pot-S hG−sec

pot-S

blocksworld 4 4 4 13 6
depot 5− 10 6 6 7 4
driverlog 2− 8 15 14 15 13
elevators08 4 2 2 2 2
logistics00 3− 7 4 6 7 6
rovers 4− 10 1 1 1 1
satellites 3− 8 1 1 1 1
sokoban 2− 4 13 13 13 12
taxi 4− 10 20 19 20 20

wireless 6− 10 2 2 2 2
woodw.08 7 4 4 4 4
zenotravel 2− 6 6 6 6 6
total 78 78 91 77

Table 1: The number of solved problems (out of 20 per domain)
(hproj

pot-sI and hG
pot-sI solved 74 and 90 problems respectively).

domain |A| hG
pot-S hproj

LM-Cut hG
LM-Cut

blocksworld 4 13 2 1
depot 5− 10 7 6 2
driverlog 2− 8 15 15 10
elevators08 4 2 2 0
logistics00 3− 7 7 5 5
rovers 4− 10 1 1 1
satellites 3− 8 1 2 3

sokoban 2− 4 13 13 4
taxi 4− 10 20 20 14
wireless 6− 10 2 4 3
woodw.08 7 4 4 5
zenotravel 2− 6 6 6 6
total 91 80 54

Table 2: The number of solved problems (out of 20 per domain).

The secure computation based on (Dreier and Ker-

314

0e+00 1e+08 2e+08 3e+08 4e+08 5e+080e
+0

0
2e

+0
8

4e
+0

8

bloc
depo
driv
elev
logi
rove
sate
soko
taxi
wire
wood
zeno

Figure 4: Ratios hproj
pot-S/h

G
pot-S of expanded states per problem.

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.
0

10
00

.0

bloc
depo
driv
elev
logi
rove
sate
soko
taxi
wire
wood
zeno

Figure 5: Time ratios hG
LM-Cut/h

G
pot-S per problem.

schbaum 2011) was not part of the experimental evaluation.
Although this variant requires more matrix operations than
(Mangasarian 2011), we still assume the overhead to be min-
imal in comparison with the MAD-A* search. Note, that
vast majority of the unsolved problems are unsolved due to
memory consumption and not due to reaching the time limit.

In Table 1, we present the numbers of solved problems for
the variants of the potential heuristics for each competition
domain (hproj

pot-sI and hG
pot-sI solved 74 and 90 problems in

total respectively). The results show that the heuristics opti-
mized for the set of all syntactic states (S) perform slightly
better, as expected. Also the global heuristics perform bet-
ter than the projected variants, as they are better informed,
but does not cause any communication overheads. Even the
hmaxproj
pot variant does not bring any substantial improvement,

as the global information is still missing there. The ratio of
expanded states of hproj

pot-S vs. hG
pot-S in Figure 4 shows that

the informativeness of the global and projected heuristics is
similar, except for the blocksworld, depot and logistics00 do-
mains, which corresponds with the coverage results. In a
few problems, the projected heuristic offers better guidance.

Comparison with the state of the art

Finally, we compare the MAD-A* search using the global
(hG

pot-S) potential heuristic with the state of the art. Namely,
we compare it with the best performing distributed optimal
multi-agent planner (Fišer, Štolba, and Komenda 2015) in
CoDMAP, using a projected (hproj

LM-Cut) and global distributed

hproj
pot-S hG

pot-S hG−sec
pot-S hproj

LM-Cut hG
LM-Cut

score 56.5 57.9 54.5 48.8 22.7

Table 3: IPC Agile Score.

(hG
LM-Cut) versions of the LM-Cut heuristic.
Comparison of the number of problems solved by the

planners is shown in Table 2. Whereas the performance
of the projected heuristics hproj

pot-S and hproj
LM-Cut is on par, the

global versions indeed show the strength of hG
pot-S , which is

more informed than hproj
pot-S but does not incur any additional

computation or communication costs. This results in a bet-
ter coverage then other compared heuristics, especially the
global version of LM-Cut, where the difference is over 40
problems in total.

In order to emphasize the results, let us compare results
for the classical centralized versions of the heuristics in the
literature. In (Pommerening et al. 2014b), the LM-Cut is
reported to have coverage of 763, whereas in (Seipp, Pom-
merening, and Helmert 2015) the potential heuristic opti-
mized for initial state and all syntactic states have coverage
of 611 and 659 respectively (on the same experimental set-
ting). This illustrates that although in the centralized set-
ting, the LM-Cut heuristic performs significantly better, in
the distributed setting, the properties of hG

pot give it a signif-
icant advantage. More advanced techniques for computing
the optimization function proposed in (Seipp, Pommeren-
ing, and Helmert 2015) would probably improve the results
of hG

pot even more.
In Table 3, the IPC Agile scores for each of the configu-

rations are shown. The score is computed as a sum over all
problem scores. For a given problem let T ∗ be the minimum
time required by any planner to solve the problem. A con-
figuration that solves the problem in time T gets a score of
1/(1+ log10(T/T

∗)) for the problem. Search guided by any
variant of the potential heuristic is faster (have higher score)
than the projected LM-Cut heuristic and significantly faster
than the global LM-Cut heuristic. Results for the global
variants of the potential and LM-Cut heuristics are shown
in Figure 5 as a per-problem ratios (restricted to problems
solved by both). With a small number of exceptions, the
hG
pot-S heuristic guided the search much faster.

Conclusion

The recently proposed class of potential heuristics proved
to be a good candidate for a distributed multi-agent heuris-
tic such that the global estimate can be computed as a sum
of its local parts. This enables multi-agent search to com-
pute better informed global estimate without any additional
costs. Moreover, the heuristic can be computed in a privacy-
preserving way. According to the experimental evaluation,
such secure computation does not incur any significant over-
head in terms of planning speed, although the difference in
the resulting heuristic has impact on the performance. The
newly proposed distributed heuristic outperforms the state-
of-the-art distributed LM-Cut heuristic, even though it is
vice versa in the centralized case. Even better performance

315

can be probably obtained by more elaborate techniques for
selecting the optimization criterion in the LP computing of
the potentials for the potential heuristic.

Acknowledgments We highly appreciate the valuable
feedback from anonymous reviewers, regarding all revisions
of the paper.

This research was supported by the Czech Science
Foundation (grants no. 13-22125S and 15-20433Y) and
by the Grant Agency of the CTU in Prague (grant no.
SGS14/202/OHK3/3T/13). Access to computing and stor-
age facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided un-
der the program “Projects of Large Infrastructure for Re-
search, Development, and Innovations” (LM2010005), is
greatly appreciated.

References

Bäckström, C. 1992. Equivalence and tractability results
for SAS+ planning. In Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and
Reasoning (KR), 126–137.
Brafman, R. I., and Domshlak, C. 2008. From one to many:
Planning for loosely coupled multi-agent systems. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 28–35.
Brafman, R. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the 3rd
Distributed and Multiagent Planning (DMAP) Workshop of
ICAPS’15, 1–8.
Dreier, J., and Kerschbaum, F. 2011. Practical privacy-
preserving multiparty linear programming based on prob-
lem transformation. In Proceedings of IEEE 3rd Interna-
tional Conference on Privacy, Security, Risk and Trust (PAS-
SAT) and IEEE 3rd Third Inernational Conference on Social
Computing (SocialCom), 916–924.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
In Proceedings of the 2nd International Joint Conference on
Artificial Intelligence (IJCAI), 608–620.
Fišer, D.; Štolba, M.; and Komenda, A. 2015. MAPlan. In
Proceedings of the 1st Competition of Distributed and Multi-
Agent Planners (CoDMAP), 8–10.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 162–169.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Holmgren, J.; Persson, J.; and Davidsson, P. 2009. Agent-
based Dantzig-Wolfe decomposition. In Agent and Multi-
Agent Systems: Technologies and Applications, Lecture
Notes in Computer Science. Springer Berlin Heidelberg.
754–763.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy preserv-
ing landmark detection. In Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI), 597–602.

Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserv-
ing pattern databases. In Proceedings of the 3rd Distributed
and Multiagent Planning (DMAP) Workshop of ICAPS’15,
9–17.
Mangasarian, O. L. 2011. Privacy-preserving linear pro-
gramming. Optimization Letters 5(1):165–172.
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for
parallel and distributed systems. In Proceedings of the 11th
International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), 1265–1266.
Nissim, R., and Brafman, R. 2014. Distributed heuristic for-
ward search for multi-agent planning. Journal of Artificial
Intelligence Research 51:293–332.
Pommerening, F., and Helmert, M. 2015. A normal form for
classical planning tasks. In Proceedings of the 25th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 188–192.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2014a. From non-negative to general operator cost parti-
tioning: Proof details. Technical Report CS-2014-005, Uni-
versity of Basel, Department of Mathematics and Computer
Science.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014b. LP-Based heuristics for cost-optimal planning. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 226–234.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence, 3335–3341.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New op-
timization functions for potential heuristics. In Proceedings
of the 25th International Conference on Automated Planning
and Scheduling (ICAPS), 193–201.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 298–306.
Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissible
landmark heuristic for multi-agent planning. In Proceedings
of the 25th International Conference on Automated Planning
and Scheduling (ICAPS), 211–219.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2016. Com-
petition of distributed and multiagent planners (CoDMAP).
In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (What’s Hot Track).
Torreño, A.; Onaindia, E.; and Sapena, O. 2014. FMAP:
distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.
Tožička, J.; Jakubův, J.; and Komenda, A. 2014. Generating
multi-agent plans by distributed intersection of finite state
machines. In Proceedings of 21st European Conference on
Artificial Intelligence (ECAI), 1111–1112.

316

