
Domain Model Acquisition
in Domains with Action Costs

Peter Gregory and Alan Lindsay
Digital Futures Institute,
School of Computing,

Teesside University, UK
firstinitial.lastname@tees.ac.uk

Abstract

This paper addresses the challenge of automated numeric do-
main model acquisition from observations. Many industrial
and commercial applications of planning technology rely on
numeric planning models. For example, in the area of au-
tonomous systems and robotics, an autonomous robot often
has to reason about its position in space, power levels and
storage capacities. It is essential for these models to be easy to
construct. Ideally, they should be automatically constructed.
Learning the structure of planning domains from observations
of action traces has produced successful results in classical
planning. In this work, we present the first results in gener-
alising approaches from classical planning to numeric plan-
ning. We restrict the numeric domains to those that include
fixed action costs. Taking the finite state automata generated
by the LOCM family of algorithms, we learn costs associ-
ated with machines; specifically to the object transitions and
the state parameters. We learn action costs from action traces
(with only the final cost of the plans as extra information) us-
ing a constraint programming approach. We demonstrate the
effectiveness of this approach on standard benchmarks.

Introduction

In this paper, we demonstrate a new domain model acqui-
sition system that learns action costs in planning domains.
Many commercial and industrial applications of automated
planning technology rely on numeric state variables. For ex-
ample, in constructing policies for the use of batteries (Fox,
Long, and Magazzeni 2011), the construction of machine
tool calibration plans (Parkinson et al. 2012) and space-
craft orbit planning (Surovik and Scheeres 2015). Within
both board games and video games, numeric models are
crucial in order to encode scoring systems, resource use,
etc. Within interactive narrative settings, numeric variables
represent varied structures, such as strength of relationships
in social networks (Porteous, Charles, and Cavazza 2013;
2015) and the level of tension (Porteous et al. 2011) within
a certain scene.

Modelling is the process of specifying a problem in a
formal language, thus making it amenable for solving us-
ing general algorithmic techniques. Modelling is considered

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to be a bottleneck in the process of tackling combinato-
rial problems, due to the skills required to develop these
models. Model generation is a crucial process within the
planning community. Systems have been developed to aid
a domain modeller, similar to Integrated Development En-
vironments for use by software engineers. For example, the
GIPO (Simpson, Kitchin, and McCluskey 2007) system, it-
SIMPLE (Vaquero et al. 2007) system and KIWI (Wickler,
Chrpa, and McCluskey 2014) system. These modelling tools
are useful for rapid development of domains by an experi-
enced domain modeller.

Another avenue of research to aid in the modelling pro-
cess is based on learning models from example solutions:
namely that of domain model acquisition, which is the core
topic of this work.

Domain Model Acquisition

Within this work, when we refer to domain model acquisi-
tion, we refer to the learning of a planning domain from ex-
ample data that includes sequences of state transitions. There
is interest in applying domain model acquisition across a
range of research and application areas. For example within
the business process community (Hoffmann, Weber, and
Kraft 2012) and space applications (Frank et al. 2011). An
extended version of the LOCM domain model acquisition
system (Cresswell, Mccluskey, and West 2009) has also
been used to help in the development of a puzzle game
(Ersen and Sariel 2015) based on spatio-temporal reason-
ing. Web Service Composition is another area in which do-
main model acquisition techniques have been used (Walsh
and Littman 2008). More generally, the area of learning ac-
tion models from observation has been studied in robotics
(Cakmak, Chao, and Thomaz 2010; Baranes and Oudeyer
2013), although typically this is in the context of reinforce-
ment learning. In contrast to this, in the planning commu-
nity, factored symbolic models are typically learnt.

We address the challenge of domain model acquisition in
the presence of action costs. We aim to remain as close to
the ideals of the LOCM family of algorithms (i.e. learning
from minimal amounts of input) as is feasible. It seems rea-
sonable to think that some knowledge of plan cost must be
known in order to derive individual action costs. Provided
this premise, we endeavour to produce hypotheses given a
collection of plans and only the final value of the accu-

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

149

(define (domain transport)
(:types

location target locatable - object
vehicle package - locatable
capacity-number - object

)
(:predicates

(road ?l1 ?l2 - location)
(at ?x - locatable ?v - location)
(in ?x - package ?v - vehicle)
(capacity ?v - vehicle ?s1 - capacity-number)
(capacity-predecessor ?s1 ?s2 - capacity-number)

)
(:functions

(road-length ?l1 ?l2 - location) - number
(total-cost) - number

)
(:action drive
:parameters (?v - vehicle ?l1 ?l2 - location

?c - capacity)
:precondition (and

(at ?v ?l1)
(capacity ?v ?c)
(road ?l1 ?l2)

)
:effect (and

(not (at ?v ?l1))
(at ?v ?l2)
(increase (total-cost) (road-length ?l1 ?l2))

))
(:action pick-up

:parameters (?v - vehicle ?l - location
?p - package ?s1 ?s2 - capacity-number)

:precondition (and
(at ?v ?l)
(at ?p ?l)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s2)

)
:effect (and

(not (at ?p ?l))
(in ?p ?v)
(capacity ?v ?s1)
(not (capacity ?v ?s2))
(increase (total-cost) 1)

))
(:action drop
:parameters (?v - vehicle ?l - location

?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(in ?p ?v)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s1)

)
:effect (and

(not (in ?p ?v))
(at ?p ?l)
(capacity ?v ?s2)
(not (capacity ?v ?s1))
(increase (total-cost) 1)

)))

Figure 1: Transport Domain: An example of a domain with
action costs. Note that the pickup and drop operators have
a fixed cost, whereas the drive operator has a cost defined
by the problem instance. This domain provides a running
example through the paper.

mulated cost variable. In order to learn the numeric action
costs we use a constraint programming approach, in order
to search for consistent sets of action costs across multiple
plans. Models of the state transition systems will be learnt
without action costs, and then each plan can be seen as a lin-
ear equation over the transitions within that plan. Each plan
can be viewed as a set of constraints over its final action cost,
and actions between certain subsets of the plans are required
to have consistent valuations.

Background

Domain model acquisition is the problem of learning a for-
mal domain model of a system from some form of input
data. There are three main ways in which domain model
acquisition systems vary: the nature of the input data they
receive, the expressiveness of the target language and the
query system by which they acquire the input data.

The ideal domain model acquisition system would be
able to target the most expressive modelling language, us-
ing the minimal amount of available input data. The LOCM,
LOCM2 and LOP systems demonstrate the progress that has
been made in learning models in increasingly complex mod-
elling languages using a minimal amount of information. A
key open question concerns the extent to which this process
can be continued: what is the most expressive modelling lan-
guage that can be targeted using minimal input? Since nu-
meric planning is of critical importance to users of planning
technology, this work is focssed on developing techniques to
learn numeric planning models.

The domain model acquisition system that we introduce
in this paper uses the LOCM2 and LOP systems as pre-
processing steps. In order to describe these two systems, and
also our own, we introduce the Transport domain as a run-
ning example.

Running Example: The Transport Domain

Figure 1 shows the Transport domain, which is a typical
logistics-type planning domain. It has three operators, each
with an action cost. There is a unit cost of picking up or
dropping off items from the truck. The cost of driving be-
tween locations is determined by the road length between
those two places. Note that the domain is slightly modified
from the benchmark domain. An extra parameter has been
added to the drive action, along with a precondition in the
same action. This parameter represents the current capacity
of the truck, and the precondition simply ensures that the
capacity parameter is indeed the capacity of the truck. This
change does not alter the search space in any way, but as
noted in (Gregory and Cresswell 2015), in order for LOCM
and LOCM2 to correctly learn the domain dynamics, the in-
put plans are modified.

The LOCM Algorithms

Typical strategies for the acquisition of domain models from
information-sparse input sets make restrictive assumptions
about the form of the output domain. For example, the
LOCM family of systems (Cresswell, Mccluskey, and West
2009; Cresswell and Gregory 2011; Gregory and Cresswell
2015) operate with the assumption that each object is repre-
sented by a parameterised finite state machine.

Their distinguishing feature is that they learn the domain
dynamics from very sparse information. They use no other
information besides the action sequences, such as those
shown in Figure 2 for the Transport domain, i.e. no infor-
mation about types, predicates, initial or final states. This is
possible because of restricting assumptions about the form
of the domain model. The key assumptions of the LOCM
family of algorithms are: that the behaviour of each object is

150

PLAN 1: COST 143
drive truck2 loc3 loc1 cpy3
pickup truck2 loc1 pkg1 cpy2 cpy3
drive truck2 loc1 loc3 cpy2
pickup truck2 loc3 pkg3 cpy1 cpy2
pickup truck1 loc2 pkg4 cpy2 cpy3
drive truck2 loc3 loc1 cpy1
drop truck2 loc1 pkg1 cpy1 cpy2
drive truck2 loc1 loc3 cpy2
drive truck2 loc3 loc2 cpy2
pickup truck1 loc2 pkg2 cpy1 cpy2

PLAN 2: COST 151
pickup truck2 loc6 pkg1 cpy3 cpy4
pickup truck2 loc6 pkg3 cpy2 cpy3
drive truck2 loc6 loc2 cpy2
pickup truck1 loc6 pkg4 cpy1 cpy2
drive truck1 loc6 loc2 cpy1

Figure 2: Two plans from the Transport domain. Collections
of plans form the input to many domain model acquisition
systems.

described by one (or more in LOCM2) finite state machines
whose arcs are the transitions that change the state of the ob-
ject. And crucially, each of these transitions can only occur
once in an object’s FSM.

An example of the output of LOCM is shown in Figure 3.
There are three state machines shown: one is the zero state
machine, and one each for the Truck and the Package types.
The meaning of the Package FSM is that a package can be in
two states (in and out of a truck). Within a truck, it has an as-
sociation with a truck, and when outside of a truck it has an
association with a location (represented by the state param-
eters in square brackets). The Truck type is represented by a
single state FSM, where the only interesting structure is in
the state parameters. The zero machine is the FSM induced
by adding a special zeroth parameter object to every action,
and it represents enforced patterns in operator application.

The LOCM and LOCM2 algorithms only learn the dy-
namic aspects of the domain (i.e. state changes that occur
due to action application). This is not sufficient since many
domains use static relations to restrict the possible actions.
Consider the Transport domain, where the road map is en-
coded as a binary static predicate. The LOP system (Gre-
gory and Cresswell 2015) learns static relations by compar-
ing optimal input plans with the optimal plans found us-
ing the induced domain model of LOCM2. Assuming that
LOCM2 has detected the dynamics of the problem correctly,
then if the induced plan is shorter, then this provides evi-
dence to support the hypothesis that some static relation has
gone undetected. The learnt model can be translated into
the STRIPS fragment of PDDL. Each FSM state is repre-
sented by a PDDL predicate having its associated object as
first argument, with further arguments formed from state pa-
rameters. Operators are constructed from the transitions and
their parameters, using the binding constraints discovered
between action parameters and state parameters. Static rela-
tions are encoded using the output from LOP.

Zero:

zero
drive.0

pick-up.0
drop.0

Truck: at
[loc]
[cap]

drive.1
pick-up.1

drop.1

Package:
at

[loc]
in

[truck]

pick-up.3

drop.3

Figure 3: The finite state machines derived by LOCM for
the truck type in the transport domain for the two interesting
object types: package and truck. The truck state machine has
a single state, with two state parameters for the location of
truck and the capacity of the truck.

Modelling Action Costs

Within this section, we will introduce new techniques that
allow the acquisition of numeric domain models from ex-
ample transition traces. We will focus on doing this in an
information-sparse setting, similar to the LOCM family of
algorithms.

Action costs in planning

One common restriction of numeric variables in planning is
that of action costs, mainly due to the influence of SAS+
(Bäckström and Nebel 1995) based planners. This restric-
tion means that each ground action has a constant cost, and
that the only numeric variable accumulates the sum of these
individual action costs over the length of the plan. This ac-
cumulated value is the optimisation variable.

Action costs can be seen as a single constant value at-
tributed to each ground action; indeed, this is how most
formal definitions of planning problems proceed. However,
in practice domain engineers may define the action cost
through an accumulated sum of constant functions defined
over subsets of operator parameters. For example, in the
Transport domain, the cost of the drive action is defined by
the distance between the start and end locations. This situa-
tion is described formally in Table 1. There are four operator
arguments for the drive operator, and it is possible in the do-
main to model a constant function over any subset of the
operator parameters. Therefore, the overall operator cost is
determined by the sum of all of those contributing functions.
Table 1 enumerates all templates and identifies the contribut-
ing ones for the drive action: namely the set containing the
start and destination locations.

A domain model which satisfies this template must pro-
vide the machinery to define the cost function based on these

151

Template Parameters Contributes

{} {} 0
{1} {?v} 0
{2} {?l1} 0
{3} {?l2} 0
{4} {?c} 0
{1, 2} {?v, ?l1} 0
{1, 3} {?v, ?l2} 0
{1, 4} {?v, ?c} 0
{2, 3} {?l1, ?l2} 1
{2, 4} {?l1, ?c} 0
{3, 4} {?l2, ?c} 0
{1, 2, 3} {?v, ?l1, ?l2} 0
{1, 2, 4} {?v, ?l1, ?c} 0
{1, 3, 4} {?v, ?l2, ?c} 0
{2, 3, 4} {?l1, ?l2, ?c} 0
{1, 2, 3, 4} {?v, ?l1, ?l2, ?c} 0

Table 1: Table of contribution for each parameter template
of the drive operator in the Transport domain. The only se-
lected template is {2, 3}, which corresponds to the start and
destination locations.

parameters (e.g., a function cost-of-drive-2-3 ?l1
?l2) corresponding to road-length in the original do-
main. For each template identified, a set of ground instanti-
ations of these functions must be provided in the initial state
of each problem instance. For example, the drive template
identified would require an initial state to contain assign-
ments to the cost-of-drive-2-3 function for all valid
combinations of locations.

When searching for the most appropriate definition of the
action costs underlying a domain, we define our hypothesis
space as the space of all combinations of templates for each
operator. In general, this is too large a space to search in:
the number of templates scales exponentially as the num-
ber of parameters increases in the operators. We will refine
this later using the structure of the LOCM-derived state ma-
chines.

Numeric State Machine Representation

It is possible to learn propositional action models in the
LOCM family of algorithms because of assumptions made
about the underlying model, as discussed in earlier sections.
An important problem in creating a numeric domain model
acquisition system is therefore identifying the most appro-
priate formalism required to model numeric domains. We
propose a model that extends the finite state automata of
LOCM to automata with numeric weights on the important
features (i.e. the object transitions and the state parameters).

Figure 4 shows the desired output from our learning pro-
cess. Figure 4 shows the state machines for the same object
types as in Figure 3 but now labelled with costs. Costs are
labelled in rounded brackets, and can be seen on the zero
machine on the object transitions, and on the truck machine
on the ‘loc’ state parameter. The meaning of a cost on a tran-
sition in the zero machine is that the operator associated with

Zero:

zero
drive.0

pick-up.0 (1)
drop.0 (1)

Truck: at
[loc] (c)
[cap]

drive.1
pick-up.1

drop.1

Package:
at

[loc]
in

[truck]

pick-up.3

drop.3

Figure 4: The finite state machines derived by LOCM anno-
tated by numeric weights that refer to the cost of particular
transitions in the state machines. The zero machine now has
a cost associated with drop and pick-up, and the truck has a
cost associated with the loc state parameter.

that transition costs the indicated amount for all groundings.
This is reflected in the textual description of the domain, in
which both pick-up and drop have an action cost of 1. The
cost of driving is encoded as the distance between the start
and destination. The relationship between start and destina-
tion is represented by the change in the loc state parameter
in the truck state machine when a drive action occurs. There-
fore, the loc state parameter is labelled with a variable cost
c, which takes a different constant value, depending on the
grounding of the operator.

We now describe how we can learn these domain mod-
els by using a constraint programming approach, which we
name NLOCM (short for Numeric LOCM).

The NLOCM Constraint Model

The NLOCM system learns action costs by modelling the
task as a constraint programming problem. In order to dis-
cuss this model, we introduce a formalisation of the problem
input. As stated previously, our input is a collection of plans.
We denote the input as Π, and for P input plans, we have:

Π = [π1, ..., πP]

We also define a cost function over these plans, based on the
input costs, and a length function, based on the number of
ground actions in a plan.

c(πi) = input cost (1 ≤ i ≤ P)

l(πi) = input length (1 ≤ i ≤ P)

We use the subscript to refer to ground actions within each
plan, in the following way:

152

πi = [πi
1, ..., π

i
l(πi)]

And finally, we can define the set of all observed ground
actions as the union of all of the actions seen in all plans:

A =
⋃

π∈Π

{π1, ..., πl(π)}

We also denote by AO ⊆ A the set of ground actions ob-
served of the operator O. We now describe our constraint
model in a number of stages, before describing the search
strategies that we use in order to learn domain models.

Base Model

In the base model, we encode ground action costs and pose
constraints over the input plans. Therefore, for each ground
action, we define an integer variable:

A1..|A| : Integer (V1)

Then for each input plan, we encode a linear constraint, such
that the sum of the costs of its individual actions is equal to
the cost of the entire plan:

l(πp)∑

i=1

(πp
i) = c(πp) (πp ∈ Π) (C1)

Any two identical ground actions in the input plans will be
represented by the same variable in the constraint model.
This is true even between different input plans, so long as
they are drawn from the same state space (i.e. the same plan-
ning problem). The base model allows us to learn a model
of the ground action costs for a specific set of problem in-
stances. This is useful if all further planning will occur in the
same state space. However, in domain model acquisition, we
are interested in deriving the more general domain structure.
Ideally, we want a finer grained model in which we know
exactly how the action cost for each operator is calculated.
This finer grained model will explore a subset of the con-
tributors to action costs that we described in the background
section. We now describe this extension to our model.

Encoding Operator and Ground Action Templates

For each operator, O, we define a set of templates, TO over
its arguments that we have determined as interesting. As dis-
cussed previously, the choice of template is driven pragmat-
ically from the structure of our target formalism, and is in-
formed by the output of LOCM2 and LOP. We can define
the templates generally as follows:

TO ⊆ P(args(O)) (O ∈ O)

We also define TA = TO, where A is an instantiating action
of operator O. Now, given our templates for each operator,
we can define a set of variables to represent whether they are
used in the model. For each operator, O, we add the follow-
ing variables:

ActiveOτ : [0, 1] (τ ∈ TO) (V2)

Each template within TO defines a set of arguments that are
assigned a constant cost in each problem instance. For ex-
ample in the transport domain example, setting the template
variable Activedrive{2,3} = 1 means that, for the drive opera-
tor, the output domain will have a cost contribution from the
second and third parameters. When trying to discover the
contributing templates, however, we need to reason about
the specific costs of actions in the input plans. Therefore, we
require variables to represent ground template values. For
each operator, O, we introduce the following variables:

GroundAτ : Integer (A ∈ AO, τ ∈ TO) (V3)

Since in our model, we assume that these contributors are
the only contributors to the cost of the operator, we can state
that the ground action cost is the sum of the corresponding
action templates. For each operator, O:

A =
∑

τ∈TA

GroundAτ (A ∈ AO) (C2)

A constraint is added such that if a template is inactive, all
of its groundings are set to zero (i.e. they do not contribute
to the cost of the action):

(ActiveOτ = 0) =⇒
∑

A∈AO

GroundAτ = 0 (C3)

Thus, the variable, ActiveOτ , controls whether the template,
τ , can be used to explain plan cost. Given that we have an
adequate selection of templates, we can now search for sat-
isfying action cost configurations. In practice, there can be
many assignments that satisfy the constraints that we have
specified. We now discuss a heuristic method that we use in
order to distinguish between these different solutions.

Optimisation

An important heuristic used for choosing between hypothe-
sised explanations of training data is to select the most lim-
ited language. In this work, this relates to the number of tem-
plates that must be added into the domain in order to explain
the plan costs. However, it also relates to the complexity of
the required templates. For example, in general, it is eas-
ier to define a problem’s cost model using arity 1 templates
rather than arity 4 templates. We therefore add a bias, which
promotes simpler explanations through the use of fewer and
more general templates.
We introduce a variable and constraint to represent the com-
plexity of the active templates:

Complexity : Integer (V4)

Complexity =
∑

O∈O

∑

τ∈TO

ActiveOτ × (arity(τ)+1) (C4)

The complexity of each active template is its arity (plus
1 to account for operator cost), which penalises high arity
templates. The optimisation problem solved by NLOCM is
to minimise the Complexity variable.

153

Search Strategy

As mentioned previously, there are different templates avail-
able for what contributes to the action cost of each operator
in the domain. The NLOCM search strategy is to succes-
sively solve more and more complex template sets until a
satisfying assignment is found. The assignment that min-
imises the complexity cost is selected, in other words the
simplest language that describes the action cost. The order-
ing of the templates is as follows:

1. Operator costs: Operator costs are those fixed costs asso-
ciated to an operator in all problem instances. The most
obvious example is the unit operator cost in pure STRIPS
domains.

2. Action costs: Action costs are instance-specific costs as-
signed to operators. These are less common in the bench-
mark domains.

3. State Parameters: As discussed in the background section,
LOCM and LOCM2 identify state parameters by finding
object associations within operator argument lists. Cer-
tain operators change the object identified in the state pa-
rameter. For example, the location state parameter in the
truck machine of the Transport domain is changed by ar-
guments 2 and 3 of the drive action. Because these rela-
tionships are known to be significant, we add their corre-
sponding templates as potential contributors to the action
costs.

4. Static Parameters: Similarly to state parameters, we now
consider adding templates based on the static relations
identified by the LOP system. Recall that LOP identifies a
static relation for each operator. The scope of these static
relations, thus forms a new template for each operator.

5. Single Transition Costs: This step allows costs to be as-
sociated with individual operator arguments (imagine, for
example, if in the transport domain a fee had to be paid
to enter a city). This step consists of a number of sub-
steps intended to reduce the search space and increase the
likelihood of finding solutions. In each step, we allow an
incrementally increasing number of single parameters to
contribute to the action cost. STCO is used to denote, for
each operator, the set of templates added at this layer. The
following constraint is relaxed incrementally, by increas-
ing the size, p, from 1 to the max action arity:

|{τ : τ ∈ STCO ∧ Activeτ = 1}| ≤ p (C5)

If these levels are exhausted and no valid cost model is
found then we return failure. Note that although NLOCM
relies on LOCM2 and LOP output, if neither of these sys-
tems return a solution then NLOCM can still proceed with-
out steps 3 and 4 defined above.

Empirical Analysis

We now provide a discussion of our empirical evaluation on
a large collection of benchmark planning domains. The re-
sults of our evaluation are shown in Table 2. All of our ex-
periments are run on Mac OSX version 10.11.1 using an In-
tel 2 GHz i7 CPU with 8 GB system memory. NLOCM is
implemented in Java (version 1.8.65) using the Choco con-
straint library (Prud’homme, Fages, and Lorca 2014) version

3.3.1. We use the domain over weighted degree variable se-
lection heuristic, with a geometric restart policy. We use a
ten minute time cutoff for any one constraint search.

Training Data Generation

We generate the training data for our evaluation using small
sets of benchmark problem instances (typically 10) for each
domain. Each problem is used as a starting point to gener-
ate a collection of related plans through a series of random
walks. Each random walk is generated by first making a ran-
dom number of steps from the initial state to select a start-
ing state and then taking a fixed number of random steps
from that state. These actions are recorded and their costs
are summed to calculate the plan’s cost.

In cases where certain operators are not used in any of
the generated plans, we first attempt increasing the length of
the walks and if there are still missing operators then we
change the selected problems. This latter step is required
in domains where increased complexity in problem mod-
els requires (or allows) the use of additional operators, as
is the case in the Pipesworld domains. In some cases we
have found that the generated constraint model is too large
to solve and we have generated shorter plans. We comment
on these below. We did not test our system on domains Cy-
bersec, Parc Printer and PSR Small, as the benchmark in-
stances are pre-compiled grounded instances and the origi-
nal domains are unavailable.

Discussion of Results

We discuss the results from Table 2 in more detail now.
We break the domains into three categories: STRIPS do-
mains, easy action-cost domains and hard action-cost do-
mains (where easy and hard relate to the level of template
complexity).
STRIPS Domains: Benchmark domains that do not explic-
itly define action costs can be seen as simply having unit
action costs. These domains vary in the number of operators
from one in visitall to thirty in tidybot. In most cases we have
used plan sets of 100 random walks of length 10 from the
first 10 benchmark problems. The initial random walks did
not include all of the operators in five domains. Generating
longer walks was sufficient for the Thoughtful domain and a
different set of benchmark problems (6-15) solved the prob-
lem for the three Pipesworld domains. In the Tidybot domain
the number of problem instances and the length of the walks
were extended before all 30 operators were observed in the
random walks. In each case, NLOCM correctly stopped at
the first language level, indicating that the plan costs could
be explained by attributing costs to operators only. In all
domains except AOP Freecell, NLOCM identified that each
operator in the domain had an associated operator cost and
that each of these costs was 1. In AOP Freecell (a remod-
elled version of Freecell), a hand mediates card movements
and therefore random walks alternate between pickups and
putdowns. The generated model attributes cost 2 to each of
the three putdown operators. The correct model was selected
when we used random walks with an odd length.
Easy Action Cost Domains: Of the benchmark domains
that define action costs, nine are solvable with only operator

154

Domain Operators Input Plans LOCM Performance NLOCM Performance
#Ops. Comp. #Prob. Len. #Plan LOCM LOCM2 LOP Time Comp. Valid Error

Airport 4 4 10 10 100 � � � 1.0 4 � 0
AoP Freecell 8 8 10 10 100 � � � 0.7 3 � 5
Barman 12 12 10 10 100 � � � 2.2 12 � 0
Blocks-reduced 4 4 10 10 100 � � � 1.8 4 � 0
Childsnack 6 6 10 10 100 � � � 1.4 6 � 0
Cybersec – – – – – � � � – – – –
Depot 5 5 10 10 100 � � � 1.7 5 � 0
Driverlog 6 6 10 10 100 � � � 1.8 6 � 0
Elevators 6 12 10 4 250 � � � 80.7 12 � 0
Floortile 7 7 10 10 100 � � � 1.9 7 � 0
Freecell 10 10 10 10 100 � � � 1.9 10 � 0
Ged 21 6 10 10 100 � � � 1.7 6 � 0
Grid 5 5 5 10 100 � � � 1.0 5 � 0
Gripper 3 3 10 10 100 � � � 1.7 3 � 0
Hiking 7 7 10 10 100 � � � 1.8 7 � 0
Logistics00-reduced 6 6 10 10 100 � � � 1.7 6 � 0
Mprime 4 4 10 10 100 � � � 2.0 4 � 0
Mystery 3 3 10 10 100 � �* � 1.3 3 � 0
No Mystery 3 3 10 10 100 � �* � 1.5 3 � 0
Openstacks 4 1 10 10 100 � � � 1.1 1 � 0
Parc Printer – – – – – � � � – – – 0
Parking 4 4 10 10 100 � � � 2.4 4 � 0
Peg Solitaire 3 1 10 10 100 � � � 1.1 1 � 0
Pipesworld 6 6 10 10 100 � � � 2.2 6 � 0
PW no Tankage 6 6 10 10 100 � � � 2.0 6 � 0
PW Tankage 6 6 10 10 100 � � � 2.2 6 � 0
PSR Small – – – – – � � � – – – –
Rovers 9 9 10 10 100 � � � 2.1 9 � 0
Satellite 5 5 10 10 100 � � � 1.8 5 � 0
Scanalyzer 4 4 10 10 100 � � � 1.8 4 � 0
Sokoban 3 2 10 10 100 � � � 0.8 2 � 0
Storage 5 5 10 10 100 � � � 1.8 5 � 0
Tetris 6 6 10 10 100 � � � 1.9 6 � 0
Thoughtful 21 21 5 50 100 � � � 1.7 21 � 0
Tidybot 30 30 15 100 100 � � � 9.7 30 � 0
TPP 4 4 10 10 100 � � � 1.6 4 � 0
Transport 3 5 10 4 250 � �* � 52.3 5 � 0
Visitall 1 1 10 10 100 � �* � 1.3 1 � 0
Woodworking 13 17 10 1 1000 � � � 605.2 20 � 3
Zenotravel 5 5 10 10 100 � �* � 1.6 5 � 0

Table 2: Table of results running NLOCM on a collection of benchmark domains. Headings refer to #Ops. (number of operators)
Comp. (complexity of benchmark model) #Prob. (number of plan sets/problems) Len. (length of random walks) #Plan (plans
per plan set) LOCM, LOCM2 and LOP (whether the output from the LOCM family was valid) Time (time to select model in
seconds) Comp. (complexity of model selected by NLOCM) Valid (whether the model matched the benchmark, stars indicate
that the correct model was identified after the original training data was changed) Error (number of errors in selected model).

costs: these are Sokoban, Floortile, Parking, Ged, No Mys-
tery, Tetris, Peg Solitaire, Barman and Openstacks. NLOCM
correctly identifies that only operator costs are required and
it identifies the correct operator cost for each operator for
these domains. Of these domains, Parking and No Mystery
define unit cost for each operator and therefore are equiva-
lent to the cases above. In the three domains Tetris, Floor-
tile and Barman, the operators each have an associated cost
but are not all unit cost. For example, it costs more to move
larger pieces in the Tetris domain. NLOCM finds the correct
values for each operator in these domains.

The remaining domains (Sokoban, Ged, Peg Solitaire and
Openstacks) are more interesting because they include zero
cost operators. For example, in Peg Solitaire beginning a
move costs a single unit, but continuing a move or ending
a move has no cost. In each of these domain NLOCM cor-
rectly identifies the cost of each operator. In Ged, NLOCM
correctly identifies the six operators that have non-zero cost
and correctly identifies each of these costs. For example, at-
tributing cost of two to begin-transverse-splice
and one to begin-inverse-splice.
Hard Action Cost Domains: In the remaining three do-

155

mains it is not possible to explain the data through operator
costs alone. The Elevators domain has six LOCM2 state pa-
rameters. The floor is transferred in the floor move actions,
and the passenger transfers between a floor and a lift using
the board and leave actions. The state parameter layer there-
fore generates six templates that are added to the operator
cost templates. Similarly, in the Transport domain, LOCM2
uncovers the four state parameters. In our first test (with 100
walks of length 10) the constraints solver does not find a so-
lution. In our tests we have found that using smaller problem
instances can lead to the solver finding a solution. However,
in the table we report an alternative set of random walks with
more walks of shorter length for the original 10 problems.
In both domains, NLOCM correctly identifies the underly-
ing contribution of the subset of state parameter templates
and identifies the associated cost for each of the pairs for the
input problems.

Because the LOCM2 analysis failed, neither state parame-
ters nor statics are known for the Woodworking domain tem-
plates. The domain is encoded using four operator costs that
depend on a single parameter and standard operator costs for
the other operators. This solution should therefore be reach-
able for NLOCM in the first level of step 5 (single parameter
costs). However, the solver does not return a solution for
any level of step 5 for our standard amount of training data.
We have tested the domain using several training data sets:
when the solver has returned a solution single parameters
have been selected for several operators. However, some of
these are not consistent with the benchmark model. To ex-
plore this further we used a collection of 1000, single step
input plans, for 10 problems, which provides the solver with
costings of individual ground actions. With this rich data,
NLOCM identified the four operators and parameters that
are encoded in the domain. However, it also used other sin-
gle parameters, although on closer inspection all costs across
these were equal and could be translated into a correct cost.

Related and Future Work
There is a long heritage of domain model acquisition sys-
tems in the field of automated planning, with more recent en-
deavours perhaps starting with the TRAIL system (Benson
1996). NLOCM follows in the aims of the LOCM-derived
systems (work that started as targeting the OCL (McCluskey
and Porteous 1997) language, including the Opmaker sys-
tems (McCluskey et al. 2009; Richardson 2008) in addition
to the systems described in this work) and uses a minimal
amount of input. Most other systems use other information,
such as predicates, initial and goal states and possibly inter-
mediate states. Another system, like LOP, that derives static
information is the recent ASCOL (Jilani et al. 2015). There
are relatively few works that target the numeric fragment
of PDDL. In (Lanchas et al. 2007) complete knowledge of
all intermediate states, including the cost of each action, is
used to learn operator costs. However, the approach does not
discover the relevant parameterisation underlying the cost
function (so therefore cannot learn problem-specific costs).
Some systems can target richer propositional fragments than
NLOCM, but require more input information (examples in-
clude ARMS (Wu, Yang, and Jiang 2007) and LAMP (Zhuo

et al. 2010), which can target part of the ADL fragment of
PDDL. Systems that learn planning models in the presence
of noisy and incomplete data (Mourao et al. 2012) have also
been studied. In addition to the planning community, there
is wide and active interest in automatic model acquisition in
many of the sub-fields of combinatorial search and beyond,
for example in constraint satisfaction (O’Sullivan 2010;
Bessiere et al. 2014), general game playing (Björnsson
2012; Gregory, Björnsson, and Schiffel 2015), and software
engineering (Reger, Barringer, and Rydeheard 2015).

Future work will concentrate on developing algorithms
to learn more complex numeric properties of planning do-
mains. One possible approach could be to take inspiration
from model learning in the constraint programming com-
munity. Preconditions can be viewed as constraints over the
current state that have to be satisfied in order to apply the ac-
tion. Effects can be seen as constraints over the current state
and the successor state. We intend to adapt techniques used
in an interactive setting in constraint acquisition (Bessiere et
al. 2014) to use in a domain model acquisition system.

Conclusions

Numeric planning is important in many commercial and in-
dustrial applications of planning. Domain model acquisition
technology can assist engineers in creating domain models.
A goal of this line of research is to allow the synthesis of
more complex domain models from sparse information.

In this work, we have introduced the NLOCM domain
model acquisition system that can learn domain models
with action costs using a constraint programming approach.
Our results demonstrate that NLOCM is effective, providing
good coverage over a wide range of benchmark domains.
This class of planning domain is an important subset of nu-
meric planning domains. NLOCM is the first domain model
acquisition system to target this fragment of PDDL, and
does so using minimal input, requiring only the final cost
of each input plan, and the observed actions.

Acknowledgements

This work is supported by EPSRC Grant EP/N017447/1.

References

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Baranes, A., and Oudeyer, P. Y. 2013. Active learning of
inverse models with intrinsically motivated goal exploration
in robots. Robotics and Autonomous Systems 61(1):49–73.
Benson, S. S. 1996. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation.
Bessiere, C.; Coletta, R.; Daoudi, A.; Lazaar, N.;
Mechqrane, Y.; and Bouyakhf, E. H. 2014. Boosting Con-
straint Acquisition via Generalization Queries. In European
Conference on Artificial Intelligence.
Björnsson, Y. 2012. Learning Rules of Simplified
Boardgames by Observing. In European Conference on Ar-
tificial Intelligence, 175–180.

156

Cakmak, M.; Chao, C.; and Thomaz, A. 2010. Designing
Interactions for Robot Active Learners. IEEE Transactions
on Autonomous Mental Development 2(2):108–118.
Cresswell, S., and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In International
Conference on Automated Planning and Scheduling, 42 –
49.
Cresswell, S. N.; Mccluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In ICAPS, 338 – 341.
Ersen, M., and Sariel, S. 2015. Learning behaviors of and in-
teractions among objects through spatio-temporal reasoning.
Computational Intelligence and AI in Games, IEEE Trans-
actions on 7(1):75–87.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Auto-
matic construction of efficient multiple battery usage poli-
cies. In International Conference on Automated Planning
and Scheduling, 74–81.
Frank, J. D.; Clement, B. J.; Chachere, J. M.; Smith, T. B.;
and Swanson, K. J. 2011. The Challenge of Configur-
ing Model-Based Space Mission Planners. In International
Workshop on Planning and Scheduling for Space.
Gregory, P., and Cresswell, S. 2015. Domain Model Ac-
quisition in the Presence of Static Relations in the LOP Sys-
tem. In International Conference on Automated Planning
and Scheduling, 97–105.
Gregory, P.; Björnsson, Y.; and Schiffel, S. 2015. The GRL
System : Learning Board Game Rules With Piece-Move In-
teractions. In GIGA.
Hoffmann, J.; Weber, I.; and Kraft, F. M. 2012. SAP speaks
PDDL: Exploiting a software-engineering model for plan-
ning in business process management. Journal of Artificial
Intelligence Research 44:587–632.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2015. Ascol: A tool for improving automatic planning do-
main model acquisition. In AI*IA 2015, Advances in Ar-
tificial Intelligence - XIVth International Conference of the
Italian Association for Artificial Intelligence, Ferrara, Italy,
September 23-25, 2015, Proceedings, 438–451.
Lanchas, J.; Jiménez, S.; Fernández, F.; and Borrajo, D.
2007. Learning action durations from executions. In Pro-
ceedings of the ICAPS’07 Workshop on AI Planning and
Learning.
McCluskey, T. L., and Porteous, J. 1997. Engineering and
compiling planning domain models to promote validity and
efficiency. Artificial Intelligence 95(1):1–65.
McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In International Conference on Agents and Artificial
Intelligence (ICAART), 93–100.
Mourao, K.; Zettlemoyer, L.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Uncertainty in Artifical Intelli-
gence, 614 – 623.
O’Sullivan, B. 2010. Automated modelling and solving in
constraint programming. In AAAI.

Parkinson, S.; Longstaff, A.; Crampton, A.; and Gregory, P.
2012. The Application of Automated Planning to Machine
Tool Calibration. In International Conference on Automated
Planning and Scheduling.
Porteous, J.; Teutenberg, J.; Pizzi, D.; and Cavazza, M.
2011. Visual programming of plan dynamics using con-
straints and landmarks. In International Conference on Au-
tomated Planning and Scheduling, 186–193.
Porteous, J.; Charles, F.; and Cavazza, M. 2013. Network-
ING: using character relationships for interactive narrative
generation. In International Conference on Autonomous
Agents and Multi-agent Systems, 595–602.
Porteous, J.; Charles, F.; and Cavazza, M. 2015. Using So-
cial Relationships to Control Narrative Generation. In AAAI,
4311–4312.
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2014. Choco3
Documentation. TASC, INRIA Rennes, LINA CNRS UMR
6241, COSLING S.A.S.
Reger, G.; Barringer, H.; and Rydeheard, D. 2015.
Automata-based Pattern Mining from Imperfect Traces.
ACM SIGSOFT Software Engineering Notes 40(1):1–8.
Richardson, N. E. 2008. An Operator Induction Tool Sup-
porting Knowledge Engineering in Planning. Ph.D. Disser-
tation, School of Computing and Engineering, University of
Huddersfield, UK.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Eng.
Review 22(2):117–134.
Surovik, D. A., and Scheeres, D. J. 2015. Heuristic Search
and Receding-Horizon Planning in Complex Spacecraft Or-
bit Domains. In International Conference on Automated
Planning and Scheduling, 291–295.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itsimple 2.0: An integrated tool for designing plan-
ning domains. In International Conference on Automated
Planning and Scheduling, 336–343.
Walsh, T. J., and Littman, M. L. 2008. Efficient Learning
of Action Schemas and Web-Service Descriptions. In AAAI,
714 – 719.
Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014. KEWI
- A knowledge engineering tool for modelling AI planning
tasks. In International Conference on Knowledge Engineer-
ing and Ontology Development, 36–47.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An auto-
matic knowledge engineering tool for learning action mod-
els for AI planning. The Knowledge Engineering Review
22(2):135–152.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intellgence 174:1540–1569.

157

