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Abstract

In this paper, we aim to take a step toward a tighter inte-
gration of automated planning and Bayesian Optimiza-
tion (BO). BO is an approach for optimizing costly-
to-evaluate functions by selecting a limited number of
experiments that each evaluate the function at a speci-
fied input. Typical BO formulations assume that exper-
iments are selected one at a time, or in fixed batches,
and that experiments can be executed immediately upon
request. This setup fails to capture many real-world do-
mains where the execution of an experiment requires
setup and preparation time. In this paper, we define
a novel BO problem formulation that models the re-
sources and activities needed to prepare and run exper-
iments. We then present a planning approach, based on
finite-horizon tree search, for scheduling the potentially
concurrent experimental activities with the aim of best
optimizing the function within a limited time horizon.
A key element of the approach is a novel state evalu-
ation function for evaluating leaves of the search tree,
for which we prove approximate guarantees. We eval-
uate the approach on a number of diverse benchmark
problems and show that it produces high-quality results
compared to a number of natural baselines.

Introduction

We consider optimizing an unknown function f by running
experiments that each take an input x and return a noisy out-
put f(x). In particular, we focus on the setting where exper-
iments are expensive, limiting the number of experiments
that can be run. Bayesian Optimization (BO) addresses
this setting by maintaining a Bayesian posterior over f to
capture uncertainty given prior experiments (Jones 2001;
Brochu, Cora, and de Freitas 2010). The posterior is then
used to select new experiments that trade-off exploring un-
certain experiments and exploiting promising areas.

BO frameworks traditionally assume that experiments can
be run immediately upon request, usually at uniform cost.
In many real-world domains, experiments require varying
amounts of time and resources to setup and run. In such do-
mains, failing to plan for such setup activities may make it
impossible to run a potentially useful experiment when de-
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sired. Thus, it is critical to reason about both: 1) which ex-
periments should be run (the focus of traditional BO), and
2) experiment setup activities that support running useful fu-
ture experiments. This motivates the high-level goal of this
paper, which is to take a step toward a more significant inte-
gration of automated planning and BO.

As a motivating example, consider the problem of op-
timizing the power output of microbial fuel cells (MFCs),
which use bacteria to generate electricity from various me-
dia (e.g. waste water) (Bond and Lovley 2003). The energy
production of an MFC can depend on various parameters
including the species and mixture of bacteria, the surface
properties of the anode, and nutrient level (Park and Zeikus
2003). Running an MFC experiment requires a number of
construction steps, including growing a batch of the desired
bacteria from frozen stock, noting that a single batch may
be able to support multiple experiments. Bacteria growing
times vary widely depending on the species, ranging from
days to weeks. This necessitates advanced planning to en-
sure that a particular experiment can be conducted. This
planning problem is further complicated by the fact that a
laboratory often has multiple facilities for running concur-
rent experiments and setup activities.

As another example, consider the problem of using
biodegradable polymers to fabricate porous scaffolds in
bone tissue engineering. Using these polymers allows bone
tissue ingrowth without the need for implant removal oper-
ation. However, these polymers lack some of the mechan-
ical properties required for human bones and need to be
reinforced. A common strategy to improve the mechanical
properties of a polymer, e.g. stiffness, is to incorporate filler
particles into the organic matrix of the polymer (Balasun-
daram and Webster 2007). Moreover, the stiffness of a poly-
mer nanocomposite depends on various factors such as the
type of reinforcing nanoparticle, the fiber volume fraction,
and fiber aspect ratio (Nairn and Mohammadi 2015). The
fabrication costs of these nanocomposites can vary exten-
sively depending on the reinforcing agent. Since these ex-
periments are both expensive and time consuming, the main
goal is often to maximize the stiffness given a fixed budget.
Currently there are no algorithms or tools that can reason
about both experiment selection and the scheduling of such
setup activities.

A key contribution of this paper is to introduce an ex-
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tended BO setting, called Bayesian Optimization with Re-
sources (BOR), that explicitly models experimental re-
sources and activities. In particular, our model specifies
the following: 1) resource requirements for experiments,
which may vary across different experiments, 2) resource-
production actions, which produce the various resources and
can require varying amounts of time, and 3) a set of “labs”
for running concurrent experiments and a set of “production
lines” for concurrent resource production. The problem is
then to select and schedule the experiments and resource-
production actions in order to optimize the unknown objec-
tive function within a specified time horizon.

Our second contribution is to propose an online plan-
ning algorithm for BOR, which decides at any time point
which experiments and resource-production actions to exe-
cute. The algorithm is based on finite-horizon tree search,
where the goal is to select an action for the current state
that maximizes the finite-horizon expected improvement to
the unknown function. Unfortunately, the branching factor
of raw search trees for BOR problems is too large for vanilla
search algorithms. Our approach addresses this issue in two
ways. First, we draw on ideas from traditional BO to de-
scribe a practical and effective approximation of the raw
search tree with a significantly reduced branching factor.
Second, and more importantly, we design a novel state eval-
uation function for assigning long-term values to leaf nodes,
which can significantly improve performance.

Our evaluation on benchmark domains shows that our ap-
proach, even with only a small amount of search, performs
well compared to a variety of baselines.

Related Work. One practically important extension to basic
BO is batch (or parallel) BO, which models the availability
of multiple experiment facilities and selects a batch of ex-
periments at each step (e.g. (Azami, Fern, and Fern 2010;
Desautels, Krause, and Burdick 2012)). Batch BO was later
extended (Azami, Fern, and Fern 2011) to model the dura-
tion of experiments and explicitly reason about constraints
on the number of experiments and time horizon for running
experiments. In both cases, simplistic resource models were
used and can be viewed as special cases of our framework
where there is a single resource and no action for producing
resources. Recent work on sequential BO for spatial moni-
toring (Marchant, Ramos, and Sanner 2014) integrates path
planning with BO, by requiring travel to a particular loca-
tion in order to run each experiment (collect a measurement).
Similarly, our work can be viewed as an integration of BO
and resource production planning, which is qualitatively dif-
ferent from path planning. While both their solution and ours
is based on tree search, the search trees are significantly
different and require different approximations to be effec-
tive. In summary, while a number of extensions to the basic
BO model have been introduced, we are not aware of prior
work that directly models and reasons about experimental
resources and production actions.

Problem Setup

We consider Bayesian Optimization (BO) problems where
each experiment is an element of a d-dimensional space X .

Each dimension describes an experiment property and can
be either real-valued or discrete over a finite domain. For
example, in our motivating fuel cell domain, an experiment
x ∈ X may have a discrete attribute that specifies the bac-
teria type to use and real-valued attributes that specify prop-
erties such as the composition of the supplied nutrients. An
unknown real-valued function f : X → � represents the ex-
pected value of the dependent variable after running an ex-
periment. For example, f(x) might be the expected power
output of a fuel cell experiment described by x. Running an
experiment x allows us to observe a possibly noisy outcome
y = f(x) + ε, where ε is a random noise term. The goal of
BO is to find an experiment x ∈ X that approximately max-
imizes f by requesting a limited number of experiments and
observing their outcomes.

Traditional BO assumes that experiments can be run
instantaneously upon request at a uniform cost. In reality,
experiments often require resources that can vary across
experiments. Because producing those resources requires
preparation time, it is critical to reason about resource
production in order to support the most useful future
experiments. This paper extends traditional BO to account
for such resource dependencies by introducing a setting we
call Bayesian Optimization with Resources (BOR).

BOR Domains. A BOR domain is a tuple
(X , τ, R,C,A, Le, Lp, H), where X is the space of
experiments and τ is a constant specifying the time duration
of experiments. The resource set R = {R1, . . . , Rn} is a
set of n resource types. For example, Ri may represent a
certain bacteria type in our fuel cell example. During the
experimental process, the resource vector rt denotes the
available amount of each resource at time t (rti is the amount
of Ri). The cost function C(x) specifies the resources re-
quired for experiment x. Experiment x is feasible and can
be started at time t only if Ci(x) ≤ rti for all i, after which
the resource vector rt is updated by subtracting C(x).

To produce additional resources (e.g. growing a batch of
bacteria) the production action set A = {A1, . . . , An} spec-
ifies a production action Ai for each resource Ri. When an
action Ai is executed at time t, it runs for a duration of τi and
produces an amount ai of resource Ri that is added to the re-
source vector at time t + τi. Le (Lp) bounds the maximum
number of concurrent experiments (production actions) that
can be run. For example, Le may be bound by the number of
sensing apparatus available and Lp may be bound by limited
laboratory resources and/or personnel. Finally H is the time
horizon within which activities must be completed.

BOR States and Policies. The state st at time t of a BOR
problem captures all information available up to time t.
Specifically, a state is a tuple s = (t,Dt, rt, Et, P t), where
t is the current time, Dt is a set of experiment-outcome pairs
that have completed by time t, rt is the current resource vec-
tor, and Et (P t) is a set specifying the currently running ex-
periments (production actions) and the time remaining for
each. A decision state is a state where there is either a free
experimental lab (|Et| < Le) or an open production line
(|P t| < Lp). We say that a decision state s is an e-states
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when there is an available lab, and otherwise s is an r-state
with an available production line.

A BOR policy π is a mapping from a decision state to
an action, which is either a feasible experiment to run for
e-states or a production action for r-states. A policy π is ex-
ecuted by using it to select actions in any encountered de-
cision state until reaching the time horizon. At the horizon
the policy must output an experiment x∗ that is predicted to
have the best value of f . Note that when started in an ini-
tial state s0, the eventual predicted optimum x∗ is a random
variable. The expected regret of π when started in s0 is then
defined as maxx f(x)−E[f(x∗) | s0, π]. The goal of BOR
planning is to compute policies that achieve small regret.

Additionally, to evaluate a policy π we introduce the fol-
lowing concept. Running π from s until horizon h, each
run generates a potentially different set of completed ex-
periments (i.e. experiment-outcome pairs (x, y)), denoted by
the random variable Sh

π(s). Given a reference value y∗ (typ-
ically the best output observed before running π), the ex-
pected improvement of a policy π relative to y∗ is defined
as EIπ(s, h, y∗) = E

[
I
(
max(x,y)∈Sh

π(s) y − y∗
)]

, where
I(x) = x if x ≥ 0 and 0 otherwise.

Structured Cost Functions. The cost function C(x) is ex-
tremely general and does not capture structure present in
real-world domains. While our algorithm developed in Sec-
tion is applicable to arbitrary cost functions, our analysis
will apply to the following special cases, which are inspired
by our motivating fuel cell application.

We say that C(x) is r-uniform if any experiment that
uses a resource uses the same amount of the resource. More
specifically, for any x and i, either Ci(x) = ci or Ci(x) = 0
for some constant ci > 0. We say that C(x) is a partition
cost function if it is r-uniform and there is also a partition
{X1, . . . , XN} of X such that for each resource Ri either 1)
Ci(x) > 0 for all x, or 2) There is an Xj such that for all
x ∈ Xj , Ci(x) = ci > 0 and for all x ∈ X−Xj , Ci(x) = 0.
A partition cost function models cases where there are N
experiment types and each resource is either dedicated to a
particular type of experiment or is used by all experiments.
As an example from our fuel cell domain, different types
of fuel cell experiments will use different strains of bacte-
ria resources, while all experiments require basic resources
needed for fuel cell operation.

Online Lookahead Search for BOR Planning

Given a BOR domain (X , τ, R,C,A, Le, Lp, H) and a de-
cision state s we now consider how to compute a policy π
that will achieve small regret within the horizon H . As is
standard in BO, we assume the availability of a posterior
P (f | D) over the unknown function f given previous ex-
periments D, which implies a posterior P (y | x,Dt) over
the output y of experiment x. We will use a Gaussian Pro-
cess for maintaining this density (details in Section ).

A BOR domain can be modeled as a Partially Observ-
able Markov Decision Process (POMDP) with hidden state
component corresponding to the unknown function f . For all
but trivial BOR POMDPs, however, current offline POMDP
solvers are not a practical option. Thus, we consider an

online planning approach, which constructs a look-ahead
search tree for each encountered state in order to estimate ac-
tion values. The highest-valued action is then executed. This
is a popular and successful approach for large-scale plan-
ning in both POMDPs (Ross et al. 2008) and MDPs (Kearns,
Mansour, and Ng 2002; Kocsis and Szepesvári 2006). To
simplify our description of the tree construction, we will
view the space of experiments X and their outcomes Y as
very large finite discrete sets as determined by measurement
resolution. As we will see, however, our eventual search al-
gorithm does not depend on this assumption.

BOR Search Trees. Given a current state st and a speci-
fied search horizon Hs, the value for action a defined by our
tree is the Hs-horizon expected improvement, with respect
to the best experiment outcome y∗ observed up to time t. In
particular, for action a, this is equal to the EI obtained by
executing action a and then following an optimal policy un-
til time Hs. The action that maximizes this notation of value
is intuitively the one that we can expect to lead to the most
potential for improvement.

Figure 1 illustrates a fragment of an example BOR tree.
Paths in a tree alternate between state nodes (circles) and
action nodes (squares). We will let na(s) denote the ac-
tion node corresponding to action a with parent state s =
(t,Dt, rt, Et, P t). The root node of a BOR tree is the cur-
rent state st, which in our example is an r-state. The children
of each state node are action nodes corresponding to the pos-
sible actions at the state. As illustrated in the example, for
r-states the possible actions are the n resource production
actions and for e-states the actions correspond to the possi-
ble feasible experiments in X .

The children of an action node na(s) are the possible next
decision states that can be reached after taking a in s, which
is the state occurring when either the next experiment fin-
ishes (an e-state) or lab becomes available (an r-state). The
times of these events are easily inferable from the action du-
rations in our action models. Further the edges to those chil-
dren are weighted by the probability of their occurrence. The
child generation process depends on whether the next deci-
sion state is an r-state or e-state and whether an experiment
or resource action ended. Here, we illustrate two cases in de-
tail. The remaining cases are similar but are omitted due to
space constraints.

The first case, illustrated by the leftmost action child of
the root in Figure 1, is for a resource actions that lead to e-
states at time t1, meaning that an experiment x ended at t1.
There will be one child e-state for each possible outcome y
of x, with edge weight given by the posterior P (y | x,Dt).
In particular, for each y we will create a new child state hav-
ing tuple (t1, D

t ∪ {(x, y)}, rt, Et − {x}, P t1), where the
time is updated to t1, the outcome (x, y) is added to the set
of completed experiments, and x is removed from the set of
running experiments, the resource vector is unchanged from
rt since no new resources were consumed or produced at t1.
Finally, P t1 is an update of P t reflecting that resource action
A1 just started running. Each of these resulting e-states has
children (action nodes) corresponding to the possible exper-
iments that could be selected in them.
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Figure 1: Partial illustration of a search tree

The second case, illustrated by the rightmost action node
in Figure 1, is when the next decision state is an r-state oc-
curring at time t2, meaning that a production line freed up
at t2 due to resource production action Ai finishing. In this
case, there is a single child r-state of the action, which has
children corresponding to each resource action available at
that state. The state description for this new r-state is the tu-
ple (t2, Dt, rt2 , Et, P t−{Ai}), where the time is updated to
t2, action Ai is removed from the set of running resource ac-
tions, and rt2 is updated so that rt2i = rti +ai indicating that
an increment to resource Ri occurred. The set of running
experiments and completed experiments remain unchanged.

The full BOR tree is defined as above with leaves corre-
sponding to the fringe of state nodes whose time stamps are
less than the search horizon Hs and whose children would
have time stamps greater than Hs. The EI values assigned to
state and action nodes can be defined bottom up starting with
the leaves. The value of a leaf node with finished experiment
set D is simply I

(
max(x,y)∈D y − y∗

)
, recalling that y∗ is

the best output observed in the real world so far (i.e. before
the search began). The value of an action node is equal to the
expectation of values assigned to its child state nodes. The
value of a state node is defined as the maximum value of its
child action nodes, reflecting that state nodes have a choice
over actions. In this way the action values in the tree for root
st will correspond to the Hs-horizon EI as desired.

Unfortunately, it is impractical to construct the full tree.
First, the action branching is enormous, especially at e-
states. Second, the stochastic branching of action nodes
where experiments complete is very large (i.e. |Y|). This se-
riously limits the search horizons that can be used. Below
we first describe how we address the large branching factors
by approximating the tree. Even then the practically attain-
able depths are quite limited. Thus, next we describe how to
compute informative leaf evaluation functions that attempt
to provide longer term estimates of leaf node values, which
translates into improved action values at the root.

Search Tree Approximation. One approach for dealing
with stochastic branching due to completed experiments is
to follow the Sparse Sampling approach (Kearns, Mansour,

and Ng 2002) and sparsely sample a smaller number of k
outcomes for the completed experiment, which results in
just k new e-states compared to |Y|. Unfortunately, even for
relatively small values of k the feasible search depths are
very small since the tree size is exponential in k. Further,
small values of k introduce large variance into the search
results. Thus, we follow a relatively common alternative ap-
proach, which is to use a deterministic transition model that
assigns all experiment outcomes to its MAP estimate. That
is, the only e-state included under an action node na(s) cor-
responds to the outcome argmaxy P (y |x,D), where x is
the newly completed experiment and D is the set of com-
plete experiments for state s. This MAP approximation is
a commonly employed and often successful technique in
control and AI planning (e.g. (Yoon, Fern, and Givan 2007;
Platt et al. 2010; Marchant, Ramos, and Sanner 2014)). Our
initial investigation showed that it is a more effective ap-
proximation for BOR problems than Sparse Sampling.

In order to deal with the large action branching at e-nodes
(i.e. |X |), we draw on ideas from BO. BO has developed
a number of policies for selecting experiments given prior
experiment outcomes. Among the most effective is the max-
imum expected improvement (MEI) policy πei, which selects
the feasible experiment x that maximizes the EI function, i.e.
πei(s) = argmaxx∈Xs

E [I(y − y∗) | x,D]], where y ∼
P (y | x,D), D is the set of finished experiments at s, and Xs

is the set of feasible experiments at s. EI can be computed
efficiently for the GP models used in our work. We lever-
age this idea by only considering the action selected by πei,
which eliminates action branching due to experiment selec-
tion. While this appears to be an extreme approximation, πei

has consistently shown good performance in BO and is quite
effective in our experiments.

After the above simplifications, the remaining branching
in the tree corresponds to action branching at r-states, which
is equal to the number of resource actions |R|. Thus, the
computation time of constructing our approximate search
tree will be O(d|R|), where d is the maximum number of r-
states encountered on a path from the root to a leaf. For this
reason we will parameterize our search trees by not only the
search horizon Hs but also by the r-depth d, which specifies
the maximum number of r-states allowed on any tree path.
During tree construction, whenever an r-state is encountered
that goes beyond the r-depth, it is converted into a leaf node
of the tree, which for small values of d will typically occur
before reaching the search horizon. Thus, while using small
values of d allow for efficiency, the price is that the value
computed for such early terminating leaf nodes can be quite
short sighted compared to the search horizon, which can hurt
overall performance. This is accounted for by our leaf eval-
uation function described next.

State Evaluation Function. Given a leaf node for state
s = (t′, D, r, E, P ) with t′ < Hs the default leaf evaluation
from above is based only on the experiment outputs in D.
This ignores the potential experiments that could be run and
completed between time t′ and Hs using resources that were
produced in the tree leading to s. Thus, the leaf and resource
production decision above it can be severely undervalued.
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The purpose of the state evaluation function is to estimate
the potential long term value that could be obtained from a
leaf. Long term value corresponds to the potential improve-
ment of continuing to select and run experiments until the
horizon. One measure of this potential would be to com-
pute a set of experiments X∗ that achieves the maximum
EI under the constraint that X∗ consumes resources that
are either available at the leaf or that will become available
in the future. In other words, X∗ maximizes G(X, y∗) =
E [maxe∈X∪X′ I(ye − y∗)], where the expectation is with
respect to P (y | D), D contains the observed data, and X ′
is the set of ongoing experiments at the leaf.

Unfortunately, even computing X∗ is a computationally
hard problem, which follows from the computational hard-
ness of BO. Fortunately, however, we are able to compute
a set of experiments X̂ that achieves an EI within a con-
stant factor of G(X∗, y∗) for a wide class of BOR prob-
lems. We compute X̂ using the following simple greedy al-
gorithm. We initially set X̂ = ∅ and at each iteration add an
experiment to X̂ that produces the maximum increase in EI
of the resulting set while ensuring that the resulting set satis-
fies the resource constraints. More formally, at each iteration
given the current X̂ we add an experiment x that maximizes
G(X̂∪{x}, y∗), subject to the constraint that X̂∪{x} can be
produced using resources available at the leaf or that are cur-
rently being produced at the leaf. Unfortunately there is no
closed form expression for G(X, y∗), however, it is straight-
forward to estimate the expectation G to an arbitrary accu-
racy via Monte-Carlo sampling.

Approximation Bound. We now draw on the theory of
greedy submodular optimization (Nemhauser, Wolsey, and
Fisher 1978), which provides approximation bounds for
greedy optimization of sets as is done for our heuristic leaf
evaluation function. We only outline the main concepts due
to space limits (see (Nemhauser, Wolsey, and Fisher 1978)).
Our results partly rely on viewing G(X, y∗) as a set function
of X and showing that it is a monotone increasing, submod-
ular set function. A set function is monotone increasing if
adding elements to X never decrease the value. Submodu-
larity is a type of diminishing returns property. A set func-
tion G is submodular if for any two sets X1 ⊆ X2, adding
an element x to X1 will improve G by at least as much as
adding x to the superset X2.

Proposition 1 For any value of y∗, G(·, y∗) is a monotone
increasing and submodular set function for a Gaussian Pro-
cess prior over the unknown function f .
Proof. We first introduce some notations and definitions.
Any mapping from all experiments to their possible out-
comes is called a realization φ. We say that outcomes of a
set of experiments A (i.e. YA = {yei} where ei ∈ A) are a
partial realization consistent with a φ if they are equal over
the set A and we write YA ∼ φ. And lastly, YB is a subreal-
ization of YA if and only if B ⊆ A and YA and YB are both
consistent with some realization φ and we write YB ⊆ YA.

Monotonicity: Given a partial realization YX and any exper-
iment e′, we have
max{Ie∈X (ye − y∗)} ≤ max{Ie∈X (ye − y∗) , I (ye′ − y∗)}

≤ max{Ie∈X∪{e′} (ye − y∗)}

where y∗ is any arbitrary reference point and ye′ is any real-
ization for e′. Since this inequality holds for any realizations
we get,

E [max{Ie∈X (ye − y∗)}] ≤ E
[
max{Ie∈X∪{e′} (ye − y∗)}]

which implies that G(X, y∗) ≤ G(X ∪ {e′}, y∗), for all e′.
Therefore, G is monotone increasing. �
Submodularity: We need to show that

G
(
X2 ∪ {e′}, y∗)−G (X2, y

∗)

≤ G
(
X1 ∪ {e′}, y∗)−G (X1, y

∗)

for all X1 ⊆ X2 ⊆ E and e′ ∈ E \X2 where E is the
set of all experiments. For the case that X1 = X2 the
marginal benefits of adding an experiment to each set is
clearly the same. Now consider the more interesting case
where |X1| = m < |X2| = n. Since G is the ex-
pected improvement of a set, the order of the elements of
the set does not affect the objective. Therefore, for any ex-
periment e′ without loss of generality we can write X2 ∪
{e′} = {e1, e2, . . . , em, em+1, . . . , en, e

′} where X1 =
{e1, e2, . . . , em}. Now for any partial realization YX2∪{e′},
YX1 ⊆ YX2 and we have:

max (Ie∈X2
(ye − y∗), I(ye′ − y∗)) =

max
(
Ie∈X1

(ye − y∗), Ie∈X2\X1
(ye − y∗), I(ye′ − y∗)

)

To calculate the marginal benefit of adding e′ to X2,
only the cases count where I(ye′ − y∗) is greater than both
Ie∈X1

(ye − y∗) and Ie∈X2\X1
(ye − y∗). Whereas to calcu-

late the marginal benefit of adding e′ to X1, I(ye′ − y∗)
only needs to be greater than Ie∈X1

(ye − y∗). Note that
a Gaussian prior is assumed over the underlying function
and that adding new elements to a set can only decrease
the variance on the other elements. Therefore, the exis-
tence of {em+1, . . . , en} in X2 not only might result in
I(ye′ − y∗) getting dominated by Ie∈X2\X1

(ye − y∗) but it
may also decrease the variance at the point e′ which means
lowering the probability of observing larger outcomes for
ye′ . Also note that p({ye1 , ye2 , . . . , yem}|YX1

∼ φ) =
p({ye1 , ye2 , . . . , yem}|YX2

∼ φ). Combining these obser-
vations implies that:

E
[
Ie∈X2∪{e′}(ye − y∗)− Ie∈X2

(ye − y∗)
] ≤

E
[
Ie∈X1∪{e′}(ye − y∗)− Ie∈X1

(ye − y∗)
]

This implies that G(X2 ∪ {e′}, y∗) − G(X2, y
∗) ≤

G(X1 ∪ {e′}, y∗)−G(X1, y
∗), which completes the proof.

�
If there were no resource constraints then the standard

(1 − e−1) approximation result for greedy submodular op-
timization would hold. That is, our greedy approach for op-
timizing the set would be within a factor of 1 − e−1) of
optimal. In our case, however, the sets being optimized over
must satisfy the resource constraints, and the greedy algo-
rithm can only add experiments subject to those constraints.
Thus, this standard result does not apply. Instead we draw on
work that considers submodular optimization under matroid
constraints (Calinescu et al. 2007).
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Consider a leaf state s with time stamp t′ and available
resource vector r. We aim to characterize the constraints on
the possible feasible sets X of experiments that could be
produced. The simplest constraint is on the total number of
experiments. Given the currently running experiments in s,
the number of labs, and the experiment duration, we can cal-
culate the number k of additional experiments could be run
between time t′ and Hs. Thus, the first constraint on X is
the cardinality constraint |X| ≤ k. Next, the resources spec-
ified by r must be sufficient to support all experiments in
X . Thus, the second constraint is

∑
x∈X C(x) ≤ rt. An

approximation result in (Calinescu et al. 2007) states that
if constraints on sets X can be defined as an intersection
of p matroids (more generally p-independence system), then
the greedy algorithm, in our case selecting X̂ , achieves a
1/(p + 1) factor approximation guarantee compared to the
best possible set of experiments X∗. It remains to character-
ize p for classes of BOR problems.

Definition 1 (Matroid) A matroid M is an ordered pair
(X , I) consisting of a finite set X and a collection I ⊆ 2X
such that: 1) ∅ ∈ I 2) For A ⊂ B ⊆ X and B ∈ I, then
A ∈ I, and 3) If A and B are in I and |B| > |A|, then there
exists x ∈ B \A such that A ∪ {x} ∈ I.

The cardinality constraint on X defines the well-known
uniform matroid. In general, however, the resource con-
straint will not be a single matroid. For r-uniform and parti-
tion cost functions we can show the following.

Proposition 2 For any resource vector r, let I ⊆ 2X , con-
tain all experiment subsets X such that

∑
x∈X C(x) ≤ r. If

C is r-uniform, then I can be represented as the intersection
of |R| matroids. If, in addition, C is a partition cost function
then (X , I) is a matroid.

Proof. For any i = {1, . . . , |R|}, let Ii be all the ex-
periments that have the required amount of resource i i.e.
{x | 0 < Ci(x) ≤ ri}. We show that (X , Ii) forms a ma-
troid. Given a vector r, if there is not enough of resource
i available, then no corresponding experiment can be run.
Therefore, ∅ ∈ Ii. Consider any two arbitrary sets A and
B where A ⊂ B ⊆ X and B ∈ Ii. We need to show that
A ∈ Ii. Assume for contradiction that A �∈ Ii. This means
that there is an experiment in A that does not have the re-
quired amount of resource i. But this is not possible since
all the experiments in A are also elements of B and B ∈ Ii.
So, A must be in Ii as well.

Now consider any two arbitrary sets A and B in Ii for
which |B| > |A|. If the cost function is r-uniform, any ex-
periment that uses resource i uses the same amount. This
means that there exists enough of resource i for at least
|B| − |A| more experiments after A. Since |B| > |A|, we
know that there exist an experiment x ∈ {B \ A} such that
A ∪ {x} ∈ Ii. Therefore, (X , Ii) is a matroid for any i.
Note that

⋂|R|
i=1 Ii gives us {x | 0 < Ci(x) ≤ ri, ∀i} i.e.

all feasible experiments. This means (X ,
⋂|R|

i=1 Ii) is indeed
the intersection of |R| matroids providing us with the feasi-
ble experiment space.

Now we show that partition cost would result in a single
matroid. To do so, first let I be all feasible sets of experi-

ments. Clearly, as above, ∅ ∈ I and for any two sets A and
B, such that A ⊂ B ⊆ X and B ∈ I, A must be in I.

Now consider arbitrary sets A and B in I where |B| >
|A|. Recall that for a partition cost function, we have a par-
tition {X1, . . . , XN} of X and each resource is used either
by one particular partition or by all the experiments. There-
fore, if both A and B are feasible and |B| > |A|, there must
exist a partition j in which the number of elements in B is
greater than the number of elements in A (i.e. |Bj | > |Aj |).
In other words, there exist an experiment eBj �∈ Aj . Since
all the experiments in |Bj | are feasible and we know that
the required resources for |Bj | cannot be consumed by any
other partition, eBj

can be added to A and A∪{eBj
} would

still remain feasible. This completes the proof. �
Thus, we see that for r-uniform and partition cost func-

tions the feasible experiment sets can be represented by
|R| + 1 and 2 matroids respectively, which combined with
Proposition 1 gives the following main result.
Theorem 1 For any leaf state s and y∗, it holds that
G(X̂, y∗) ≥ α ·G(X∗, y∗), where α = 1

|R|+2 for r-uniform
cost functions and α = 1

3 for partition cost functions.

Empirical Results

GP Model. Our approach and baselines require a poste-
rior over f , for which we use zero-mean Gaussian Process
(GP) priors. The space of experiments X in our benchmarks
include both real-valued and discrete attributes (indicating
the type of an experiment). We handle discrete attributes
by maintaining one GP over real-valued attributes for each
combination of discrete attribute values. More sophisticated
GP models could be used for larger numbers of discrete at-
tributes. The co-variance function of each GP is given by
a Gaussian kernel K(x, x′) = σ exp

(− 1
2w ‖ x− x′ ‖2),

with signal variance σ = 1 and kernel width w = 0.05.
Depending on the application in hand, one can use any pa-
rameter selection approach desired. We found these fixed pa-
rameter values work just fine for the purpose of this work.

Unless otherwise specified, the time horizon is H = 90
days in all experiments and there are 5 experimental labs
(Le = 5) and 2 resource production lines (Lp = 2). Four
different production time settings [5, 7, 11], [11, 7, 5], [8,
8, 8] and [7, 11, 7] are used to evaluate the performance of
the introduced algorithms. Production time [5, 7, 11] means
that producing resources 1 through 3 takes 5, 7 and 11
days respectively. These settings roughly have the average
time of 8 days but are distributed in different patterns to
cover a vast range of possible scenarios. Our results report
the average regret (over 50 runs) achieved by each method
throughout the 90 day duration.

Benchmarks. Quantitatively comparing BO algorithms in
real-world laboratories is not practical. In particular, the real
laboratory experimentation process can only be done once
due to time and resource constraints, which does not allow
for repeated BO algorithm runs that would be required for
comparison. We address this problem in two ways.
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Figure 2: (a and b) Results varying resource depth and leaf evaluation. (c) Nitrogen production experiments.
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(b) [5, 7, 11]
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(c) [8, 8, 8]
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Synthetic Functions (Shared Resource Structure)
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(e) [11, 7, 5, 8]
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(f) [5, 7, 11, 8]
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(g) [8, 8, 8, 8]
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(h) [7, 11, 7, 8]

Synthetic Functions (Double Capacity)
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(l) [7, 11, 7]
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(m) [11, 7, 5]
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Figure 3: Synthetic function experiments using different resource models. (First Row) Independent resource structure. (Second
Row) Shared resource structure. (Third Row) Double capacity structure. (Forth Row) 6 dimensional structure
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Synthetic Benchmarks: We designed benchmarks that
emulate the resource structure of our motivating fuel cell
problem and other domains, but use synthetic functions to
simulate experimental outcomes. Each benchmark is mod-
eled as having three types of experiments, e.g. each using
a different strain of bacteria. Each experiment type corre-
sponds to one of three functions. In particular, we consider
both 2-d and 6-d function sets. For the 2-d functions we
use the well-known benchmarks: Rastriging, Rosenbrock,
and Cosines defined over [−1, 1]2. For the 6-d case we use:
Rosenbrock, Hartman6 and Styblinski defined over [0, 1]6.
Thus, each experiment x has one discrete dimension, indi-
cating the type of experiment and either an additional 2 or
6 real-valued dimensions. The experiment duration is uni-
formly τ = 6 days.

We consider two types of resource structure. The first,
Independent, which includes one resource for each of the
three experiments types. Each experiment consumes a unit
amount of its corresponding resource. The production ac-
tion for each resource produces three units each time it is
run and the durations of the actions are specified by a vec-
tor [τ1, τ2, τ3], where τi gives the number of days required to
produce resource Ri. The second resource structure, Shared,
is similar to Independent, but includes a fourth resource,
which is shared by all experiments. Each experiment con-
sumes 0.5 units of the fourth resource in addition to the sin-
gle unit of its type specific resource. Again, each resource
production action produces three units of a resource and the
durations are parameterized by a vector [τ1, τ2, τ3, τ4].

Nitrogen Production Benchmark: We developed a bench-
mark that simulates the maximization of nitrogen produc-
tion of the bacterium, nitrosmonas europaea, by varying the
amount of CO and HCO3 intake. We used a genome-scale
mathematical model to simulate the metabolic network and
biochemical activity in order to generate simulated experi-
mental outcomes. The discrete experiment variable indicates
which form of nitrogen is being considered for optimization,
either NO, N2O, or N2. The resource structure is based on
the preparation of different measuring devices for each ni-
trogen form. We model this by having one resource per form
of nitrogen. The setup for N2 experiments is estimated to be
approximately 1/3 more costly than for NO and N2O which
are roughly equal. Our evaluation reflects this structure.

Baseline Policies. Our baselines use the MEI policy for se-
lecting experiments for free labs. The baselines differ in how
resource actions are selected for free production lines. We
evaluate the following baselines: Random selects random re-
source actions. Least First (LF) selects the resource with the
least amount. Current EI identifies the experiment with the
current highest EI and selects among its required resources
the one that currently has the least amount. Oracle knows
which of the three functions achieves the global optimum
and always produces that resource.

Impact of Depth and Leaf Evaluation. We consider the
impact of the resource depth d of the search tree and the leaf
evaluation function on our method. Figs. 2a and b shows
results of tree search for two production time settings for

d = 1, 2, 3 without the leaf evaluation function, and for
d = 1 with the leaf evaluator (d = 2, 3 with leaf evalua-
tion are almost identical to d = 1). When leaf evaluation
is not used, increasing the depth d improves performance,
as expected. Interestingly, d = 1 with leaf evaluation is
never worse and sometimes better than even d = 3 without
leaf evaluation. Further, d = 1 achieves this performance
at a much smaller computational cost. These results suggest
that the dominating performance factor is the leaf evaluation
function.

Comparing to Baselines. Figure 3 (first row) compares our
method for d = 1 and leaf evaluation to the baselines for
the Independent resource scenario. While not shown, the re-
sults for d = 2, 3 with leaf evaluation are nearly the same as
for d = 1, but much more computationally expensive. We
first observe that our approach outperforms all non-oracle
baselines, noting that the relative ordering of baselines varies
with scenario. We also see that our approach nearly equals
Oracle.

Figure 3 (second row) gives results for the Shared re-
source setting where the additional shared resource always
requires 8 days to produce. For this scenario we considered
d = 2 since d = 1 would not allow both resources necessary
for each experiment to be produced. For the Shared scenario
there is no obvious Oracle policy, since experiments depend
on multiple resources and thus Oracle is not shown in these
results. Again, we see that our approach significantly out-
performs all baselines in this more complex setting.

In Figure 3 (third row), we double the number of labs
and production lines in the independent scenario in order
to observe the impact of increased experimental capacity. In
this scenario doubling the capacity would allow us to run
more experiments and as a result decrease the regret in a
shorter period of time. For this reason, we only show the
result for the time horizon of H = 60 days. Our method
outperforms non-oracle baselines, though with less margin
than with smaller capacities. We believe that this is due to
the availability of more concurrency. Here, however, we see
that Oracle outperforms our approach by a small margin. It is
unclear why our relative performance to Oracle varies with
the amount of concurrency.

All the problems that we have considered so far had two
real-valued attributes. Note that increasing the dimensional-
ity would increase the experiment space exponentially and
the problem soon gets intractable. For this reason, we use
the DIRECT optimization package (Finkel 2003) to maxi-
mize our functions of interest such as the expected improve-
ment. This allows us to run our algorithm on higher dimen-
sional problems in a reasonable amount of time without los-
ing much accuracy. Figure 3 (fourth row) shows the com-
parison between our method and other baselines. As we can
see our method outperforms the non-oracle baselines consis-
tently. Comparing between the baselines, we observe that the
Current EI dominates the Least First which in turn outper-
forms Random, except for the time setting [11, 7, 5] where
Least First and Current EI are intertwined,

Figure 2c shows the results for the nitrogen domain. We
see that our approach outperforms all baselines, except for
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Current EI, which achieve similar performance. We note that
the margin of improvement compared to the non-random
baselines is smaller than for some of the synthetic experi-
ments. We hypothesize that this is due to the fact that some
of the synthetic functions have significantly more complex
response surfaces with more local optima. Overall the re-
sults are encouraging and suggest that there may be benefits
to using our method in real laboratory settings.

Summary

We introduced the new problem of Bayesian Optimization
with Resources (BOR), which extends BO to account for ex-
periment resource requirements and productions. An online
planning approach based on depth-limited tree search was
introduced for selecting experiments and resource produc-
tion actions. Our empirical results on a set of benchmarks
with diverse resource requirements show that the proposed
approach significantly outperforms a variety of natural base-
lines and is even competitive with a policy that uses an opti-
mal resource production oracle.
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